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Nonequilibrium microbial dynamics unveil a new macroecological pattern beyond Taylor’s law

José Camacho-Mateu ,1,2 Aniello Lampo ,1,2 Saúl Ares ,1,3 and José A. Cuesta 1,2,4,*

1Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Spain
2Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain

3Centro Nacional de Biotecnologia (CNB), CSIC, 28049 Madrid, Spain
4Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain

(Received 11 April 2024; revised 12 June 2024; accepted 16 September 2024; published 15 October 2024)

We introduce a comprehensive analytical benchmark, relying on Fokker-Planck formalism, to study microbial
dynamics in the presence of both biotic and abiotic forces. In equilibrium, we observe a balance between the two
kinds of forces, leading to no correlations between species abundances. This implies that real microbiomes,
where correlations have been observed, operate out of equilibrium. Therefore, we analyze nonequilibrium
dynamics, presenting an ansatz for an approximate solution that embodies the complex interplay of forces in the
system. This solution is consistent with Taylor’s law as a coarse-grained approximation of the relation between
species abundance and variance, but implies subtler effects, predicting unobserved structure beyond Taylor’s law.
Motivated by this theoretical prediction, we refine the analysis of existing metagenomic data, unveiling a novel
universal macroecological pattern. Finally, we speculate on the physical origin of Taylor’s law: building upon
an analogy with Brownian motion theory, we propose that Taylor’s law emerges as a fluctuation-growth relation
resulting from equipartition of environmental resources among microbial species.
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I. INTRODUCTION

With a global population of more than 1030 individuals,
microbes exhibit a wider range of physiological diversity
than animals and plants combined. They are found across the
biosphere, from seawater to the human gut, playing critical
roles in ecosystem management and human health. Recent
advancements in metagenomics techniques, overcoming tra-
ditional laboratory limitations, have revolutionized studies of
the microbiome, generating vast data sets. Macroecology has
emerged as a valuable approach, employing large-scale pat-
terns to explain microbial abundances and diversity in terms
of underlying ecological forces [1–7].

The recognition and modeling of these ecological forces
are now garnering significant attention. Factors such as envi-
ronmental effects, cross-feeding, demographic stochasticity,
migration, species interactions, and other ecological forces
play a pivotal role in shaping microbial communities in both
time and space. The existence of such forces is widely ac-
knowledged. However, scholarly research has mainly focused
on untangling the effects of these mechanisms to ascertain
their relative importance, with limited exploration of their
interplay.

Two main perspectives have prevailed. On one hand, there
is a viewpoint emphasizing the role of abiotic factors, typ-
ically captured in a so-called diffusion matrix. This matrix
parameterizes fluctuation strengths, modeling the influence of
resources and environmental conditions. In particular, it has
been shown that environmental fluctuations are responsible
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for the variation in species abundances across metagenomic
samples [5] and facilitate the recovery of specific phy-
logenetic properties [8]. On the other hand, considerable
attention has been directed towards biotic interactions, typi-
cally represented by an interaction matrix, which underpins
the emergence of patterns involving multiple species, such as
correlations between fluctuations in the abundances of differ-
ent species [9,10].

Despite numerous studies examining biotic and abiotic
mechanisms separately, the complex behavior of real ecosys-
tems calls for an integrated approach that considers both
of them simultaneously. We do so through a stochastic
Lotka-Volterra model [10], presenting an extended analyt-
ical treatment of the system dynamics in terms of the
Fokker-Planck equation (FPE), which describes the prob-
ability distribution of abundances. We distinguish between
equilibrium and nonequilibrium regimes. In equilibrium, the
magnitudes of biotic and abiotic forces are balanced, implying
vanishing abundance correlations. As nontrivial correlations
are observed in real microbiomes, we conclude that microbial
dynamics operate out of equilibrium.

The analytical study of nonequilibrium dynamics is chal-
lenging. The intricate interplay between abiotic and biotic
forces induces complex configurations of associated flows.
We partly solve this problem by proposing an ansatz that
yields an approximate solution when the system is out of
equilibrium. To first order, we show that a mean-field for-
malism recovers the characteristics of this solution, providing
arguments for a physical interpretation of the approximation
[11–13].

Our analysis sheds light on the effective formulation of
Taylor’s law [14], a ubiquitous ecological pattern spanning a
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broad spectrum of ecosystems, from microorganisms to com-
plex communities of animals and plants. Taylor’s law posits
that the variance in species abundance scales as a power law
of its mean. In particular, the exponent of such a power-law
relationship is two for microbial ecosystems [5]. However, our
findings go beyond this coarse-grained description, predicting
that the variance-mean relationship across species follows a
nontrivial distribution. We confirm this prediction refining
the analysis of existing metagenomic data, describing a new
universal macroecological pattern beyond Taylor’s law. The
new distribution observed is valid across several orders of
magnitude, and our approach captures the features of this dis-
tribution, providing a more nuanced perspective on ecological
dynamics.

Finally, to close our discussion on Taylor’s law, we make
use of an analogy with the physics of Browinian motion to ob-
serve that Taylor’s law implies for the microbial community a
fluctuation-growth relation, akin to the fluctuation-dissipation
found for a Brownian particle when energy equipartition is
considered. This leads us to speculate on the physical origin
of Taylor’s law as some sort of equipartition of environmental
resources between different microbial species.

The paper is organized as follows. In Sec. II we introduce
the model and the general formal benchmark. In Secs. III and
IV we present the solution for the FPE in the equilibrium
and nonequilibrium regimes, respectively. In Sec. V we revisit
Taylor’s law, showing a new macroecological pattern that goes
beyond it. Section VI then speculates on the physical origin
of Taylor’s law using an analogy with Brownian dynamics.
Finally, in Sec. VII we discuss the general implications of our
analysis and provide perspectives for future research, with a
special focus on the consumer-resource model.

II. STOCHASTIC LOTKA-VOLTERRA MODEL

A basic population model that includes both species (bi-
otic) interactions and interrelated environmental (abiotic)
fluctuations is the stochastic Lotka-Volterra model (SLVM)
[10], described by the system of equations (in Itô’s interpreta-
tion)

ẋi = Fi(x) + xiξi(t ),

Fi(x) = xi

τi

⎛
⎝1 +

S∑
j=1

ai jx j

⎞
⎠, (1)

where i = 1, . . . , S runs over all S species present in the
community. Here xi is the population (also termed abun-
dance or density of individuals) of species i; τ−1

i its intrinsic
growth rate; and ξi(t ) is a zero-mean, multivariate, Gaussian,
white noise with correlations 〈ξi(t )ξ j (t ′)〉 = wi jδ(t − t ′). Ma-
trix W = (wi j ) accounts for fluctuations of abiotic factors
(e.g., variation of nutrients, presence of chemicals, changes
in temperature or pH, etc.) present in the environment. Along
the same line, matrix A = (ai j ) is an effective way to describe
pairwise interactions between species, such as competition or
cross-feeding. Its diagonal terms aii = −1/Ki < 0 quantify
intraspecific interactions through the carrying capacity of the
species Ki, while the off-diagonal ones account for interspe-
cific couplings and can have any sign. When the latter are zero,

Eqs. (1) reduce to Grilli’s stochastic logistic model (SLM)
[5]—which we will also refer to as “noninteracting model.”

The SLVM (1) rules the time evolution of the abundances
of a community of S species [see Fig. 1(a)] in the form
of a system of Langevin equations. Alternatively, the same
dynamics can be described through the FPE

∂

∂t
P(x, t ) + ∇ · J(x, t ) = 0, (2)

where P(x, t ) is the probability density of abundances x at
time t , and J(x, t ) is the corresponding current, which can be
expressed as

J(x, t ) = L(x)P(x, t ) − 1
2 D(x)∇P(x, t ), (3)

with the functions

Di j (x) = xix jwi j (4)

playing the role of a diffusion matrix term in the FPE, and

Li(x) = Fi(x) − 1

2

S∑
j=1

∂Di j

∂x j

= xi

τi

⎡
⎣1 − τiwii

2
+

S∑
j=1

(
ai jx j − τiwi j

2

)⎤
⎦ (5)

exhibiting the form of a convective field [15].
The basic phenomenology of the microbiome observed in

real systems involves rapid random fluctuations of abundances
around a stable state [16]. In the broader context of macroecol-
ogy, a natural approach to characterize these fluctuations is by
examining their distribution along different time instants or,
more generally, across different samples. This distribution is
referred to as the Abundance Fluctuation Distribution (AFD)
[Fig. 1(b)], and it has been reported to be well fitted by a
gamma distribution regardless of the ecosystem [5].

In terms of the solution of the FPE, the AFD corresponds
to the marginal distribution pi(xi ) of the probability density
in the steady state. The latter is obtained by solving the
equation ∇ · J(x) = 0. This equation admits a large display
of solutions. The simplest one is J(x) = 0, which corresponds
to a system in equilibrium. Accordingly, solutions J(x) �= 0
describe stationary states that are out of equilibrium. We shall
discuss both cases separately.

III. EQUILIBRIUM DYNAMICS

One obtains the probability distribution in equilibrium by
solving the equation J(x) = 0. Using expression (3) for the
current, this leads to

∇ log P(x) = 2D(x)−1L(x). (6)

Recalling the expressions for the diffusion matrix (4) and the
convective field (5), we end up with the set of equations

∂ log P

∂xi
= 1

xi

⎛
⎝βi − 1 + 2

S∑
k, j=1

mikak jx j

τk

⎞
⎠, (7)
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Steady State

(a) (b) (c)

(e)(d)

FIG. 1. Infographic of the population dynamics and abundance correlation between two species. (a) In silico communities can be generated
using the population model (1) with realistic parameter values. When the system reaches a stable state, the joint probability distribution
P(x1, . . . , xS ) does not depend on time anymore. (b) The fluctuations in the abundance of a given species are known to be distributed according
to a gamma distribution. This Abundance Fluctuation Distribution (AFD) can be obtained as the marginal distribution pi(xi ) of the joint
probability density. (c) Information about species abundances in different samples may be arranged in a table for each biome, with species listed
in rows and samples in columns. Here the AFD of species i corresponds to the distribution of the elements in row i. (d) In a state of equilibrium,
where the system satisfies detailed balance, the joint probability distribution factorizes into a product of single-species distributions. As a result,
there is no correlation between the abundances of different species. (e) However, when detailed balance is not satisfied, the joint probability
distribution no longer factorizes, and correlations between species abundances emerge.

where we have introduced

βi ≡
S∑

k=1

mik

(
2

τk
− wkk

)
, (8)

mi j being the entries of M = W−1. To allow for a solution,
the aforementioned set of equations must satisfy a detailed
balance condition [17] (derived in Appendix A), which links
the interaction and noise matrices A and W [cf. Eq. (A3)]. If
this condition holds, the stationary distribution of the micro-
bial community takes the form

P(x) =
S∏

i=1

pi(xi ), (9)

pi(xi ) = 1

x̄i�(βi )

(
xi

x̄i

)βi−1

e−βixi/x̄i , (10)

where pi is the AFD of species i. The form of this distribution
is the same as that obtained without species interactions and a
diagonal noise matrix W [5]; however, the shape parameters
βi and the average abundances x̄i are different because their
values also depend on the interactions.

Nonetheless, the most significant feature of the aforemen-
tioned result is that the community distribution (9) factorizes
into distinct components, each associated with a different

species. This implies that the abundances of individual species
are uncorrelated and fluctuate independently of each other
[see Figs. 2(c) and 2(d)], in contrast to what is observed in
empirical data. The latter show nontrivial correlations often
spanning the entire range of Pearson’s values [5,9,10] [see
Fig. 2(e)]. They are the fingerprint of an inherent nonequi-
librium microbial dynamics.

A. The emergence of correlations in consumer-resource models

While the equilibrium solution cannot describe real com-
munities due to its inability to predict correlations, it
nevertheless sheds light on ecological mechanisms beyond the
model we are considering. In particular, it is well known in
theoretical ecology that consumer-resource (CR) models can
be cast into Lotka-Volterra form. The former explicitly ac-
count for the dynamics of species abundances as well as their
resource consumption, leading to interactions driven by the
limitation of resources and the competition between species
occupying similar niches.

Recently, some CR models have been introduced to ana-
lyze the correlations between populations of different species
in terms of their phylogenetic distance [8]. In them, the re-
lationship between resources and consumers is represented
through two matrices, B and Q. The preference of species i
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(a) (b) (c) (d)

FIG. 2. Force decomposition of nonequilibrium dynamics for a two-species ecosystem (S = 2) in the stationary state. The time evolution of
the probability of species abundances P(x, t ) defined by Eq. (2) can be understood as the result of three forces: (a) the drift force Fi, represented
by the first term in Eq. (5); (b) the gradient force, corresponding to the second term in Eq. (5); and (c) the dragging force, related to the second
term in the right-hand side of Eq. (3). These three forces shape (d) the probability density current (here we do not represent the curl force for
aesthetic visualization). Even though this decomposition of the gradient force is not unique, it is rather illustrative as the resulting dynamics
turns out to be equivalent to that of charged particle moving within an electric and a magnetic field (the last one vanishing at equilibrium),
and highlights the possibility of having closed loops in the current. The orange circle in (a) marks the fixed point of the drift, and the red
square in (b) signals the maximum of the joint probability density. The data for the figure were obtained through a numerical integration of the
FPE (see Appendix C for details). Parameters of the system: number of nodes in the square mesh Nx1 = Nx2 = 600, length of the square mesh
Lx1 = Lx2 = 6, interaction matrix: A = {a11 = a22 = −1, a12 = a21 = 0.3}, noise matrix: W = {w11 = w22 = 0, w12 = w21 = 0.3}, growth
rate τ1 = τ2 = 1.

for resource r(=1, . . . , R) is described by the ith column of
the R × S matrix B. Likewise, the columns of matrix Q encode
the preference of species for certain environmental conditions.
These preference vectors have only positive entries and are all
normalized to the same constant value. In the mapping to a
Lotka-Volterra model, matrices W and A are obtained from B
and Q as

W = ωBTB + νQTQ, A = −γ BTB, (11)

where the coefficient ω, ν, and γ weight the effect of the
different ecological forces.

In this framework, the authors of [8] show that, in cases
where the evolution of the system is dominated by compe-
tition for fluctuating shared resources (ν = 0), correlations
between abundances are absent. Note that this regime cor-
responds to a situation where A and W are proportional,
defining an equilibrium state characterized by the balance
between abiotic and biotic forces. Specifically, under the ap-
proximation in which the intrinsic growth rates are the same
for all the species (T = τ I),

W = −γ

ω
A. (12)

This equation is equivalent to the equilibrium condition (A3)
if the choice E = −(γ /ωτ )I (see Appendix A) is made in that
equation. It is thus not surprising that a system described by

this particular CR model, which is at equilibrium according to
our previous analysis, lacks correlations between species, as
evidenced by the numerical simulations of Ref. [8].

IV. NONEQUILIBRIUM DYNAMICS

The lack of correlations of the equilibrium solution, in
contrast with its presence in real microbiomes, prompts an
exploration of the dynamics out of equilibrium. The FPE has
a stationary nonequilibrium solution if Eq. (3) can be solved
for some J(x) �= 0 such that ∇ · J = 0.

The general solution of ∇ · J = 0 is [18]

Ji(x) =
S∑

j2,..., jS=1

εi j2... jS
∂Gj3,..., jS (x)

∂x j2

, (13)

where εi1...iS is the Levi-Civita symbol (=1/ − 1 if {i1, . . . , iS}
is an even/odd permutation of {1, . . . , S}, and = 0 otherwise)
and Gj3... jS (x) is any fully antisymmetric tensor. Accordingly,
there are S(S − 1)/2 unknown functions, to be determined
under the assumption that Eq. (3) can be solved for P(x).

In general, the study of nonequilibrium dynamics is a
rather complicated problem that has been solved only in spe-
cific cases [19]. Physically, the complexity arises from the
fact that Eq. (3) reflects the interplay between three types
of forces—whose components are schematically depicted in
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Fig. 2 [20]. Whereas at equilibrium detailed balance renders a
null current, out of equilibrium the stationary state has cycles
[see Fig. 2(d)].

But we can be less ambitious and try instead to determine
the marginal distribution pi(xi ) for the abundance of species
i. An equation for it can be obtained by integrating out in the
FPE all degrees of freedom except xi. The resulting equation is
(see Appendix B for its derivation)

0 = − ∂

∂xi
[ fi(xi )pi(xi )] + wii

2

∂2

∂x2
i

[
x2

i pi(xi )
]
, (14)

where fi(xi ) is given by Eq. (B2). This equation admits the
solution (up to normalization)

pi(xi ) ∝ x
2

τiwii
−2

i exp

(
− 2xi

τiwiiKi

)

× exp

⎛
⎝ 2

τiwii

S∑
j �=i

ai j

∫
x̄ j (xi )

dxi

xi

⎞
⎠. (15)

In the absence of interactions, the last exponential is 1 and
we recover the solution of the SLM [5]. The extra factor
introduced by interactions involves the calculation of the con-
ditional average x̄ j (xi ), defined in Eq. (B3).

Equation (15) is as far as we can get in computing the
marginal probability density because there is no easy way to
compute x̄ j (xi ) other than solving the FPE itself. However,
we can use empirical information to figure out a plausible
approximation for this function.

A. An approximation for the marginal probability density

Numerical simulations performed on the SLVM (1) with
nontrivial interaction matrices [10] show that the resulting
AFD can still be well fitted by a gamma distribution. The only
way that such a distribution can be obtained from (15) is if

x̄ j (xi ) = η ji + ϕ jixi, (16)

with η ji and ϕ ji two as yet undetermined sets constants. Most
likely, the gamma shape of pi(xi ) is only an approximate
result, so the dependence (16) should be taken as an educated
ansatz. Several consistency conditions will help us determine
the parameters η ji and ϕ ji. First, by averaging x̄ j (xi ) we obtain

x̄ j =
∫ ∞

0
pi(xi )x̄ j (xi ) dxi = η ji + ϕ jix̄i, (17)

which in particular implies ηii = 0 and ϕii = 1. Likewise, we
can obtain second moments as

x jxi =
∫ ∞

0
x̄ j (xi )xi pi(xi ) dxi = η jix̄i + ϕ jix2

i . (18)

Solving the system (17), (18) yields

ϕ ji = Cov(x j, xi )

σ 2
i

= σ j

σi
ρ ji, η ji = x̄ j − ϕ jix̄i, (19)

where ρ ji are Pearson’s correlation coefficients and σi is the
standard deviation of pi(xi ). Rewriting everything in terms of
the shape parameters βi = x̄2

i /σ
2
i of the gamma distribution
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FIG. 3. The figure portrays the AFDs of an in silico interacting
(out of equilibrium) community with S = 4 species. Green dots
depict the distributions as obtained from simulations of the SLVM,
Eq. (1). Blue dashed lines correspond to the gamma distributions
obtained by solving numerically Eqs. (21) and (21). Red lines depict
the AFDs for the same community, but without interactions. The
effect that interactions have on the mean and variance of the AFDs
is striking. Simulations were carried out as specified in Appendix C,
with parameters τ = 0.1, C = 1, μl = 0.1, σl = 0.5, σn = 0.2, �t =
10−3.

[cf. Eq. (10)], we finally obtain

x̄ j (xi ) = x̄ j

[
1 + ρ ji

√
βi

β j

(
xi

x̄i
− 1

)]
. (20)

Equation (15) with the conditional average (20) becomes
a gamma distribution. Identifying its expression with that of
Eq. (10) leads to the equations

βi + 2

τiwii

S∑
j=1

ai j x̄ jρ ji

√
βi

β j
= 0, (21)

1 − τiwii

2
+

S∑
j=1

ai j x̄ j = 0, (22)

where we have made use of the identities aii = −1/Ki, ρii =
1. It is worth noticing that Eq. (22) is an exact equation that
can be derived directly from the Langevin equations (1) under
the assumption that the system is in a stationary state [10].

Equation (22) is a linear system that can be numerically
solved for the averages x̄i using standard methods. As for
Eq. (21), solving it requires knowledge of the Pearson’s cor-
relation coefficients ρi j . By using the values of ρi j obtained
from simulations, we can solve Eq. (21) for the shape param-
eters βi through a Levenberg-Marquardt algorithm [21,22].
In Fig. 3(a) we compare the AFD obtained with this ansatz
with numerical simulations of Eqs. (1) for four different
species. The good agreement reached in all cases validates
the ansatz (20). For reference, we also plot the AFD of the
noninteracting system (ai j = −δi j/Ki). Notably, even though
the distributions with and without interactions have both the
shape of a gamma, their mean values and variances differ
significantly.

Perhaps the most remarkable result of this approximation
is that the shape parameters βi explicitly depend on species
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(a) (b) (c)

FIG. 4. Accuracy of the ansatz and the perturbative expansion (23)–(27) across the set of parameters that characterize the species interaction
matrix A. The first two panels compare the shape parameters (βi) obtained from simulations of the Langevin equations with those obtained
using (a) the ansatz and (b) the perturbative expansion. Panel (c) compares the mean abundances obtained from the perturbative expansion
with the exact ones [computed through Eq. (22)]. Each pixel represents a unique combination of network connectance C (horizontal axis) and
standard deviation σn of the interaction strength distribution (vertical axis), with the pixel color indicating the mean squared error (averaged
over 100 realizations) between the reference values and the approximate predictions. Gray regions denote parameter spaces where systems
are neither stable nor feasible. Insets depict examples of realizations, with the black line representing the identity line y = x. We set τ = 0.1,
S = 50, μl = 0.1, σl = 0.5, and �t = 10−3. A nontrivial noise matrix W is generated for each realization as described in Appendix C.

interactions, which means that they must necessarily have a
nontrivial distribution, even if the products wiiτi were constant
for all species. As interactions are unavoidable to explain
correlations [10], the existence of this variability becomes a
prediction of the present theory, which we will explore in
more depth in Sec. V.

In Fig. 4(a) we explore the limits of validity of the pro-
posed ansatz across the set of parameters that characterize the
species interaction matrix A. The analysis reveals that, when
interactions are generated according to a zero-mean, normal
distribution, the ansatz proves highly accurate throughout the
entire region of feasibility and stability.

B. Perturbative expansion

As we have just seen, Eqs. (22) and (21) can be numerically
solved for x̄i and βi, but we need Pearson’s matrix ρi j as an
input. This problem can be circumvented though, provided
we assume that the off-diagonal elements of the interaction
matrix A are “small,” because then we can try a perturba-
tive approach to solve those equations. (Small in this context
means

∑
j �=i Ki|ai j | 	 1 for all i.) In what follows we will

assume that the environmental noise matrix W is diagonal—
which means that ρi j = δi j in the noninteracting limit.

Let us assume that x̄i and βi have the expansions

x̄i = x̄(0)
i + x̄(1)

i + · · · , βi = β
(0)
i + β

(1)
i + · · · , (23)

where the terms with superscript n(= 0, 1, . . . ) are assumed
to be of order O(an

i j ) (i �= j). Then Eq. (22) becomes

1 − τiwii

2
− x̄(0)

i

Ki
− x̄(1)

i

Ki
− · · · +

S∑
j �=i

ai j x̄
(0)
i + · · · = 0,

from which, comparing like orders,

x̄(0)
i = Ki

(
1 − τiwii

2

)
, (24)

x̄(1)
i = Ki

S∑
j �=i

ai j x̄
(0)
j . (25)

Likewise, since ρi j = δi j + ωi j , with ωii = 0 and ωi j =
O(ai j ) if i �= j, Eq. (21) becomes

β
(0)
i + β

(1)
i + · · · = 2

(
x̄(0)

i + x̄(1)
i + · · · )

τiwiiKi
+ · · · .

Comparing orders,

β
(0)
i = 2

τiwii
− 1, (26)

β
(1)
i = 2

τiwii

S∑
j �=i

ai j x̄
(0)
j . (27)

Thus, while calculating higher orders in expansions (23)
would require the knowledge of Pearson’s matrix, a first-order
approximation can be obtained without it.

As illustrated by Figs. 4(b) and 4(c), the perturbative ap-
proximation proves to be sufficiently accurate across most of
the feasibility and stability region, when interaction matrices
are randomly generated from a normal distribution N (0, σn).
Discrepancies show up only near the boundary of this region,
specifically at the frontier of the stability-feasibility domain.
Notably, the bottom inset in Fig. 4(b) highlights a signif-
icant deviation between the simulated values of the shape
parameters and those predicted by our perturbative expansion.
This discrepancy is mainly due to the high values of con-
nectance (C) and interaction strength (σ ), which cannot be
fully grasped within a perturbative framework.
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FIG. 5. Distribution of shape parameters βi as obtained from
empirical data of the EBI Metagenomics [23] seawater microbiome,
as well as from numerical simulations of the SLVM (1). (a) Log-log
plot of the empirical data for variance σ 2

i vs mean x̄i of the species
abundances (gray dots). Red crosses are the result of partitioning
the whole interval of mean abundances (in logarithmic scale) and
averaging these data within bins. The dashed line represents the
curve σ 2 = β x̄2, corresponding to Taylor’s law. While globally this
curve is an excellent fit to the data, the vertical variability (indicated
by a double blue arrow) spans several orders of magnitude. This
variability is masked in the coarse-grained data (red crosses). (b)
Probability density of the rescaled log-shape parameter [cf. Eq. (33)]
as obtained from the empirical data (blue dots) of the seawater micro-
biome, as well as from simulations of the SLVM (yellow diamonds).
Species appearing in less than 30% of the samples are filtered out.
Simulations were carried out as specified in Appendix C, with pa-
rameters S = 300, τ = 0.1, C = 0.5, μl = 0, σl = 1.5, σn = 10−3,
�t = 10−3.

One of the most noteworthy consequences of this per-
turbative expansion is that it explicitly reveals that species
interactions alone can explain the variability of the shape
factor [cf. Eq. (27)]. This variability is also present in the
empirical data, as Fig. 5 illustrates. Figure 5(b) also shows
that the results of simulations of the SLVM closely replicate
the empirical distributions of shape parameters.

C. Physical interpretation

A mean-field (MF) approach to the Langevin equations (1)
can shed light on the meaning of the ansatz proposed in
Sec. IV A. When the system is in a steady state, we can
approximate the driving force Fi(x) by

F MF
i (xi, x̄) = xi

τi

(
qi(x̄) − xi

Ki

)
,

qi(x̄) ≡ 1 +
S∑

j �=i

ai j x̄ j . (28)

The rationale is that the effect of the abundances of other
species on species i is an average of quantities that fluctu-
ate around some mean values, and this averaging smooths
out fluctuations. In this approximation, the SLVM becomes
a SLM with effective growth rates and carrying capacities

τ ∗
i (x̄) ≡ τi

qi(x̄)
, K∗

i (x̄) ≡ Kiqi(x̄). (29)

Thus, the solution of the FPE is a product of gamma distribu-
tions with parameters

x̄i =
(

1 − τ ∗
i (x̄)wii

2

)
K∗

i (x̄), (30)

βi = 2

wiiτ
∗
i (x̄)

− 1. (31)

Remarkably, Eq. (30) is identical to (22), while at the same
time (31) can be obtained from (21) by replacing ρi j = δi j

(no correlations). Interestingly, to first order in the interaction
constants these two equations lead to the same perturbative
expansions (24)–(27).

The conclusion from this analysis is that the ansatz coin-
cides with a MF approximation to first order in the expansion
on the interaction coefficients, but beyond that it provides a
refinement on MF by including nontrivial correlations in the
equation for the shape parameters (21).

V. TAYLOR’S LAW REVISITED: A NEW
MACROECOLOGICAL PATTERN

In ecology, Taylor’s law [14] describes a power-law
relationship between the mean and variance of species abun-
dances, namely,

σ 2
i = bx̄a

i , a, b > 0. (32)

With exponent a = 2, it has been identified as a macroeco-
logical pattern in microbiomes [5] (also known as Grilli’s
second law [10]). A consequence of this pattern is that the
shape factors βi of the gamma AFDs for the different species
in a microbiome are all the same (βi = b−1). However, in
the light of the results that we have obtained in the previous
sections (cf. Fig. 5), this macroecological pattern must be
nuanced.

Figure 6 plots the values of the rescaled log-shape param-
eter, defined as

z = log β − log β√
Var(log β )

, (33)

for all the species in several datasets of the EBI Metagenomics
platform [23]. Not only does this figure show the variability
in the shape parameters, but it also shows that the data for
all microbiomes collapse in the same universal curve. This
provides a novel macroecological pattern. Figure 6 depicts
two tentative fits to the data: log-normal and exp-gamma [25]
distributions. Not only does the fit to an exp-gamma has a
much higher likelihood than the fit to a log-normal, but it
also captures the evident skewness of the distributions [see
Fig. 6(b)].

Even though we lack a theoretical underpinning that sup-
ports any specific shape for what this distribution should be,
Grilli’s third law provides empirical evidence for a log-normal
distribution of mean abundances [5]. As the variability in the
distribution of βi arises from a linear combination of the mean
abundances—as evidenced in the first-order term (27) of the
perturbative expansion—this variability is expected to behave
as a linear combination of log-normal random variables. Al-
though such a combination does not have a known analytic
form, it is nevertheless consistent with a gamma or log-normal
distribution [26,27], in agreement with our observation.
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(a) (b)

FIG. 6. (a) Probability density of the rescaled log-shape parameter z defined in Eq. (33), for all the species in several data sets of the
EBI Metagenomics platform [23]. The solid line represents the standard normal distribution log P = −z2/2 − log

√
2π (likelihood: 16 721);

the dashed line is a best fit (with α = 14) to a standard exp-gamma distribution log P = log[c/�(α)] + α(a + cz) − ea+cz, with a = ψ (α) ≡
�′(α)/�(α) the digamma function [24, Sec. 5.2(i)] and c = √

ψ ′(α) (likelihood: 38095). (b) Probability density of the log-shape parameters
without rescaling for several microbiomes, along with the specialization of the exp-gamma distribution to their specific means and standard
deviations (gray curves). This representation makes clear the actual width of the empirical distributions as well as the goodness of the fit to an
exp-gamma distribution.

In the SLM, the expression for βi is given by Eq. (26),
so some variability can be attributed to the noise and growth
times [28]. This variability is constrained, though, because
τiwii < 2 in order to ensure βi > 0 [this effect can be also
observed in Fig. 1(b) of Ref. [28], where τiwii takes values in
the same narrow range]. In contrast, the SLVM is free from
this limitation because it can reproduce the observed variation
in the shape factors even if the product τiwii is the same
for all species. This versatility is a consequence of species
interactions [see Eq. (27)].

So, can Taylor’s law still be considered a valid macroe-
cological pattern for microbiomes? Figure 5(a) suggests an
affirmative answer, but only if it is understood as a pattern "on
average," rather than as a categorical law. As a matter of fact,
the perturbative expansion of βi, Eqs. (26) and (27), is partic-
ularly enlightening in this respect. Assuming that the product
wiiτi is the same for all species, Taylor’s law becomes exact
in the limit of very weak interactions. However, deviations are
to be expected when interactions are strong, Eq. (27). In this
light, Taylor’s law becomes the lowest-order approximation of
a more general pattern.

VI. TAYLOR’S LAW AS A FLUCTUATION-GROWTH
RELATION

The formulation of our model in terms of Langevin equa-
tions makes it tempting to draw analogies with a paradigmatic
physical system often described with a similar formalism: a
Brownian particle moving in one spatial dimension [17]. This
is an admittedly ideal system. A further step in complex-
ity would be a system of Brownian particles; to first order,
their properties can be well described by the ideal noninter-
acting case, but at closer look we would find the footprint

of interactions: correlations. To keep our discussion intuitive
and simple, we will ignore these higher-order effects in both
Brownian and microbial systems.

The velocity v of a noninteracting Brownian particle of
mass m can be modeled with the Langevin equation

mv̇ = −ζv + √
wξ (t ), (34)

where ζ is the frictional coefficient—as given by Stokes’s law
ζ = 6πηr, with η the viscosity of the fluid and r the radius
of the Brownian particle—and ξ (t ) is a zero-mean, Gaussian,
white noise with correlations 〈ξ (t )ξ (t ′)〉 = wδ(t − t ′). Writ-
ing the corresponding Fokker-Planck equation and calculating
the steady state solution, one can derive the following relation
for the standard deviation σ of the velocity:

w = 2mζσ 2. (35)

Without any external information provided in addition to the
model defined in Eq. (34), this is all we can say about the
fluctuations of the Brownian particle.

The equivalent relations for microbial systems, in the limit
of weak interactions, are given by the zeroth-order perturba-
tive result in Eq. (26), or, including the first-order effect of
interactions, by the mean-field relation with effective growth
rate in Eq. (31). Simplifying notation for the sake of compar-
ison and analogy, we can write (for both zeroth order or mean
field, τi is to be understood as it corresponds)

wii = 2τ−1
i

β−1
i

1 + β−1
i

, (36)

where, using the definition of βi = (x̄i/σi )2, we have

wii = 2τ−1
i

σ 2
i

x̄2
i + σ 2

i

. (37)
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Again, without any further information beyond the model
definition in Eq. (1), this is all we can say about fluctuations
in the microbial population.

However, for both Brownian particles or microbial sys-
tems, we have extra information not encoded in the definitions
of the corresponding models. For the Brownian particle, the
equipartition theorem establishes that σ 2 = 〈v2〉 = kBT/m,
where kB is Boltzmann’s constant and T is the temperature
of the heat bath in which the system is immersed. Using this
information, we can rewrite Eq. (35) as

w = 2ζkBT . (38)

This is a form of the celebrated fluctuation-dissipation relation
for the Brownian particle. It links fluctuations of the particle’s
velocity, determined by w, to the energy provided by the
environment, in this case the heat bath, characterized by kBT ;
the proportionality factor depends on the frictional coefficient
ζ , which includes the particle’s radius and the fluid’s viscosity.
Note that the relation is independent of m, the mass of the
particle.

What about microbial populations? Here we do not have
an equivalent to the equipartition theorem, but we do have
the observational evidence of Taylor’s law. Using, as a first
approximation, that Taylor’s law implies the shape factors of
all species to be the same, βi = β, Eq. (36) becomes

wii = 2τ−1
i

β−1

1 + β−1
. (39)

This expression is strongly reminiscent of the fluctuation-
dissipation relation (38). The role of the frictional coefficient
ζ , which sets the timescale pushing the particle velocity back
to zero (its average), is now played by the growth rate τ−1

i , that
sets the timescale driving the abundance back to its average x̄i.
Similarly, the role of temperature is now played by the inverse
shape factor β−1. The main difference is that, while for the
Brownian particle, fluctuations increase without bound with
kBT , for a microbial species the relation between fluctuation
and β−1 saturates, and there is an upper bound given by
wii = 2τ−1

i , consistent with the limit that would drive the
mean population x̄i to zero at zeroth-order approximation,
Eq. (24), or in mean field, Eq. (30): strong fluctuations drive
species to extinction.

Comparing the fluctuation relations (38) and (39), it is very
tempting to speculate with further parallels. For the Brownian
particle, kBT represents the environmental input, the energy
provided by the heat bath. Analogously, one would specu-
late β−1 to be a measure of the environmental input to the
microbial population, in this case a complex combination of
nutrients, metabolites, and energy sources. We cannot say
much of its nature, but the fact of being roughly constant
regardless of microbial species hints at some sort of equipar-
tition of environmental inputs between different species, just
in the same way that energy is equipartitioned between dif-
ferent degrees of freedom of a physical system and a single
temperature value characterizes fluctuations for all of them.

The fluctuation-dissipation relation (38) is independent
of the particle mass; likewise, the fluctuation-growth rela-
tion (39) is independent of the carrying capacity Ki. Both
magnitudes play a similar role: while the inverse mass m−1 de-
termines how easy it is to accelerate the particle, the carrying

capacity Ki determines to which extent a species population
can grow. This analogy can be further stressed by looking at
how variances depend on the temperature and the shape factor,
respectively. For the Brownian particle

σ 2 = m−1kBT, (40)

while for a microbial species

σ 2
i = K2

i

β−1

(1 + β−1)2
. (41)

We see again that the inverse particle mass m−1 and the carry-
ing capacity Ki (or rather its square) both set the scale of the
correspondence between heat bath energy kBT or the Brow-
nian particle and β−1 in microbial populations, respectively.
Moreover, while for the Brownian particle the variance of the
velocity is unbounded, for microbial population it shows a
nonmonotonic dependence on β−1, being zero for β−1 = 0,
peaking for β−1 = 1, and returning to zero again as β−1 →
∞. The fluctuation-growth relation (39) shows that β−1 = 0
corresponds to absence of noise in the system; therefore a
null variance was to be expected. However, the same relation
gives an increasing relation of the fluctuation coefficient wii

with β−1. Why, then, is there a reduction in variance for high
values of β−1, implying high noise? Strong fluctuations, given
by high values of wii, push a species closer to extinction, as
seen in Eqs. (24) or (30), and extinction implies a vanishing
variance. Writing these equations in the simplified notation
we are using in this section,

x̄i =
(

1 − τiwii

2

)
Ki, (42)

we see that the value β−1 = 1 maximizing the variance, cor-
responds, using Eq. (39), to wii = τ−1

i , which in turn implies
Eq. (42), x̄i = Ki/2. Intriguingly, Ref. [5] finds that, for very
different ecosystems, the values of β are of order 1, rang-
ing from 0.2 in seawater to 3.2 in feces. If β−1 somehow
corresponds, as speculated, with environmental input to the
microbial system, akin to energy input in physical systems,
does its optimization towards β−1 = 1 in ecological systems
hint at adaptation to utilize resources? Values of β−1 	 1
would imply low effect of environmental input to the system,
Eq. (39), while β−1  1 would imply strong fluctuations that
increase the possibility of species extinction, therefore reduc-
ing abundance variance as shown in Eq. (41).

Summarizing, mathematical analogies suggest that the ob-
servation of Taylor’s law in microbial ecological systems may
be evidence of an equipartition relation for environmental
resources between different species. This connection remains
pure speculation, and further work, out of the scope of this
paper, would be necessary to set a basis for such a relation.

VII. DISCUSSION

Over recent decades, the breakthrough of metagenomics
has sparked an active pursuit to develop models of mi-
crobial communities that match the newfound empirical
richness. In this endeavor, significant steps have been taken,
and different models of population dynamics capable of
replicating macroecological patterns of diversity and abun-
dance have been developed [5,8–10,29,30]. These models are
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typically explored through numerical simulations. Analytical
treatments are either scarce or lacking. The tension per-
sists between the growing wealth of empirical data and the
analytical challenges in translating these insights into compre-
hensive, analytically tractable models for understanding the
intricacies of microbial communities.

Addressing this challenge, our study introduces an ana-
lytical framework designed to explore species abundances
and their distribution probabilities, which have recently been
experimentally measured and exhibit the shape of gamma
distributions [5]. The fundamental idea underlying our analy-
sis is to simultaneously address both biotic forces—primarily
represented by species interactions—and abiotic forces—that
incorporate, e.g., the effects of the surrounding environment.
This marks a reversal of the trend compared to efforts in recent
years, which focused on disentangling the various compo-
nents of dynamics rather than studying their interplay.

Far from being a mere mathematical exercise, the joint
analysis of biotic and abiotic forces is relevant because their
combined effects determine whether the system reaches an
equilibrium or not. Specifically, one of the key conclusions
of our work is that microbial communities generally operate
out of equilibrium; communities at equilibrium are unable
to generate the correlations between abundances observed in
genomic data.

This result provides valuable insights well beyond our
model, elucidating, for example, certain aspects of consumer-
resource models. Indeed, it has been recently shown that
these models predict regimes in which correlations between
abundances are absent [8]. Our analysis explains this fact by
revealing that these models are in equilibrium (Sec. III A).

Our work goes past this specific instance and delves into
the broader study of nonequilibrium dynamics. As solving
the Fokker-Planck equation exceeds our current mathemat-
ical skills, we focus on the simpler problem of finding the
probability distribution for the abundance of a single species,
and propose an approximation leading to an analytical so-
lution for this distribution. What we learn from it is that
the empirically observed gamma distribution serves as an
effective approximation, performing exceptionally well. Im-
portantly, the parameters of the gamma distribution, such as
the shape factors β, significantly differ from the predictions
of the noninteracting model (the SLM) and exhibit a nontrivial
variability due to interactions.

The discussion of shape factors stands out as a primary
contribution of our work. First, it is essential to highlight
that the empirical analysis of nine real biomes reveals that
these variables cover a wide range of values, and their dis-
tribution significantly deviates from peaking at a constant
value (Fig. 6), as previously discussed in the noninteracting
framework [5]. To better understand this behavior, we intro-
duce a perturbative expansion. Perturbative expansions serve
as a robust analytical tool, effectively breaking down com-
plex ecological systems into simpler, solvable components
(Sec. IV B). This method facilitates the precise assessment
of how different ecological forces contribute to the overall
dynamics. Our key conclusion from this analysis is that inter-
species interactions alone allow us to reproduce the nontrivial
distribution of β’s that is also observed in empirical data.
It is true that this variability could also be explained by

fine-tuning the values of τiwii—something that has been
explored, e.g., in Ref. [28]. This contrived explanation is
unsatisfactory, though, because it really explains nothing—
we must justify why the growth factors have this particular
distribution to have a good argument. What is interesting of
our finding is that we can explain the variability in the shape
factors without any fine-tuning of the interactions. This leads
us to think that interactions are the truly relevant ingredi-
ent behind this variability. In this regard, our result further
substantiates the significant role played by interactions in
microbial dynamics [10].

Above all, our analysis of shape factors sheds light on the
true nature of Taylor’s law (Sec. V). A crucial prediction of
our work is that the linear relationship commonly presented
in recent literature is merely a lowest-order approximation,
affected by substantial fluctuations. Furthermore, we find that
these fluctuations adhere to a universal distribution across
different biomes, revealing a previously unidentified macroe-
cological pattern.

Nevertheless, it is important to remark that Taylor’s law—
and its consequence, the equality of shape factors—is not a
poor approximation because, despite fluctuations, the distribu-
tion of beta values remains relatively peaked. Using Taylor’s
law as a valid coarse-grained relation, we find that imposing
it in microbial systems has a similar effect to imposing energy
equipartition in physical systems: it induces a fluctuation-
growth relation akin to fluctuation-dissipation in physics. This
observation suggests a plausible physical origin of Taylor’s
law as an effect of resources allocation between species. Fu-
ture work should incorporate environmental resources and
their fluctuations directly in the models, with the goal of
deriving Taylor’s law from more fundamental principles.

In conclusion, our work represents a step forward in the
mathematical modeling of the microbiome, clarifying and
discovering certain aspects of its macroecological laws. More-
over, our findings may have concrete implications extending
beyond the microbiome, reaching into the broader domain
of population theory. This is supported by the recent study
by George et al. [31], which aspires to address the temporal
evolution of populations in a unified manner.
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APPENDIX A: SOLUTION OF THE FPE IN EQUILIBRIUM

The system of equations (7) can be solved if, and only if,
the right-hand side is a gradient field. This occurs provided

∂2 log P

∂x j∂xk
= ∂2 log P

∂xk∂x j
, (A1)
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a condition that, applied to (7), translates into

S∑
k=1

mikak j

τk
= 0 for all i �= j, (A2)

or in matrix form,

MT−1A = −E, (A3)

where T = diag(τi ), and E = diag(ei ) is an (as yet unde-
termined) arbitrary diagonal matrix. When (A3) holds, the
system of equations (7) becomes

∂ log P

∂xi
= βi − 1

xi
− 2ei. (A4)

The solution of these equations is given by Eqs. (9) and (10),
where x̄i = βi/2ei.

Functions pi(xi ) can be normalized provided βi, x̄i > 0,
which in turn imply ei > 0 [justifying the choice of sign in
(A3)]. Notice that the shape parameters of the gamma distri-
butions βi are solely determined by W [cf. Eq. (8)]. On the
other hand, rewriting Eq. (A3) as

A = −TWE (A5)

we can see that fixing E determines both the mean abundances
x̄i and the interaction matrix A.

APPENDIX B: MARGINAL DISTRIBUTION
WITH INTERACTIONS

There is a more standard way of writing the current (3). In
components,

Ji(x) = Fi(x)P(x) − 1

2

S∑
j=1

∂

∂x j
[Di j (x)P(x)], (B1)

where the components of the drift F(x) are given by (1).
Let us denote vi the vector v where the component vi has

been removed. Then, as

∇ · [F(x)P(x)] = ∇i · [Fi(x)P(x)] + ∂

∂xi
[Fi(x)P(x)]

and ∫
RS−1

+
dxi ∇i · [Fi(x)P(x)] = 0

because all “surface” terms vanish due to the boundary condi-
tions, then∫

RS−1
+

dxi ∇ · [F(x)P(x)] = ∂

∂xi

∫
RS−1

+
dxi [Fi(x)P(x)].

Substituting Fi(x) [cf. Eq. (1)] into the latter integral and
factorising P(x) = Pi(xi|xi )pi(xi ), we end up with∫

RS−1
+

dxi [Fi(x)P(x)] = fi(xi )pi(xi ),

where

fi(xi ) = xi

τi

[
1 +

S∑
i=1

ai j x̄ j (xi )

]
, (B2)

x̄ j (xi ) =
∫
RS−1

+
dxi x jPi(xi|xi ). (B3)

Note that x̄i(xi ) = xi. As for the diffusion term,∫
RS−1

+
dxi

∂2

∂xi∂x j
[Di j (x)P(x)] = 0, j �= i,

whereas∫
RS−1

+
dxi

∂2

∂x2
i

[Dii(x)P(x)] = ∂2

∂x2
i

[Dii(x)pi(xi )].

APPENDIX C: NUMERICAL DETAILS

1. Langevin’s equations

Simulations of Langevin’s equations (1) were carried out
using an Euler-Maruyama integration scheme [32] with time
step �t . In all cases, growing times τi were set equal for all
species (τi = τ ), and environmental noise (W) and interaction
(A) matrices were randomly chosen as described next.

2. Noise and interaction matrices

Noise matrices W must be symmetric, positive definite.
In order to randomly generate one such matrix we factor
it as W = U�UT , where U is an S × S orthogonal matrix
(UUT = UT U = I) and � is a diagonal matrix whose diag-
onal elements are random, non-negative real numbers. Matrix
U was generated by randomly sampling from a Haar distribu-
tion (using the Python function ortho_group from the SciPy
package [33]). The diagonal elements of � have been drawn
from a uniform distribution U [0, 1] (but different probability
distributions lead to similar results).

The diagonal elements of the interaction matrices A were
either set to −1 or chosen as aii = −1/Ki, where the carrying
capacities Ki were sampled from a log-normal distribution
logN(μl , σl ). Parameters μl , σl were tuned so as to align with
empirical data for the distribution of mean abundances [10].
As for the off-diagonal coefficients, all were set to zero except
for a randomly selected fraction C of them ("connectance").
These nonzero elements were drawn from a normal distribu-
tion N(0, σn). For a matrix A to be considered biologically
meaningful and be used in simulations, it must be feasible and
stable. Feasibility requires that the stationary abundances of
all species are positive. Stability requires that all the eigenval-
ues of A have negative real parts [34].

3. Stationary Fokker-Planck equation

We solved numerically the stationary FPE for a system of
two species (S = 2) using a centered-differences scheme on
a square mesh with Nx1 = Nx2 nodes and spatial length Lx1 =
Lx2 and null boundary conditions. The stationary solution of
the FPE is the eigenfunction of the Fokker-Planck differential
operator associated to the eigenvalue λ = 0. However, after
discretizing the FPE, λ = 0 is no longer an eigenvalue of the
resulting matrix. Hence, we obtained the stationary solution as
the eigenvector associated to the eigenvalue with smallest |λ|.
To find that eigenvector, we implemented an inverse-power
iterative method [35], [Sec. 4.16.3] solving the linear system
through a variant of Thomas’s algorithm [35] [Sec. 7.3.2] to
take advantage of the block-tridiagonal structure of the matrix.
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