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Prevalence of mutualism in a simple model of microbial coevolution
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Evolutionary transitions among ecological interactions are widely known, although their detailed dynamics
remain absent for most population models. Adaptive dynamics has been used to illustrate how the parameters of
population models might shift through evolution, but within an ecological regime. Here we use adaptive dynam-
ics combined with a generalized logistic model of population dynamics to show that transitions of ecological
interactions might appear as a consequence of evolution. To this purpose, we introduce a two-microbial toy
model in which population parameters are determined by a bookkeeping of resources taken from (and excreted
to) the environment, as well as from the byproducts of the other species. Despite its simplicity, this model exhibits
all kinds of potential ecological transitions, some of which resemble those found in nature. Overall, the model
shows a clear trend toward the emergence of mutualism.
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I. INTRODUCTION

In 1966, Jeon and Lorch were conducting experiments
with a population of Amoeba proteus. One of the strains got
infected by X-bacteria, a Gram-negative, rod-shaped bacteria
related to Legionella sp. and Pseudomonas sp. (for which the
name Candidatus Legionella jeonii sp. nov. was later proposed
[1]). The few survivors to the infection retained the bacteria
as parasites [2]. Over the course of a few generations, though,
they became endosymbionts, providing amoebas with heat-
shock protection [3,4].

Arguably, this is one of the most spectacular cases of an
evolutionary transition in an ecosystem from an antagonistic
interaction to an obligate mutualism, mainly because it was
witnessed in real time. However, other similar transitions are
well documented in the literature from different sources. For
instance, phylogenetic data collected from one of the best-
known mutualistic systems—plants and pollinators—dating
back 90 million years [5] showed that the wasp Ceratosolen
galili, which belongs to a genus of active pollinating species,
not only does not pollinate anymore but has become a parasitic
species of figs.

*Correspoding author: javier.galeano@upm.es

Likewise, performing phylogenetic analysis on 15 species
of aphids of the genus Chaitophorus [6] concluded that the
relationship between ants and aphids may have changed at
least five times during the history of their life, thus going
through all shades between mutualism and antagonism. There
is no consensus whatsoever on whether the ancestral mutu-
alistic relationship between these species was facultative or
obligatory, but it seems reasonable to think that before these
species developed any mutualistic relationship, ants predated
on aphids because this behavior is still observed in all ant
species in the appropriate environmental conditions [7–9].

The above-mentioned examples are only a few well-
studied ecological systems that show transitions between
different types of ecological interactions. In all of them, the
evolutionary nature of these transitions has been established
either through experiments or using phylogenetic analyses
[10], but their presence suggests that many more may have
occurred in nature. This fact raises many questions: Are these
evolutionary transitions a common phenomenon or a rarity?
Why do ecological interactions move in one direction or an-
other? Would it be possible to predict in which direction a type
of interaction will move, if at all?

One way to explore the answers to some of these questions
is to design mathematical models that include two different
timescales: a short one that accounts for the usual population
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dynamics and a long one that includes Darwinian evolu-
tion. The latter can be accomplished by applying adaptive
dynamics to the parameters of the population model [11–13].
However, the former is more problematic because standard
population models deal with different types of interactions in
very different ways.

When it comes to modeling competition and predation,
Lotka-Volterra population equations are a very convenient
choice [14–16]. Despite their simplicity, these equations yield
a rich set of biological predictions, to the point that they can
be used as a prototype for more realistic models as well as
a tool for interpreting complex observations. However, the
Lotka-Volterra model meets serious difficulties to accommo-
date mutualism because positive interactions between species
induce spurious feedback loops that may drive populations out
of control [17]. The addition of Holling-type functional re-
sponses [18] is the usual way to control an unbounded growth
of the populations, at the expense of rendering the model an-
alytically intractable. Recently though, a different population
model has been introduced in which both species’ intrinsic
growth and interspecific interactions are limited via logistic
terms [19,20]. The resulting equations are amenable to ana-
lytic treatment and, at the same time, provide sensible results
whether the interactions are of an antagonistic or mutualistic
nature. These two nice features make this model particularly
suitable to study the evolution of ecological interactions.

Variation in ecological interactions may take place as a
result of multiple factors [21]. For instance, the outcomes of
ecological interactions may depend on the age and/or life
cycle stage of the individuals of the interacting species. Sim-
ilarly, phenotypic differences between the individuals of each
of the interacting species may alter the impact of one species
on the other. These differences can result from genotypic
diversity in the interacting populations and/or phenotypic
plasticity. Environmental conditions might also determine
how members of two populations interact with each other,
allowing transitions from mutualism to competition or even
extinction [22]. In order to focus on the general patterns de-
rived from population dynamics and evolutionary adaptation,
we have chosen a basic microbial system in which there are
no differences among the individuals of each of the interacting
species as a result of age or life cycle stage. Furthermore,
there is one single genotype per interacting species and the
environmental conditions are fixed. Therefore, all individuals
of each interacting species have the same phenotype. Also, for
simplicity, we will assume that mutations are so rare that they
either get quickly fixed in the whole population or disappear
before a new one occurs. In this regime, a suitable theoretical
tool to study evolution is adaptive dynamics [11–13].

Accordingly, our toy model consists of two microbial
species that interact via the resources they consume and
excrete. They compete for resources from the environment—
when both of them use the same resource—but they can
also cross-feed from resources excreted by the other species.
This interplay between resource consumption and excretion
will provide specific functional forms for the parameters of
Stucchi et al’s. population equations, automatically yielding
natural trade-offs between these parameters [23]. Adaptive
dynamics will then introduce the Darwinian mechanism for
the evolution of the parameters of the model.

Simplistic as it may be, this model provides sufficient com-
plexity and flexibility to show a great diversity of evolutionary
transitions. It reveals a global trend toward the appearance of
mutualistic interactions from initially competitive or antago-
nistic scenarios, and exhibits evolutionary pathways akin to
some documented in the literature.

In what follows, we provide a detailed account of the
model for two species, starting with a brief description of
Stucchi et al’s. ecological model and further connecting its
phenomenological parameters with the microscopic interac-
tions between the species. The equations of the adaptive
dynamic for this model are developed in Appendix B. We end
by providing and analyzing the results of extensive numerical
simulations.

II. A TOY MODEL FOR TWO INTERACTING
MICROBIAL SPECIES

We will consider two microbial species whose populations
evolve in time according to the generalized logistic model
[20], briefly described in Eq. (A1). This model is suitable
for our purpose because it allows for all kinds of ecolog-
ical interactions (whether beneficial or detrimental) and, at
the same time, populations are always limited by carrying
capacities. Generalized Lotka-Volterra equations lack this
property, so that they end up having difficulties in handling
mutualism—hence introducing a spurious bias toward com-
peting interactions.

If we specialize this model for just two species, and ignore
intraspecific cooperation or direct competition (i.e., bii = 0),
the two equations that describe this minimal ecological com-
munity are

Ṅ1 = N1(r1 − a1N1) + N1(1 − c1N1)b12N2,

Ṅ2 = N2(r2 − a2N2) + N2(1 − c2N2)b21N1, (1)

where the constants ri are the intrinsic growth rates, the ai

account for the effect of intraspecific competitions, the bi j

are the interspecific interaction coefficients, and the ci are
coefficients to saturate the effect of interspecific interactions.
This system of differential equations is able to describe ev-
ery kind of ecological interaction. Table I shows the kind of
relationships of the species with the environment (through
the signs of the intrinsic growth rates ri) and between them
(through the signs of the interaction constants bi j) which
correspond to the most usual ecological scenarios. Depending
on the signs of bi j , the interaction between both species can
be mutualistic (both positive), antagonistic (one positive and
one negative, also called predation or parasitism, depending
on the context), or competitive (both negative). On the other
hand, the relation with the environment determines whether
mutualism is facultative (ri > 0) or obligate (ri < 0). The
case of predation or parasitism (bi j < 0, b ji > 0, i.e., species
j benefits at the expense of species i) requires the prey or
parasitized species to obtain resources from the environment
(r j > 0) for the system to be sustainable. When bi j ≈ 0, this
sort of interaction is usually referred to as commensalism. Fi-
nally, competition (bi j < 0, b ji < 0) occurs when both species
are a hindrance to each other (which, of course, needs ri > 0
and r j > 0 for the system to be sustainable). Parameters ri and
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TABLE I. Signs of ri and bi j that describe typical ecological interactions.

ri r j bi j b ji Type of interaction Abbreviation

+ + + + facultative-facultative mutualism FFM
+ − + + obligate-facultative mutualism OFM
− − + + obligate-obligate mutualism OOM
+ + − − competition CMP
+ + − + facultative predator-prey/parasitism FPP
+ − − + obligate predator-prey/parasitism OPP
+ any ∼0 + commensalism COM

bi j are purely phenomenological. However, in a real system,
they depend on the specific ways in which the species relate
with the environment and with each other. Because of this, the
parameters are not independent. However, to specify how they
are connected, we need to delve into the details of the system
that we want to model. This is a necessary step to construct an
evolutionary model of an ecosystem [11].

Let us assume that the two microbial species described
by Eq. (1) struggle to survive in a fixed environment (de-
scribed by the parameters ai and ci), with a given number
K of available resources. Each species consumes ni of these
K resources, q of which are common to both species (shared
resources). As a consequence of internal metabolic reactions,
species i produces mi byproducts, mji of which are useful to
the other species j and �i = mi − mji are not (we do not care
about metabolic waste in this model). Even though mi depends
on the details of the metabolism of species i, for the sake of
simplicity we can just assume that it is proportional to the
number of consumed resources, i.e.,

m1 = γ (n1 + m12), m2 = γ (n2 + m21), (2)

where γ quantifies metabolic efficiency. A fraction of species
i’s metabolic byproducts will be used by species j; hence,

m21 = α2(n1 + m12), m12 = α1(n2 + m21), (3)

where α j (0 < α j < γ ) measures cross-feeding efficiency—
parameter αi determines the benefit that species i obtains from
species j—so it directly influences coefficient bi j in Eq. (1). In
this toy model, we assume that these cross-feeding efficiencies
can evolve, which makes the coefficients in Eq. (1) evolve
accordingly.

Equation (3) is a linear system whose solution is

m12 = α1(n2 + α2n1)

1 − α1α2
, m21 = α2(n1 + α1n2)

1 − α1α2
, (4)

and, substituting in Eq. (2),

m1 = γ (n1 + α1n2)

1 − α1α2
, m2 = γ (n2 + α2n1)

1 − α1α2
. (5)

These equations express the total number of metabolic
residues [cf. Eq. (5)] and the number of beneficial byproducts
[cf. Eq. (4)] as a function of the number of resources.

Finally, we need to connect the demographic parameters
with this flux of resources and byproducts. In principle, if
resources are available in limited amounts, microbes would
fare better the more resources they have, whereas metabolic
byproducts are costly. It has been argued though that if

resources are abundant, becoming a specialist could be ad-
vantageous over being a generalist [25]. The reason is that
diversifying mechanisms to use different resources has a cost
in fitness. For the sake of simplicity, we will stick to the first
scenario. Thus, we posit that the growth rate increases pro-
portional to the amount of consumed resources and decreases
with the amount of metabolic byproducts, i.e.,

r1 = r10

K
(n1 − m1)

= r10

1 − α1α2
[(1 − γ − α1α2)u1 − γα1u2],

r2 = r20

K
(n2 − m2)

= r20

1 − α1α2
[(1 − γ − α1α2)u2 − γα2u1], (6)

denoting ui ≡ ni/K . Notice that the factor K is introduced
for convenience, so as to express everything in terms of the
rescaled variables 0 � ui � 1. (See the Supplemental Material
[26] for a list of the parameters and symbols used in this
model.)

Likewise, the interaction coefficients bi j increase with mi j ,
the number of byproducts of species j that are useful to
species i, and decrease with the competition for the shared
resources q. Hence,

b12 = b10

K
(m12 − q)

= b10

[ α1

1 − α1α2
(α2u1 + u2) − w

]
,

b21 = b20

K
(m21 − q)

= b20

[ α2

1 − α1α2
(α1u2 + u1) − w

]
, (7)

where we have denoted w ≡ q/K [0 � w � min(u1, u2)].
Parameters ri0 and bi0 are simple dimensional constants

that also set the timescale of the differential equations.
Thus, after these simplifying assumptions, we end up with

a model in which the demographic parameters are expressed
in terms of the number of consumed resources, n1, n2, the
resource sharing q, and the cross-feeding efficiencies α1, α2. A
sketch of the model, where all these interactions are summa-
rized, is shown in Fig. 1. The pool of resources is represented
by the rectangle K in blue, where n1 and n2 are the sets of
resources useful for species 1 and 2, respectively, and q is the
set of shared resources. Residues excreted by each species are
in the upper gray rectangles. Note that the shape and color of
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FIG. 1. Sketch of the model for two microbial species. Figures of
microbes and molecules are purely symbolic, included only for the
sake of illustration. They are meant to represent two species taking
different resources from a pool and interchanging residues. Image
created with [24].

microbes are meaningless, and so are the molecules depicted.
They are used just for illustration purposes.

III. ADAPTIVE DYNAMICS

According to Eq. (1), the dynamics of species i’s popula-
tion fits the pattern

Ṅi = Ni fi(�, N1, N2), (8)

where � denotes the set of parameters {u1, u2,w, α1, α2}. The
function fi(�, N1, N2) describes the per-capita growth rate, or
fitness, of species i, a magnitude that depends on the popu-
lation growth parameters as well as the population sizes of
the two species involved. Any steady state of the community,
Ni = N∗

i , is defined by the equations

fi(�, N∗
1 , N∗

2 ) = 0. (9)

When a community is in a given steady state, a mutant may
appear in one of the populations. If the mutant belongs to
species i, its fitness will be a function f̄i(�′,�, N1, N2), where
the prime parameters are those of the mutant. If this fitness
is negative, the mutant will go extinct, otherwise it can in-
crease its frequency in the population and replace the original
genotype.

Adaptive dynamics (AD) is a method to exploit this idea
to devise a set of differential equations for the demographic
parameters. Under the assumption that the parameters of the
mutant are a small perturbation of those of the original geno-
type, [11] derived these differential equations from the master
equation of the underlying stochastic mutation-selection
process.

The derivation of these so-called canonical equations of
AD implicitly assumes that the demographic parameters can
vary independently of each other, and that mutations have
the same probability to increase or decrease these parameters
by the same small amount. Neither of these two conditions
are met in our model under the scheme of mutations of this
system (increasing or decreasing the number of resources).
One kind of mutations amounts to changing the status of a
randomly chosen external resource, i.e., adding the resource if
it is new, or dropping it if the species was already using it. This
means that ni → ni + 1 with a probability proportional to the
number of new resources, and ni → ni − 1 with a probability
proportional to the number of resources already in use. But at
the same time, q, the number of common resources to both
species, can increase, decrease, or remain unchanged. Table II
summarizes all mutational scenarios and their corresponding
probabilities.

The second kind of mutations will change mi j , the amount
of byproducts that species i takes from species j, by ±1. As
αi is a multiplicative factor,

δmi j

mi j
= δαi

αi
, (10)

so δmi j = ±1 implies

δαi = ±αi

mi j
, (11)

or, using Eq. (4),

δᾱ1 ≡ u2 + α2u1

1 − α1α2
δα1 = ± 1

K
,

δᾱ2 ≡ u1 + α1u2

1 − α1α2
δα2 = ± 1

K
. (12)

On the other hand, δαi < 0 with probability mi j/mi = αi/γ

and δαi > 0 with probability �i/mi = (γ − αi )/γ . (See the
Supplemental Material [26] for a list of variables and symbols
used in this model.)

In summary, both species can experience two kinds of
mutations. The first one changes the number of resources
the species consumes, that is, it may add one new resource
or dispose of an old one, hence increasing or decreasing ni

one unit. Notice that this added or removed resource may or
may not be shared with the other species. The second kind of
mutation is related with its ability to use byproducts excreted
to the environment by the other species—an ability accounted
for by the parameter αi.

Reconstructing the procedure of [11] to obtain the canon-
ical equation of AD, we arrive at a system of differential
equations for u1, u2, w, α1, α2 [cf. Eq. (B6) and Eq. (B10)
in Appendix B; see the Supplemental Material [26] for a more
detailed derivation of the equations]. Notice that the stationary
populations N∗

1 , N∗
2 appear explicitly in the equations, and that

these populations depend in turn on the parameters u1, u2, w,
α1, α2.

IV. NUMERICAL SIMULATIONS

As the differential system (B6) is very difficult to discuss
analytically, we have performed numerical simulations of the

054401-4



PREVALENCE OF MUTUALISM IN A SIMPLE MODEL OF … PHYSICAL REVIEW E 106, 054401 (2022)

TABLE II. Mutations in the system that change the number of external resources and their corresponding probabilities. Here, ni are the
number of external resources consumed by species i, q the amount of them common to both species, and ui ≡ ni/K , w ≡ q/K .

Initial state: n1, q Initial state: n2, q

Mutated state Probability Mutated state Probability

n1 + 1, q + 1 u2 − w n2 + 1, q + 1 u1 − w

n1 + 1, q 1 − u1 − u2 + w n2 + 1, q 1 − u1 − u2 + w

n1 − 1, q u1 − w n2 − 1, q u2 − w

n1 − 1, q − 1 w n2 − 1, q − 1 w

time evolution of the system for different initial conditions
and sets of parameters. Two timescales are involved here: the
population changes in a fast timescale, whereas the parameters
evolve slowly. The evolutionary parameters are obtained by
integrating Eqs. (B6) and (B10). We do that using a fourth-
order Runge-Kutta method (RK4) to obtain the parameters
{u1(t ), u2(t ),w(t ), α1(t ), α2(t )} in evolutionary time. Note
that RK4 needs the slope of the function at four different times
and that slope depends explicitly on the stationary populations
N∗

1 , N∗
2 through Eq. (A4), so at each of those times we need to

calculate the stationary populations—which depend, in turn,
on the evolutionary parameters {u1, u2,w, α1, α2} at those
same times.

All simulations have been run with a time step �t = 10−5

and were stopped as soon as they reached a stationary state—
when the evolutionary parameters did not change more than
an error tolerance 10−4 over 104 time steps—or after 107 times
steps.

V. EVOLUTIONARY ATTRACTORS

Using different sets of parameters and initial conditions,
all the evolutionary attractors that we have observed fit within
just a few patterns. The triad of parameters (u1, u2,w) (frac-
tion of resources consumed by each species and fraction
of shared resources) is always found to end up in one of
the three forms (1, u, u), (1 − u, u, 0), or [1 − u, u, min(1 −
u, u)], with 0 � u � 1. If (1, u, u) is reached, the evolutionary
attractor turns out to be either competition or antagonism. In
particular, in the case (1,1,1), the attractor is always com-
petition. As expected, when the final state is mutualism or
commensalism, no resources are shared (w = 0) (there is no
need for competing for resources), so when (1 − u, u, 0) is
reached, the system ends up being mutualistic.

With respect to the cross-feeding efficiencies αi, the system
generally evolves towards extreme values of these parameters
(αi = 0 or αi = γ ). Only when the system evolves to com-
petition can some intermediate values be found. As expected,
cross-feeding efficiencies reach their maximum (α1 = α2 =
γ ) for mutualism and their minimum (α1 = α2 = 0) mainly
for competition.

It is worth mentioning that all kinds of mutualisms are
found to be evolutionary attractors for some initial conditions.
Another relevant observation is that evolution sometimes
drives ecosystems to extinction. This is no longer a surprise
because it is a result that has already been empirically ob-
served (e.g., in viruses [27]), but the idea that evolution can
degrade ecosystems would have shocked evolutionists of the

19th and early 20th century because it contradicts the notion
of evolution as a sort of “optimizer.”

VI. EVOLUTIONARY TRANSITIONS BETWEEN TYPES
OF ECOLOGICAL INTERACTIONS

In order to illustrate the kind of evolutionary transitions
between types of ecological interactions that this system can
produce, we performed an exhaustive exploration of parame-
ters. We fixed the environmental parameters a1 = a2 = c1 =
c2 = 0.001 and, without loss of generality, chose r10 = 1
(this simply sets the evolutionary timescale). For the other
species, we uniformly explored the interval 0 < r20 � 1 and
then zoomed in the region 0 < r20 � r10 by sampling the in-
terval 0 < r20 � 0.1. For bi0, we uniformly sampled the range
0 � bi0 � 0.01 and then zoomed in the interval 0 � bi0 �
0.001. Likewise, nine different, uniformly spaced values of
the metabolic efficiency γ within the range 0 < γ < 1 were
explored.

For each set of parameters, we generated random initial
conditions for ui, w, and αi within the ranges 0 � ui � 0.99,
0 � w � min(u1, u2), and 0 � αi � γ , and kept only those
that generated viable populations. Then we let each of these
remaining cases evolve according to Eq. (B6) and Eq. (B10).
We recorded 1000 runs that resulted in viable populations for
each set of parameters, discarding all initial conditions that
led to no viable stationary populations but keeping track of
those that eventually led to extinction. Notice that the number
of resources or the mutation probability are only relevant to
set the evolutionary timescale (see Appendix B).

In order to catalog the resulting evolutionary attractors,
we have followed the classification of Table I—considering
a state as commensalist if one of the parameters bi j is positive
and the other one is smaller than 10−8.

The results of this numerical study of the model are sum-
marized in Fig. 2–5 (for the distribution of the initial and final
states, see the Supplemental Material [26]). In what follows,
we describe in more detail the transitions from an initial
ecological state to another one that we observed, depending
on the choice of parameters ri0 and bi0.

1. Parameters: r20 � 1, bi0 � 0.01

See Fig. 2. For this choice of parameters, most evolutionary
pathways ended up in mutualism, from ∼40% to more than
90% of the cases. For lower values of γ , from 0.1 � γ �
0.3, ∼40% of cases begin as antagonism or competition and
extinction occurs in more than 20% of all transitions. For
higher values of γ , from 0.4 � γ � 0.7, mutualism is the
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FIG. 2. Evolutionary transitions for values of γ ranging from 0.1
to 0.9. In rows, we show the initial ecological interaction states [mu-
tualism (MUT), antagonism (ANT), and competition (CMP)], and
in columns, the final ecological interaction states—with the addition
of commensalism (COM) and extinction (EXT). Figures denote the
probability of the corresponding transitions (in percentage). Parame-
ter values: r20 � 1 and bi0 � 0.01. For γ � 0.2, the initial states are
mainly ANT and CMP, and they mostly end up in MUT or EXT. For
γ � 0.3, the initial states are mainly MUT and remain MUT.

main initial state representing more than 30% of the cases and
extinction reduces to less than 20%. For γ > 0.8, mutualism
accounts for ∼90% of the initial and final states, and extinc-
tion represent less than 16% of the latter. In most cases, except
for γ = 0.9, commensalism accounts for ∼10% of the final
states.

2. Parameters: r20 � 0.1, bi0 � 0.01

See Fig. 3. For this choice of parameters, most evolutionary
pathways ended up in mutualism or went extinct. Extinction
accounts for more than 45% of final states for γ � 0.3, re-
ducing its importance for higher values up to γ = 0.9, where
it represents less than 2%. Mutualism begins being less than
15% of all final states, but ended up being almost 90% of
the cases. Commensalism remains representing ∼10% of the
final states for all γ . Initial states are mainly antagonism and

FIG. 3. As Fig. 2, for parameter values r20 � 0.1 and bi0 � 0.01.
For γ � 0.2, the initial states are mainly CMP and ANT, although
they mostly end up in EXT. For γ � 0.3, the initial states are mainly
MUT and remain MUT.

FIG. 4. As Fig. 2, for parameter values r20 � 1.0 and bi0 �
0.001. For γ � 0.3, the initial states are mainly CMP, and they
mostly stay as CMP. For 0.3 � γ � 0.7, communities can also begin
as MUT or ANT. For γ � 0.6, most populations end up in CMP or
EXT.

competition for lower values of γ , representing more than
80% for γ = 0.1 but turned to mutualism for their higher
values, where it represents more than 80% for γ = 0.9.

3. Parameters: r20 � 1, bi0 � 0.001

See Fig. 4. For these parameters, the system evolved
mainly to competition or went extinct. With such a small in-
teraction parameter bi0, mutualism is dramatically hindered—
even in the cases where one-third of the initial states was
mutualistic (for γ = 0.5). More than 40% of the system
started in competition and remained as such or went extinct—
the proportion of which changed upon increasing γ from
46.8% competition vs 24.8% extinction, to 33.3% competi-
tion vs 44.2% extinction.

FIG. 5. As Fig. 2, for parameter values r20 � 0.1 and bi0 �
0.001. For γ � 0.3, the initial states are predominantly CMP, and
they mostly end in EXT. For γ � 0.4, the initial states are pre-
dominantly MUT, although EXT continues to be the most common
evolutionary fate. However, for γ � 0.8, COM and ANT become
relatively common ending states.
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FIG. 6. Evolutionary transition of the population parameters
ri and bi of two species. The community starts in competition
(CMP) and ends in obligate-facultative mutualism (OFM), going
through intermediate states of facultative parasitism (FPP) and ob-
ligate parasitism (OPP). Initial parameters: r01 = 1, r02 = 0.65727,
b01 = 0.00414, b02 = 0.00447, u1 = 0.17967, u2 = 0.78500, w =
0.10050, α1 = 0.08365, α2 = 0.32459, γ = 0.5.

4. Parameters: r20 � 0.1, bi0 � 0.001

See Fig. 5. As in the previous case, the system cannot
evolve into a mutualistic state, but commensalism accounts
for almost 10% of the final states when γ � 0.3 and more
than 15% for 0.4 � γ . Antagonism as well accounts for more
than 30% of the final cases when γ = 0.9, being lower for
γ � 0.8. Extinction is the main transition for all cases. Even
though competition is the main initial state for lower values
of γ , being more than 60% of the initial cases for γ = 0.1
and around 20% for 0.5 � γ , it shares the distribution with
mutualism and antagonism when γ increases, both of them
being more than 20% for all 0.2 � γ .

VII. TRANSIENT STATES

Because of the rich evolutionary dynamics of this model,
evolutionary transitions are not the only relevant feature to
focus on. Particular sequences of transient ecological states
along evolutionary pathways are as interesting, if not more so.
In Figs. 6–11, we show the time evolution of the demographic

FIG. 7. Evolutionary transition of the population parameters ri

and bi of two species from facultative parasitism (FPP) to obligate-
obligate mutualism (OOM), with intermediate states of obligate
parasitism (OPP) and obligate-facultative mutualism (OFM). Ini-
tial parameters: r01 = 1.0, r02 = 0.64396, b01 = 0.00474, b02 =
0.00262, u1 = 0.60097, u2 = 0.62973, w = 0.16897, α1 = 0.13282,
α2 = 0.54215 and γ = 0.6.

FIG. 8. Evolutionary transition of the population parameters
ri and bi of two species from facultative-facultative mutual-
ism (FFM) to commensalism (COM), with intermediate states of
facultative parasitism (FPP) and obligate parasitism (OPP). Initial pa-
rameters: r01 = 1.0, r02 = 0.09827, b01 = 0.00463, b02 = 0.00313,
u1 = 0.79063, u2 = 0.80318, w = 0.00460, α1 = 0.22106, α2 =
0.12717, and γ = 0.7.

parameters of just a few examples, chosen because of their
peculiar sequence of intermediate transitions or because they
resemble actual transitions observed in nature. (For the time
evolution of the stationary populations Ni and their evolution-
ary parameters, see the Supplemental Material [26]).

Figure 6 shows two species with positive intrinsic growth
rate that are initially in competition. Over time, one of them
starts parasitizing the other until it becomes dependent on it.
Eventually, the other species “learns” to take advantage of the
parasite and the relation ends up as a mutualism. Transitions
from antagonistic relations to mutualism are well known to
occur in microbial communities due to environmental pres-
sure and phenotypic plasticity [22]. However, [28] showed
that mutualism arises as an evolutionary change in a con-
trolled experiment involving Escherichia coli and Salmonella
enterica. E. coli strains went through genetic changes due to
a mutation that led them from generating acetate—a costless
byproduct that was useful to Salmonella—to secreting the

FIG. 9. Evolutionary transition of the population parameters
ri and bi of two species from obligate parasitism (OPP) to
obligate-obligate mutualism (OOM), with an intermediate state of
obligate-facultative mutualism (OFM). The initial OPP has a long
stasis, whereas the intermediate OFM is much shorter in evolution-
ary scale. Initial parameters: r01 = 1, r02 = 0.04230, b01 = 0.00962,
b02 = 0.00096, u1 = 0.45854, u2 = 0.26628, w = 0.12217, α1 =
0.28321, α2 = 0.35339, and γ = 0.6.
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FIG. 10. Evolutionary transition of the population parameters ri

and bi of two species from obligate-facultative mutualism (OFM)
to obligate-obligate mutualism (OOM), with an intermediate state
of obligate parasitism (OPP) and obligate-facultative mutualism
(OFM). Initial parameters: r01 = 1.0, r02 = 0.80306, b01 = 0.00561,
b02 = 0.00310, u1 = 0.26642, u2 = 0.17242, w = 0.01485, α1 =
0.40480, α2 = 0.31492, and γ = 0.6.

more useful galactose, even when this was a costly byproduct
that reduced its intrinsic growth rate. This transition arose
when Salmonella strains were forced and selected to produce
methionine, which was beneficial to E. coli. Even though E.
coli mutant populations did not replace the ancestral strains—
as they were also benefited on this stage—this case shows how
species must pay a cost in order to become mutualists.

In Fig. 7, species 2 starts as a facultative parasite of species
1. Soon the parasite becomes dependent and this situation
remains like this for a while, until suddenly (in evolutionary
terms) the relation evolves into a mutualism, facultative at first
for species 1 but eventually obligate for both species.

A similar coevolutionary pathway can be found in nature
between Macrotermitinae (species 1) and fungi (species 2).
According to [29] and [30], both the fungi and the fungus-
growing termites are obligate mutualists since they need each
other in order to survive and reproduce. As stated by [31],
it is plausible that the origin of the termite-fungi mutualistic
relation was an infection (a specialized infestation) of the
termites guts with fungi spores, which led them to defend

FIG. 11. Evolutionary transition of the population parameters
ri and bi of two species from facultative parasitism (FPP) to
obligate-facultative mutualism (OFM), with an intermediate state
of facultative-facultative mutualism (FFM). Initial parameters: r01 =
1.0, r02 = 1.0, b01 = 0.00713, b02 = 0.00309, u1 = 0.38958, u2 =
0.96352, w = 0.05325, α1 = 0.10848, α2 = 0.08866, and γ = 0.2.

themselves by domesticating the fungi, controlling and lim-
iting their growth.

Figure 8 is an example of an opposite transition, in which
one of the species of an initially mutualistic system evolves
into a parasite of the other (first facultative, eventually ob-
ligate) which, over time, develops a commensalistic relation
with the parasitized species.

Commensalism arises frequently in nature. For instance,
some algae and Ascomycota fungi do not form lichens, but
descend from lichen-forming fungi ancestors. Nonlichenized
fungi might obtain their nutrients acting as commensalists of
lichen-forming fungi and algae [32]. Although the evolution
of the lichen symbiosis is believed to have appeared multiple
independent times [33], no specific route for this formation
has been described with certainty, to our knowledge.

There are many other cases of known mutualist relations
that had become commensalistic. Zooxanthellae and octoco-
rals form an ancestral facultative mutualistic relation where
the dinoflagellates contribute to the energy budget of the in-
vertebrates, by being host inside them. However, [34] showed
that there is compelling evidence of a FFM→COM transition,
within the octocoral family Melithaeidae. Zooxanthellae and
antheopleura form a similar relation and [35] stated that many
species of the sea anemones seem to have lost the mutualistic
relationship with the algae. Gymnodinium algae provide an
energetic supply to many marine invertebrates, which in re-
turn act as protective hosts. Reference [36] shows, through a
molecular phylogenetic analysis, that Gymnodinium is a genus
that incorporates both mutualistic and independent species,
even though they all descend from a common symbiotic
ancestor.

Similar cases can be found within microbial organisms. In
genera Entamoeba and Trypanosoma, transitions from mutu-
alism to what in our framework can be described as mutual
commensalism have been reported. Clark and Roger [37]
reported that Entamoeba histolytica shows evidence of mi-
tochondrial relics, which might mean that those organelles,
first acquired through endosymbiotic mechanisms, were even-
tually lost as a result of an evolutionary process. Hannaert
et al. [38] also reported that two genera of Trypanosomati-
dae (Leishmania and Trypanosoma) acquired their plastids
probably from mutualistic algae, and they also lost them
leaving only a few residual genes. Such interpretations allow
a better understanding of eukaryotic lineages since organ-
isms formerly classified as divergent ancestors, such as some
archezoan protists [37] or nematodes having and lacking their
Wolbachia pipientis simbionts [39], are being understood now
as much closer relatives. These studies show evolutionary
transitions that are fundamentally different from those shown
in microbial studies due to environmental pressures [22], even
where genetic manipulation is involved [40].

In Fig. 9, an initially parasitic relation, with a long period
of stasis, eventually evolves into an interdependent mutualistic
relation after crossing a brief period of facultative mutualism.
Notice that the coevolution of Legionella jeonii and Amoeba
proteus described in Sec. I illustrates this kind of evolutionary
pathway [2].

Another example, given in Fig. 10, exhibits a case that
begins and ends in a mutualistic state, but not before going
through a period of parasitism. This case reveals that even
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though some of the cases reported in the statistics of the
previous section appear not to have undergone any transition
whatsoever, they nevertheless can come across different inter-
mediate states before reaching their evolutionary stable state.

As a last example, Fig. 11 exhibits a case that begins
in facultative parasitism and ends in a obligate-facultative
mutualism, going through a period of facultative-facultative
mutualism. This case is similar to the case of ants and aphids
from several genera, whose relations have gone through all
mutualistic and commensalistic nuances, as we pointed out in
Sec. I.

Attine ants and fungi might have also undergone a simi-
lar pathway since they form mutualistic relations that range
from almost mutually obligatory to facultative—at least for
the fungi. In particular, [29] indicates that the fungal sym-
bionts of the higher attines depend almost exclusively on the
ants—although occasionally they might reproduce sexually.
However, [41] and [42] also show that fungi are capable of
living without the symbiotic relation with the ants.

Several hypotheses have been drawn to explain the evolu-
tionary origin of the attine ant-fungus relation. According to
[43], even though it is widely accepted that fungi were part
of the ancestral ant diet (which would constitute a predatory
relation), neutral coexistence, where ants acted as accidental
vehicles of fungal dispersion, may be a more viable ex-
planation (in which case, the ancestral relation would be
commensalistic, instead of predatory).

VIII. DISCUSSION

Admittedly, the model we have proposed and analyzed
in this paper is a far cry from any realistic description of
microbial interactions. For instance, we have deliberately ig-
nored any detail of the metabolic processes involved—which
are determinant in deciding which products can or cannot
be reused—or kept the environmental conditions constant—
hence neglecting any effect that a change in the environment
might bring into the interactions [21,44]. For these and many
other drastic simplifications that we have assumed in its de-
sign, it is only fair to call our model a “toy model.” And yet
this is precisely one of its virtues because what this model
makes clear is that very few assumptions about the way two
species can interact lead to drastic changes in the ecological
scenario. More and more, empirical evidence is showing that
evolutionary transitions in the ecological interactions between
species of a community are the norm, rather than the excep-
tion. The model proposed here provides a proof of concept
in this sense because it links natural microscopic interactions
between microbes to subsequent changes in their ecological
relationships.

It has been hypothesized that environmental fluctuations
are one of the forces that might drive the evolution of mi-
crobial consumption and production capabilities. Our simple
model does not dispute this point of view, but the fact that the
random evolution of the interspecific interactions in a constant
environment, subject to some trade-offs, is able to produce
such a plethora of complex transitions between different eco-
logical regimes can only mean that the environment may not
be their only driver. As a matter of fact, endosymbiosis is a
process that occurs within a constant environment—and one

that our simple model is able to capture. Certainly, environ-
mental changes may trigger these evolutionary changes, but
the subsequent adaptation that they bring about is due to ran-
dom changes in the interactions between the species involved,
and may occur even if the environment remains constant.

With a simple bookkeeping of the amount of resources that
are taken from the environment, of those that are excreted
as byproducts of metabolic reactions, and of the amount of
byproducts from the other species that can be reused for
their own purpose, the model can cover virtually all possi-
ble ecological interactions between two species and show,
using adaptive dynamics, that these interactions evolve, going
through different scenarios until reaching a final stable state.
The model also provides some clues about general trends that
can occur in real situations. For instance, there is a marked
trend toward the emergence of mutualistic interactions, even
in systems that start in competition or show antagonistic re-
lationships. Also, many of the observed pathways have a real
counterpart because similar ones have been documented for
actual species (microbial or otherwise).

The model relies upon the availability of a phenomenolog-
ical model of ecological interactions [19,20] that is capable of
describing mutualistic, competitive, and antagonistic interac-
tions with a simple tuning of the parameters—in a way that
generalized Lotka-Volterra models are not capable of. This
general logistic model of population dynamics is one of the
simplest models capable of exhibiting evolutionary transitions
between different ecological regimes. The clue in devising our
present evolutionary model has been linking those parameters
to microscopic interactions between the species involved—
which we have chosen as microbes for the sake of simplicity.

There are at least two ways in which this work can be ex-
tended. One is making more detailed and realistic assumptions
on the microscopic interactions that occur between the two
species and see whether or not the trends observed in this toy
model are confirmed. Obviously, introducing further details
will impose constraints that the present model is currently free
of. These constraints will bias the distribution of scenarios we
observe in different ways, and will do so differently for differ-
ent species—for which the details can vary from instance to
instance. This will provide interesting information about the
connection between microscopic mechanisms and ecological
transitions.

The other way to extend this work is to consider more
than two species. We can only imagine the richness of eco-
logical scenarios that such an extension will reveal, even with
a mechanism as simple as the straightforward bookkeeping
of resources that we have implemented. The computational
complexities of this extension are evident by just looking at
the involved calculations that only two species has led to. This
is one of the reasons why we have decided to postpone such
a study for future research—the other one being that just two
species are enough to provide the proof of concept we aimed
at with this work.
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APPENDIX A: GENERALIZED LOGISTIC MODEL
OF POPULATION DYNAMICS

The idea behind the population model of [20] is to extend
Velhurst’s logistic equations of populations,

Ṅi = Ni(r̄i − āiNi ), i = 1, . . . p, (A1)

by making the parameters r̄i and āi depend on the interactions
with the environment as well as the population sizes of all
species in the community as

r̄i = ri +
p∑

k=1

bikNk, āi = ai + ci

p∑
k=1

bikNk . (A2)

Here, ri is the intrinsic growth rate of species i, bik is the rate of
benefit (if positive) or hindrance (if negative) on species i due
to the interaction with species k, and p is the total number of
species in the ecosystem. The coefficients ai measure intraspe-
cific competitions (hence, ai > 0) due to a limitation of the
environmental resources. As a matter of fact, in the standard
Velhurst’s model, a−1

i directly measures the carrying capacity
of the environment. As of ci, the effect of these coefficients is
better seen if we rewrite Eq. (A1) and Eq. (A2) as

Ṅi = Ni(ri − aiNi ) + Ni(1 − ciNi )
p∑

k=1

bikNk . (A3)

We can clearly see in this expression that choosing ci > 0
induces a saturation on the interaction of the community with
the focal species.

For only two species, the stationary solutions can be ob-
tained as

N∗
1 = −a1a2 + b12b21 + b21c2r1 − b12c1r2 ± √

�

2b21(b12c1 + a1c2)
,

N∗
2 = −a1a2 + b12b21 − b21c2r1 + b12c1r2 ± √

�

2b12(b21c2 + a2c1)
, (A4)

where

� = 4b21(b12c1 + a1c2)(a2r1 + b12r2)

+ [a1a2 − b21(b12 + c2r1) + b12c1r2]2. (A5)

According to [20], the linear stability of the finite station-
ary solution for two species (N∗

1 , N∗
2 ) can be analyzed from

the Jacobian matrix,

J (N∗
1 , N∗

2 ) =
( −r1 − b12N∗

2 b12N∗
1 [1 − c1N∗

1 ]

b21N∗
2 [1 − c2N∗

2 ] −r2 − b21N∗
1

)
. (A6)

APPENDIX B: ADAPTIVE DYNAMICS EQUATIONS
FOR THE TWO-SPECIES ECOSYSTEM

According to Eq. (1), the per-capita fitness of species i is
given by

fi(�, N1, N2) = ri(�) − aiN1 + bi j (�)(1 − ciNi )Nj, (B1)
with ri(�) and bi j (�) given by Eq. (6) and Eq. (7), re-
spectively. If the parameters of the mutant are u′

i = ui + δui,
w′ = w + δw, with δui = ±1/K and δw = 0,±1/K (see Ta-
ble II), then—given the linearity of fi with respect to these
parameters—the per-capita fitness of the mutant in a steady-
state community can be written as

f̄i(u
′
i,w

′,�, N∗
1 , N∗

2 ) = fi,uδui − fi,wδw, (B2)

where

fi,u = ri0(1 − γ − α1α2) + bi0α1α2(1 − ciN∗
i )N∗

j

1 − α1α2
,

fi,w = bi0(1 − ciN
∗
i )N∗

j . (B3)

Accordingly, the canonical equations of AD for this sort of
mutants read (see [11])

u̇1 = μN∗
1

∑
δu1,δw

δu1 p1(δu1, δw)[ f̄1(u1 + δu1,w + δw,�, N∗
1 , N∗

2 )]+,

u̇2 = μN∗
2

∑
δu2,δw

δu2 p2(δu2, δw)[ f̄2(u2 + δu2,w + δw,�, N∗
1 , N∗

2 )]+,

ẇ = μN∗
1

∑
δu1,δw

δwp1(δu1, δw)[ f̄1(u1 + δu1,w + δw,�, N∗
1 , N∗

2 )]+

+μN∗
2

∑
δu2,δw

δwp2(δu2, δw)[ f̄2(u2 + δu2,w + δw,�, N∗
1 , N∗

2 )]+, (B4)

where the sums run over all the corresponding mutations and pi(δui, δw) are their respective probabilities, according to Table II,
and μ is the probability of mutation per reproduction event. The function [x]+ stands for x if x � 0, and 0 otherwise.

Substituting Eq. (B2) and Eq. (B3), performing the sums, and rescaling evolutionary time with 2K2/μ yields the set of
differential equations

u̇1 = 2N∗
1 {[ f1,u − f1,w]+(u2 − w) − w[ f1,w − f1,u]+ + [ f1,u]+(1 − u1 − u2 + w) − [− f1,u]+(u1 − w)},

u̇2 = 2N∗
2 {[ f2,u − f2,w]+(u1 − w) − w[ f2,w − f2,u]+ + [ f2,u]+(1 − u1 − u2 + w) − [− f2,u]+(u2 − w)},

ẇ = 2N∗
1 {[ f1,u − f1,w]+(u2 − w) − w[ f1,w − f1,u]+} + 2N∗

2 {[ f2,u − f2,w]+(u1 − w) − w[ f2,w − f2,u]+}, (B5)
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which, using the identity [x]+ = (x + |x|)/2, can be rewritten as

u̇1 = N∗
1 { f1,u − f1,wu2 + | f1,u − f1,w|(u2 − 2w) + | f1,u|(1 − u2 − 2u1 + 2w)},

u̇2 = N∗
2 { f2,u − f2,wu1 + | f2,u − f2,w|(u1 − 2w) + | f2,u|(1 − u1 − 2u2 + 2w)},

ẇ = N∗
1 {( f1,u − f1,w )u2 + | f1,u − f1,w|(u2 − 2w)} + N∗

2 {( f2,u − f2,w )u1 + | f2,u − f2,w|(u1 − 2w)}. (B6)

On its side, mutants that change their parameter αi have a per-capita fitness

f̄i(α
′
i,�, N∗

1 , N∗
2 ) = fi,αδᾱi + O

(
δᾱ2

i

)
, (B7)

where δᾱi = ±1/K and

fi,α = bi0(1 − ciN∗
i )N∗

j − ri0γ

1 − α1α2
. (B8)

Accordingly,

α̇1 = μN∗
1

∑
δα1

δα1 p1(δα1)[ f̄1(α1 + δα1,�, N∗
1 , N∗

2 )]+,

α̇2 = μN∗
2

∑
δα2

δα2 p2(δα2)[ f̄2(α2 + δα2,�, N∗
1 , N∗

2 )]+,
(B9)

which, neglecting O(δᾱ2
i ) terms and rescaling time as before, becomes

α̇1 = 2N∗
1

γ
{[ f1,α]+(γ − α1) − [− f1,α]+α1} = N∗

1

{
f1,α + | f1,α|γ − 2α1

γ

}
,

α̇2 = 2N∗
2

γ
{[ f2,α]+(γ − α2) − [− f2,α]+α2} = N∗

2

{
f2,α + | f2,α|γ − 2α2

γ

}
. (B10)
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