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Metagenomic data has significantly advanced microbiome research by
employing ecological models, particularly in personalized medicine. The
generalized Lotka–Volterra (gLV) model is commonly used to understand
microbial interactions and predict ecosystem dynamics. However, gLV
models often fail to capture complex interactions, especially when data are
limited or noisy. This study critically assesses the effectiveness of gLV and
similar models using Bayesian inference and a model reduction method
based on information theory. We found that ecological data often leads
to non‑interpretability and overfitting due to limited information, noisy
data and parameter sloppiness. Our results highlight the need for simpler
models that align with the available data and propose a distribution‑based
approach to better capture ecosystem diversity, stability and competition.
These findings challenge current bottom‑up ecological modelling practices
and aim to shift the focus towards a statistical mechanics view of ecology
based on distributions of parameters.

1. Introduction
Recent decades have witnessed the central role of the human gut microbiome
in health and disease, catalysed by the explosion in metagenomic data [1,2]
and led by initiatives such as the Human Gut Project [3]. These data have
triggered activity to quantify and even predict the role of gut composition in
driving so‑called personalized medicine: a custom‑made intervention based on
the patient’s specific gut ecosystem and the connection between dysbiosis and
disease.

Mirroring the years succeeding the Human Genome Project [4], it has been
suggested thatmetagenomic data is not a clear‑cut book of life, anddata should be
supplemented by bottom‑up approximations [5]. Modern metagenomic meth‑
ods sequence all RNA in a sample, allowing for both taxonomic identification
(down to species or strain level) and functional analysis (genes, pathways,
metabolic potential). In principle, the collected data allows us to estimate the
abundances of different species and, through correlations, provide insights into
microbial relationships and the interaction between a certain environment and
its role in health and disease.

In parallel with data‑based analysis, researchers have increasingly turned
to mathematical and computational frameworks rooted in ecology and dy‑
namical systems theory to address this limitation. These frameworks aim to
bridge the gap between descriptive data and mechanistic understanding by
providing a way to model the interactions within microbial communities. Such
models allow for exploring ecosystem stability and resilience and offer pre‑
dictive power for how interventions or environmental changes may reshape
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Figure 1. Sketch illustrating how experiments and models can work synergistically to personalize an individual microbiome.

microbial dynamics. These approaches seek to complement metagenomic insights with explanatory and predictive tools by
focusing on the principles governing microbial coexistence and interaction.

In particular, the generalized Lotka–Volterra (gLV) model [6] and its variants (see equation (2.1) for its most basic version) bor‑
rowed from theoretical ecology may offer a link between experimental data on bacterial coexistence and microscopic interactions.
Hence, the research programme proposed by several authors is straightforward: gather data, fit the equations, infer the interac‑
tion matrix and exploit pair–interaction networks [7–12] to predict the outcome of custom‑made therapies aimed to re‑establish a
healthy microbiome [13]. This process is sketched in figure 1.

In the last few years, there has been evidence about the virtues of the gLV model (mainly in its stochastic variant) to capture
universal properties of the microbiome [7,9,10,14–20]. However, despite their widespread application, recent literature has begun
to cast shadows on the efficacy of these models. Critics argue that the limitations of these models are not merely a matter of prac‑
ticality concerning model fitting or data availability. Instead, they point to a more profound issue, asserting that these models are
inherently flawed in their ability to capture the intricate dynamics of the microbiome [21–28]. Notwithstanding, some of these
concerns regarding technical limitations, particularly those related to model fitting, may be mitigated by fitting relative popula‑
tions, as suggested by Remien et al. [29]. Other authors argue that the problem lies in the extreme simplicity of Lotka–Volterra
equations, pointing to more sophisticated versions including higher‑order interactions [30], or even to include the dynamics of
resources that are at the centre of the interaction among species.

In this article, we use arguments from Bayesian inference and information theory to argue against the viability of this whole
bottom‑up enterprise. In particular, we show a mismatch between the type of data and the amount of actual information entailed
in those data, on the one hand, and the level of description implicit in the gLV model and its variants to capture that information,
on the other hand.

Our line of argumentation has three ingredients—that we further develop in the following sections—namely: (i) ecological data
capture only a few timescales and individual steady states; (ii) the very structure of the models combined with data acquisition
noise provides non‑consistent interpretations of the interaction parameters; and finally (iii) gLV‑type models supplemented with
this sort of data are sloppy—in the sense introduced by Transtrum et al. [31]—so the parameters overfit the amount of existing
information.

Our main message is that, as traditionally recognized in statistical mechanics and complexity science, excessive mathematical
detail can provide inconsistent explanations of microscopic ecological problems when presented too confidently. We illustrate
this point by combining synthetic data, where we have complete knowledge, and analysing the effect of adding noise, which
would emulate how experimental data is typically obtained. Overall, we conclude that bottom‑up descriptions, such as the gLV
model and its variants, are often over‑parametrized. As a result, the interpretation of the fitted coefficients does not align with
the actual information contained in the data, claiming a radically different approach to the dynamics and function of the micro‑
biome. Our methodological approach relies on lengthy numerical computations that cannot be automated for many species, so
our argumentation is based on counter‑examples rather than on mathematically rigorous proofs.

We wrap up this article arguing that the way out of this flawed enterprise is to adopt the viewpoint of statistical mechanics,
where the central challenge is to discover appropriate macroscopic state variables that capture the essence of ecological dynamics
and formulate parameter distributions compatible with those state variables, akin to the ensembles of statistical mechanics. The
relevant macroscopic dynamics of microbiomes should follow from those ensembles in the same way that thermodynamics fol‑
lows from Boltzmann’s distribution. In this novel approach, finding the particulars of microbial interactions is nomore interesting
than determining the specific positions and momenta of particles in a gas.
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(A) (B)

(C) (D)

Figure 2. (A) A schematic illustration of how to estimate relevant pieces of information in a time series. As shown, a few parameters can explain this stereotypical shape
even if the data has infinite precision (a continuous curve). (B) Number of parameters for theN-species gLVmodel (dashedblue line) and estimatednumber of parameters,
4N–5N (according to the rule of thumb in panel (A)). The symbols show the size above which the number of parameters, while potentially identifiable, is not explainable
or meaningful from an ecological perspective. (C) An example of the time evolution of the abundance of four species according to the gLV equations (symbols). The solid
lines on top of each species are fitted (equation 2.2). (D) Illustration of how equation (2.2) accommodates different shapes with just five parameters. Colours illustrate
how the steady state, peak and other features can be varied independently. For instance, orange curves (sigmoids) can also be fitted with just three parameters.

2. The three limitations of population dynamics models
We will focus our discussion on the gLV model of theoretical ecology, which describes the evolution of the abundances xi of an
ecological community of i= 1,… ,N species through the dynamical system,

dxi
dt

= xi
⎛
⎜
⎝
ri +

N∑

j=1
𝛽ijxj

⎞
⎟
⎠
, i= 1…N, (2.1)

where ri represents the (unconstrained) exponential growth rate of species i in isolation, and the term 𝛽ijxj quantifies the effect of
species j in the growth of species i. We collectively refer to the coefficients (𝛽ij) as the interaction matrix. Its diagonal elements can
be regarded as (minus) the reciprocal of the so‑called carrying capacities of the species in isolation.

We are aware of variants of this model including additional equations for the resources and their consumption (consumer‑
resource models [32]), stochastic terms accounting for demographic or environmental fluctuations [18,19], or terms with higher‑
order interactions [30] that aim at capturing the combined effect of several species in the growth rate of another. However, as we
will argue in §3, far from fixing the problem we are about to analyse, these extensions only worsen it because they proliferate the
number of parameters.

2.1. Data of species abundances contains only a few pieces of information
As mentioned in §1, we argue that the problem with equation (2.1) and its extensions to accommodate higher‑order interactions
or even competition for resources relies not just on the model itself but on the type of data used to infer the parameters of those
models.

To illustrate this with a back‑of‑the‑envelope calculation, consider a typical time series, as depicted in figure 2C. The shape
of the curve, dissected in figure 2A, suggests that there are at most four (five if one leaves free the initial condition) pieces of
independent information per population. For N species, this accounts for 5N independent pieces of information.

We can make this claim more quantitative by proposing the (heuristic) equation,

x(t) =
a1 + a2e−a3t

1 + a4e−a5t
(2.2)

,
to fit curves like that of figure 2A. Figure 2D shows how versatile this expression is to reproduce that kind of curve and, in partic‑
ular, how it describes reasonably well the data of figure 2C (solid lines). Note that the curves can have a sigmoid form, a clearly
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defined maximum, and different parameters lead to different timescales and peak and steady state locations. Of course, we can fit
the same data using formulae with more parameters, but this will overfit the data. Different combinations of the parameters will
produce similar fits. This is the fingerprint of sloppiness—parameters can be widely varied without changing the fit appreciably.

In contrast, amodel like the gLV equations forN species involves—in its simplest form (2.1)with atmost pairwise interactions—
at leastN +N2 parameters. The consequence is that forN≥ 4, the number of parameters in themodel surpasses the actual pieces of
information available from the data, as shown in figure 2B, rendering the models inherently sloppy and unreliable for the purpose
they are employed, as we discuss below.

To simulate synthetic ecosystems, we randomly sampled the growth rates ri, as well as the negative self‑interactions −𝛽ii
(Ki ≡−𝛽−1ii > 0 are carrying capacities) from exponential distributions (the maximum entropy distribution for positive random
variables [33]) with mean 1/2. Interspecies interactions 𝛽ij (i≠ j) are sampled from normal distributions of mean 0 and standard
deviation 1 (the maximum entropy distribution for generic variables with fixed variance). This choice for the priors does not alter
the conclusions, as they set a typical timescale and the order of magnitude of the abundances at steady state. After these random
numbers are generated, we compute the steady state and stability and iterate until it is feasible (has positive abundances for all
species) and linearly stable [34–36].

In figure 2C, we show a simulation of four species. The dots are the simulation of the gLV equation, and the solid line is the best
fit to equation (2.2). Of course, we are not claiming here that equation (2.2) models the trajectories of the gLV. In fact, if the eigen‑
values associated with the stability of the steady state have a non‑zero imaginary part, this function would not work—it cannot
reproduce oscillatory behaviours. However, we want to rationalize the idea that, disregarding the number of points measured in
a curve, the shape of the curve encodes a limited number of parameters (no more than five in this case) regardless of the time‑series
resolution.

Note that our argument here is not that the parameters in equation (2.1) are not practically identifiable [37]; with enough data
and precision, they are. We argue that they are not meaningful because they are over‑parametrizing the data, i.e. there are many
more parameters ri, 𝛽ij in the model than overall relevant pieces of information in the series. As depicted in figure 2B, we expect
this problem to be more dramatic for larger ecosystems because the number of irrelevant parameters scales as O(N2).

2.2. Noisy data provide compatible but contradictory species interactions
In this section, we explore the role of noise in parameter inference from data. As Bayesian inference is computationally costly, we
illustrate the effect for three species (figure 3) and relegate analogous analyses for four and five species to the electronic supple‑
mentary material. We have tested this for many random choice parameters, and the conclusions remain the same. The time series
we analyse are obtained by simulating equation (2.1) and then adding a lognormal noise with different intensities, as this distri‑
bution guarantees positivity of the abundances. It is consistent with more complex stochastic versions of the gLV model [18,38].
We use different values of the lognormal standard deviation to understand the role of noise on inference.

We perform Bayesian inference through the Stan software (see electronic supplementary materials, §S1 and §S2, for the details
on simulation parameters and the code, also downloadable from Zenodo [39]. This approach allows us to compute the posterior
distribution for the observed noisy data as

P
(
𝜴|y(t), x(0)

)
= 1

ZP
(
y(t)|x(0),𝜴

)
P(𝜴), (2.3)

where boldface letters denote vectors of the corresponding quantities, 𝜴≡ {r, 𝜷,𝝈} (statistically independent),

Z=∫P
(
y(t)|x(0),𝜴

)
P(𝜴) d𝜴 (2.4)

and d𝜴= dNrdN2𝜷dN𝝈. The first probability factor on the right‑hand side of (2.3) represents a product of lognormal distributions
with width parameters 𝝈, centred at the trajectories x(t). Expressed in statistical language, the generative model behind the data
is

nyk(t) ∼ lognormal
(
xk(t), 𝜎k

)
,

where the abundances xk(t) are obtained by a simple numerical integration (e.g. with a fourth‑order Runge‑Kutta method) of
equation (2.1). The last three probability factors in (2.3) are the prior distributions of the model parameters.

Using the inferred posterior distribution of the parameters, we can sample new synthetic trajectories ŷk, using the so‑called
posterior predictive distribution,

P
(
ŷ(t)|y(t)

)
=∫P

(
ŷ(t)|x(0),𝜴

)
P
(
𝜴|y(t), x(0)

)
d𝜴.

Figure 3 shows samples from the posterior predictive distribution for six noise levels. Note that the posterior predictive trajectories
capture higher noise levels by increasing the variability for larger abundances.

To assess the results in electronic supplementary material, §S3, we collect the marginal posterior distributions for the model
parameters (see electronic supplementary materials, figures S1–S6, for three species; figures S7–S12 for four species; and figures
S13–S18 for five species). For the rates ri, we compute the quantile of the actual value used in the simulations. We consider good
agreement between the inferred and the actual values if, for instance, that quantile is in the range 5−95%. For the interaction pa‑
rameters 𝛽ij, we also show the quantiles and the probability that the predicted sign of each interaction coefficient is mistaken. This
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Figure 3. Posterior predictive trajectories simulated by sampling the posterior distributions (summarized in electronic supplementary material, §S3) for six different
lognormal noise levels (title of each panel) added to the deterministic curves in figure 2C. The posterior predictive trajectories capture higher (lognormal) noise levels by
increasing the variability for larger abundances.

means that while the posterior‑predictive trajectory accurately captures the data, it is compatible with a set of parameters that
wrongly infer the sign.

To summarize these results, we define three key observables. First, the number of outliers, which are parameters lying outside
the 5th−95th percentile range. Second, the expected number of wrong signs (denoted by ∓ for simplicity), obtained as

𝔼 [∓] =
N2∑

k=1
Pk(∓),

where Pk(∓) represents the probability that the kth element of the interaction matrix (𝛽ij) is estimated with the wrong sign. This
probability is obtained by integrating the posterior for that parameter over the incorrect sign interval, namely, the area of the
posterior probability for that parameter corresponding to a prediction having an incorrect sign. Finally, we estimate the overall
probability that the model captures at least one wrong sign as

P(∓) = 1 −
N2∏

k=1
[1 − Pk(∓)] . (2.5)

In table 1, we show both metrics for the parameters corresponding to figure 2C and additional examples for three and five species.
Note how increasing the dimensionality produces more outliers for lower noise levels and increases the expected number of in‑
correct signs. This is not a failure of the method because Bayesian inference is the optimal way to quantify uncertainty in model
predictions [33]. The errors, quantified by the number of outliers and equation (2.5), are not evident by inspection of the posterior
predictive trajectories in figure 3 and electronic supplementary materials, figures S19 and S20. Another conclusion is that there is
an ensemble of parameters that explain the data but provide opposite interpretations, as the signs of 𝛽ij and 𝛽ji for every pair (i, j)
represent the type of interaction between species i and j.

Finally, it is worth mentioning that the posterior distributions display strong correlations among parameters, although, as ex‑
plained above, all growth rates, ri, and interaction coefficients, 𝛽ij, are randomly sampled. For instance, electronic supplementary
materials, figures S22 and S23, we show a pairs‑plot of the marginal posterior distributions. Note how correlations occur among
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(A) 3 species (B) 4 species

Figure 4. Normalized distributions of posterior marginal correlations between parameters for (A) the three species case (corresponding to electronic supplementary
material, figure S22) and (B) the four species case (electronic supplementary material, figure S23). Note that, despite the original parameters being randomly sampled,
inference mimics existing significant correlations (although most correlations are around 0). This is because there are sets of parameters that can be combined to repro-
duce the same reconstructed trajectory.

Table 1. Metrics quantifying how the posterior probabilities for the model parameters contain plausible sets of parameters that provide wrong predictions:𝔼[∓] , the
expected value of the number of wrong signs; P(∓) , the probability of predicting interactions with at least one wrong sign (relative to the true underlying value in the
deterministic simulation); and the number of outliers—parameters whose true value is outside the 5−95% interval of the marginal posterior probability.

noise 3 species 4 species 5 species

𝔼 [∓] P (∓) outliers 𝔼 [∓] P (∓) outliers 𝔼 [∓] P (∓) outliers

0.001 0.00 0.000 1 0.05 0.050 3 5.52 1 14

0.002 0.00 0.000 1 0.37 0.341 3 6.25 1 14

0.003 0.00 0.000 0 0.73 0.624 4 6.72 1 14

0.007 0.18 0.180 2 1.33 0.882 5 7.58 1 13

0.010 0.50 0.500 3 1.82 0.938 5 7.83 1 13

0.020 1.04 0.938 7 2.54 0.981 6 8.47 1 12

0.030 1.47 0.984 7 2.76 0.986 7 9.00 1 14

0.050 1.93 0.984 9 3.01 0.990 8 9.76 1 14

0.070 2.56 0.996 9 3.39 0.992 9 10.26 1 14

different rows and columns of the interaction matrix. This suggests that aside from the concerns raised above—and summarized
in table 1—there is a strong redundancy in the model.

To illustrate this redundancy, figure 4 exhibits a normalized histogram of the pairwise correlations between the posterior
marginals of the parameters, which correspond to electronic supplementary materials, figures S22 and S23. Although the origi‑
nal parameters were sampled randomly, the inference reveals notable correlations that mimic existing significant relationships,
even though most correlations cluster around zero. This occurs because the stability and feasibility conditions limit the distribu‑
tions of the parameters compatible with the data, leading to effective correlations. In statistical language, the observed ecosystems
represent a subsample of all the potential models conditioned to produce feasible stable abundances.

2.3. The generalized Lotka–Volterra model is intrinsically sloppy
In the previous two sections, we have argued that typical population dynamics curves do not seem to contain enough information
to estimate all the N(N + 1) parameters of the N‑species gLV model. So far, we have shown that the posteriors entail the optimal
use of information available in the data. Still, we have not provided a quantitative measure of what wemean by enough information
or how this can be exploited systematically. In this section, we apply the manifold boundary approximation method (MBAM)
introduced in [40]. This method uses information geometry [41] to characterize the N(N + 1)‑dimensional statistical manifold de‑
fined by themodel parameters. Themain idea is to introduce Fisher’s informationmatrix (FIM) as a metric tensor on this manifold
and exploit its geometry to reduce the number of parameters with minimal information loss.

Generically, if our system is described by a log‑likelihood L(x|𝜴) = logP(x|𝜴), where𝜴= (𝜔i) represents the parameters of the
model, and if vector X represents the data to be fitted by the model, the elements of FIM are given by

Iij(𝜴) = 𝔼 [
𝜕
𝜕𝜔i

L(X|𝜴) 𝜕L
𝜕𝜔j

L(X|𝜴)] . (2.6)

The eigenvalues of this matrix quantify the change in the amount of information produced by a variation of the model param‑
eters along the direction of the corresponding eigenvector. Thus, small eigenvalues characterize sloppy directions along which
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Figure 5. A combined plot to understand the MBAM. (A) Trajectories of the parameters along the geodesics (𝜏 being the intrinsic geodesic time, i.e. the parameter in
which the geodesic curve is described). The other two panels in the first row show the data (symbols) and the model (solid lines) for the values of the parameters at
(B) the beginning and (C) the end of the numerical integration interval. (D) Spectrum of FIM for the parameters at the beginning (left) and end (right) of the integration
interval. The smallest eigenvalue corresponds to the sloppiest combination of parameters. Note that how the sloppiest eigenvalue decreases upon reaching themanifold
boundary through the geodesic. As parameters get removed, the spectrum shrinks within a few orders of magnitude. This is the signature of stiff (non-sloppy) mod-
els. The criteria for determining when a manifold boundary is found are based on the rate of change (velocity) of the parameters along the geodesics. Panels (E) and
(F) represent the velocity of the parameters at the beginning (E) and the end (F) of the geodesic. The fact that just one parameter has a negative velocity at the end, while
the rest practically do not change means that the logarithm of this parameter tends to−∞, and thus it can be dropped.

the model is still accurate enough, given the empirical data, but it can be driven to simplified sub‑models containing as much
information and preserving the ability to make accurate predictions with fewer effective parameters [42]. The idea of MBAM is to
move along the geodesics defined by the metric tensor Iij towards the boundary of the manifold Iij. The rationale for this is that
geodesics are the straight lines of a curved geometry; hence, they represent the shortest paths to the boundary. For further details,
see [40].

We apply the MBAM systematically to another set of parameters of the gLV model, using a deterministic simulation with no
added noise. This represents the (highly) ideal situation in which we possess perfect model knowledge. In figure 5, we illustrate
one (arbitrary) step of the MBAM. In that figure, we show (A) the values of the logarithm of each parameter along the geodesic as
a function of the geodesic time 𝜏 (geodesics are parametric curves with parameter 𝜏); the model fitted (B) at the beginning (𝜏 = 0)
and (C) at the end (𝜏 > 0) of the integration interval for the geodesic; (D) the eigenvalues of the FIM at the beginning and end of
that integration; and the velocity (rate of change with 𝜏) of each parameter along the geodesic (E) at the beginning and (F) at the
end of the integration interval. In the particular case illustrated by the figure, log b14→−∞ as 𝜏→∞, meaning that this parameter
is effectively 0.

We computed 11 steps of MBAM. In the first six of them, we can eliminate six parameters safely (𝛽32, 𝛽23, 𝛽34, 𝛽43, 𝛽14 and 𝛽42).
In the next three steps, we can eliminate three more parameters (𝛽22, 𝛽33 and 𝛽21) if we are willing to sacrifice the goodness of fit
of species x2. Finally, the last two steps illustrate how the fitting errors rise dramatically in a much too simplified model. Figure
6A shows the evolution of a measure of the fitting error (the sum of squared residuals) after each MBAM step. Note in figure 6B
how, after removing the seventh parameter, the trajectory of x2 is no longer well captured. The inset in figure 6A shows how the
FIM spectrum shrinks by reducing the complexity of the model, corresponding to a less sloppy model after each step. Note also
that the spectrum of the FIM for the final reduced model (after six steps) now spans just a few orders of magnitude, meaning that
the model is no longer sloppy.

Another suggestive conclusion from this systematic reduction is thatMBAMhas eliminated all the parameters bymaking them
0. Hence, the interaction matrix of the reduced model is, after reduction, sparser. This sparsity has been recently pointed out as a
signature of microbial ecosystems [18]. Note that removing parameters by making them 0 is not the only outcome of the MBAM
(which also accommodates simultaneously pushing parameters to infinity). Still, we speculate that it might be a consequence of
the mathematical structure of the gLV model.

In electronic supplementary material, figure S24, we show an example resembling the typical cycles in the original predator–
prey formulation of the Lotka–Volterra model. As in the previous example, all the MBAM steps eliminate interaction coefficients.
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(A) (B)

Figure 6. (A) Sum of squared residuals (difference between original data and model prediction) for model parameters in figure 5. Inset: MBAM parameter elimination
shrinks the FIM spectrum, making the resulting model less sloppy according to [31]. Note that how the error jumps at seven reduced parameters corresponding to the
inability of the reduced model to explain x2, as shown in (B).

Note that when using MBAM [40], the simplifications we achieve are contingent on the data we are fitting. Having more rel‑
evant information makes further model parameters relevant, and the oversimplified model here obtained may be too simple. By
relevant information, we do not mean necessarily longer times (as shown in electronic supplementary material, §S8) but truly
new information not present in the previous data (typically, new experiments performed with different conditions or measuring
additional observables).

By the same principle, it is worth emphasizing that all these numerical experiments are made with noiseless, synthetically gen‑
erated data so that they would correspond to experimental data measured with extreme accuracy. Combined with the discussion
about practical identifiability emerging from the Bayesian analysis in §2.2, we expect the reduction to be even more dramatic in
a real scenario. Moreover, taking into account that we have more sampling points in our time series than typically available in
experiments, this expectation is reinforced.

3. Discussion and conclusions
Our overarching argument throughout this article is simple but has deep implications: population dynamics time series do not
contain enough information to estimate and confidently interpret the interactions between species in an ecosystem. Typically,
the time evolution is governed by a few timescales and typical abundance sizes (what we summarize in figure 2A as pieces of in‑
formation). This hand‑waving assessment—which we made more quantitative through equation (2.2)—has two implications: one
regarding the extent to which we can infer interactions from the data (using Bayesian inference, the optimal way to extract infor‑
mation from data), and another one using the principles of information geometry (which provides a systematic way to remove
non‑informative parameters).

Regarding the first, we showed (through the marginal posterior distributions for the parameters) that, although the problem
is in principle structurally identifiable [29], in practice, there is a significant probability that not only the value but even the sign
of a given interaction parameter 𝛽ij is wrong—unless the priors are so close to the original parameters that the posteriors are bi‑
ased beforehand (electronic supplementary material, §S7). This has important biological implications because we can incorrectly
predict the ecological nature of species interactions (competition, commensalism, mutualism, parasitism, …). Also, the posterior
densities show that the real parameter used in the simulation cannot be practically identified due to noise. Furthermore, the larger
the population is, the more uncertain determining the underlying interactions (even their sign) becomes.

On the other hand, MBAM illustrates how the gLVmodel is over‑parametrized, thus substantiating our graphical argument in
figure 2A. The first conclusion is that the removed parameters are, mainly, coefficients of thematrix 𝛽ij set to 0. This aligns with the
idea, recently put forward in a study that infers interaction matrices of microbial communities [18], that the interaction matrices
𝛽ij of these systems tend to be sparse. Of course, all our analyses have been performed on relatively smooth time series. Whether
the argument still carries on to more general cases (with many more species) involving complex oscillations or chaotic behaviour
needs further study.

Another implication of our results is that, as gLV (or more sophisticated models) are over‑parametrized, they are expected to
be more prone to overfitting and to generalize poorly to future events, with this effect being larger for a larger number of species.
We illustrate this in electronic supplementary material, §S8. Interestingly, extending the model reduction up to t= 6 improves the
fitting, but the inferred (and eliminated) parameters differ, as shown in electronic supplementary material, figure S27.

One should bear in mind that the problems revealed in inferring the interactions of the gLV model are not exclusive to this
system but apply to any sufficiently complex dynamics [31,43]. Thus, our discussion here is completely general and pertains to
the science of complex systems at large.

Any critical reader might suggest potential solutions to this pessimistic scenario. In the problem under discussion, one possible
solution would be to extend the gLV model to include additional mechanisms—such as competition/production for metabolites
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or other resources [44]. This might indeed improve our understanding of microbial interactions, but those models have a com‑
plexity cost that should be supplemented with relevant empirical data. Otherwise, our main argument about the relevant pieces
of information in the data will imply that the new parameters related to the species‑resource interplay will suffer from the same
problems as those described in this article.

Alternatively, we can employ stochastic versions of the gLV model [18,38]. These generalizations offer additional insights by
accommodating variability in the data as randomfluctuations. This helps reduce overfitting and suggests focusing on the distribu‑
tions of interactions. However, implementing this method is not straightforward, as the stability and observability of an ecosystem
already influence the underlying correlations within the data (as illustrated in figure 4).

Instead of approaching the problem by trying to amend the model, we advocate for a paradigm shift in ecological research,
moving the focus from traditional dynamical systems to a framework grounded in the principles of statistical mechanics. The cen‑
tral challenge lies in defining the appropriate state variables that capture the essence of ecological dynamics and facilitate specific
strategies for ecosystemmanipulation towards desired outcomes.We introduce an ensemble approach to the analysis of ecological
data, positing that the joint posterior distribution, P

(
𝜴|y(t), x(0)

)
, extends beyond mere statistical inference. Specifically, instead

of referring to a parameter as the unique numerical value that better fits the data, this approach advocates for assigning a whole
ensemble of parameters compatible with the data, so the interpretation of the model parameters is more robust, on one hand; and
contains additional information about the uncertainty associated to that parameter, on the other hand.

In conclusion, this framework encompasses amultitude of potential scenarios that can explain observed data, therebymaximiz‑
ing the informational yield from experimental findings. Accordingly, it is essential to develop robust macroscopic state variables
that encapsulate critical ecological phenomena such as diversity, stability, symbiosis and interspecies competition, all of which
can be derived from these joint distributions. As we look to the future, we recognize that this presents an exciting and necessary
research agenda that promises to deepen our understanding of ecological systems and enhance our ability to manage and sustain
them effectively.
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S1. Parameters used in the simulation
In Table S1, we collect the parameters used to simulate Eq. (S1):

dxi
dt

= xi

ri +

N∑
j=1

βijxj

 , i= 1 . . . N, (S1)

and the main figure corresponding to those parameters. In the case of the simulations used to apply Bayesian inference, the
code is freely available at https://zenodo.org/records/16747311, so we indicate the random seed used in the simulations
(for reproducibility). Recall that

• xi represents the population size of species i,
• ri is the intrinsic growth rate of species i,
• βij denotes the interaction coefficient between species i and j.

Table S1. Parameters used in this work. The first column points to the main figure related to those parameters. The seed used in the simulation code is

shown in the case of those used to make Bayesian inference. The numbers have been rounded to the second significant figure for compactness.

Main figure xi(0) ri βij Reference

3 (main text)

 0.22

0.063

0.0014


 1.1

3.9

0.78


 −1.8 1.2 −1.7

−1.5 −2.6 0.35

−0.12 1.3 −2.7

 This work (seed 434)

5 (main text)


10

10

10

10



−0.16

−0.63

−0.82

1.9



0.29 −1.8 −0.21 1.5

0.92 −2.0 −0.22 0.48

1.8 0.65 −1.5 −1.3

1.4 −1.3 −0.32 −1.4

 This work

S19


0.017

0.037

0.16

0.058



0.47

1.8

2.6

0.64



−0.14 0.38 0.22 −0.43

−1.4 −1.2 0.023 −1.1

2.2 1.7 −2.8 −0.044

−0.76 2.0 0.24 −0.78

 This work (seed 64977)

S20


0.049

0.025

0.04

0.011

0.11




2.7

6.1

0.60

2.2

0.70




−8.2 0.74 1.7 0.09 −0.37

0.15 −1.9 0.37 0.56 −0.42

−0.49 0.31 −4.3 0.33 0.15

−1.1 −0.45 1.4 −4.4 2.7

−0.95 0.67 −0.52 −0.80 −0.95

 This work (seed 74435)

S24

1114
1


 0.25

−0.50

−0.50


−0.0010 −0.040 −0.040

0.040 −0.0020 −0.020

0.020 0.040 −0.0030

 This work

S25

1014
4


64
2


−0.05 0.15 −0.20

−0.01 −0.027 0.050

0.10 −0.10 −0.015

 [1]

S26



0.04

0.04

0.12

0.04

0.03

0.07





2.4

0.005

0.4

4.3

0.5

1.7





−0.48 −0.09 1.6 −1.5 −1.8 1.7

1.3 −0.1 −1.1 1.2 −0.72 −1.6

−0.5 1.1 −1 2.9 −1.3 0.67

0.42 0.13 −0.9 −0.42 −1.1 1.1

0.18 1.6 1.7 −0.09 −3.5 0.005

−0.11 0.55 −1.4 1.9 −0.65 −3.5


This work (seed 72088)

https://zenodo.org/records/16747311
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S2. Bayesian inference
We consider an N -species generalised Lotka-Volterra model where the population dynamics are governed by the system
of differential equations in Eqs. (S1).

Here, we introduce a novel approach to model this using an approximate numerical solution combined with a log-
normally distributed noise (as discussed in the main text). Thus, we proceed in two steps: (a) we apply a classical fourth-
order Runge-Kutta (RK4) integrator to generate prospect abundances for each species, and (b) we generate the abundances
at the next time step through a Bayesian hierarchical model. We detail these two steps in what follows.

(a) Fourth-order Runge-Kutta integrator
Given the abundances xn−1,i at time step n− 1, we compute

k1,i = xn−1,i

ri +

N∑
j=1

βijxn−1,j

 , (S1)

k2,i =

(
xn−1,i +

dt

2
k1,i

)ri +

N∑
j=1

βijx
(1)
n−1,i

 , (S2)

k3,i =

(
xn−1,i +

dt

2
k2,i

)ri +

N∑
j=1

βijx
(2)
n−1,i

 , (S3)

k4,i =
(
xn−1,i + dtk3,i

)ri +

N∑
j=1

βijx
(3)
n−1,i

 . (S4)

where
x
(r)
n−1,j = xn−1,j +

dt

2
kr,j , r= 1, 2, 3, (S5)

and produce

x∗n,i = xn−1,i +
dt

6
(k1,i + 2k2,i + 2k3,i + k4,i). (S6)

(b) Bayesian hierarchical model
The parameters of the model follow prior distributions:

σi ∼ Exponential(1), (S7)

ri ∼ Exponential(0.1), (S8)

βij ∼N (0, 2). (S9)

Given the population values xn,i obtained via RK4, the likelihood function assumes:

xn,i ∼ Lognormal(log x∗n,i, σi), (S10)

with the x∗n,i obtained in (S6)
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S3. Marginal posterior distributions

(a) 3 species

Figure S1. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.001. The vertical red

line is the original parameter value used in the simulation.
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Figure S2. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.002. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S3. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.003. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S4. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.007. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S5. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.01. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S6. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.02. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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(b) 4 species

Figure S7. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.001. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S8. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.002. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S9. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.003. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S10. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.007. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S11. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.01. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S12. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.02. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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(c) 5 species

Figure S13. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.001. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S14. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.002. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S15. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.003. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S16. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.007. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S17. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.01. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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Figure S18. Marginals of the posterior distributions for the parameters of the gLV adding log-normal noise with standard deviation 0.02. The vertical red

line is the original parameter value used in the simulation. In purple, we show those ranges of parameters that have a change of sign.
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S4. Posterior predictive checks

(a) 4 species

Figure S19. Posterior predictive trajectories simulated by sampling the posterior distributions (summarized in Sec. S3) for 6 different log-normally noise

levels (title of each panel) added to the deterministic curves. The posterior predictive trajectories capture higher (log-normal) noise levels by increasing

the variability for larger abundances.
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(b) 5 species

Figure S20. Posterior predictive trajectories simulated by sampling the posterior distributions (summarised in Sec. S3) for 6 different log-normally noise

levels (title of each panel) added to the deterministic curves. The posterior predictive trajectories capture higher (log-normal) noise levels by increasing

the variability for larger abundances.
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(c) 6 species

Figure S21. Posterior predictive trajectories simulated by sampling the posterior distributions (summarized in Sec. S3) for 6 different log-normally noise

levels (title of each panel) added to the deterministic curves. The posterior predictive trajectories capture higher (log-normal) noise levels by increasing

the variability for larger abundances.
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S5. Correlations between posterior marginals for 4 species

Figure S22. Pairs-plot of the marginal posterior distributions for the elements of the interaction matrix, βij for 3 species, and noise level 0.007. The

label on the diagonal of the plot shows the index of the coefficient of βij . In the upper triangular part of the plot, we show the Pearson correlation between

distributions. The numbers above each histogram indicate the indices of the interaction matrix. Note how the condition imposed on the parameters in

order to provide positive, stable, steady-state abundances induces spurious correlations between parameters.
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Figure S23. Pairs-plot of the marginal posterior distributions for the elements of the interaction matrix, βij for 4 species, and noise level 0.003. The

label on the diagonal of the plot shows the index of the coefficient of βij . In the upper triangular part of the plot, we show the Pearson correlation between

distributions. The numbers above each histogram indicate the indices of the interaction matrix. Note how the condition imposed on the parameters in

order to provide positive, stable, steady-state abundances induces spurious correlations between parameters.
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S6. An example of MBAM for parameters giving periodic solutions
In Fig. S24, we show the initial and final model after applying the MBAM algorithm. The sequence provided by MBAM is
as follows:

β33 → 0, β22 → 0, β23 → 0, and β31 → 0.

Further elimination provides inaccurate fitting of x3 as shown in the figure.

Figure S24. Comparison of a system entailing periodic oscillations (see parameters in Table S1) after (A) 4 MBAM and (B) 5 MBAM steps (solid lines).

The symbols represent the original deterministic trajectories. Note how removing the 5th parameter fails to describe x3 accurately.
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S7. Identifiability vs Sloppiness
As shown in Ref. [2], sloppiness and identifiability (practical or structural) are different concepts. The former relates to
parameter meaning constrained to the information in the data, and the latter to the ability to assign a unique value to each
model parameter.

In Ref. [1], the authors proved structural identifiability and illustrated that fitting relative abundances also provided
practical identifiability. However, there is a caveat in their analysis: the priors used to make the Bayesian inference in that
work were constrained to be between uniformly distributed 0.6 and 1.4 times the original ones, so the change in sign has
probability 0.

To illustrate this, we applied MBAM to the same data parameters as in [1], which allowed us to eliminate 4 parameters
while the fitting of the model is still accurate, as shown in Fig. S25. In Table S1 we collect the parameters used in the
simulation. The sequence of parameters eliminated by MBAM is:

β33 → 0, β21 → 0, r3 → 0, and β23 → 0,

but removing an additional one (β22 → 0) fails to fit the model. This is insightful because it manifests that priors must be
uninformative enough and that identifiability does not guarantee a lack of sloppiness and the ability to explain the data
with a simpler model.

Figure S25. Comparison of exact simulation (symbols) of gLV model for 3 species using the same parameters as in Ref. [1] and the reduced model after

4 MBAM steps (lines). Note how, even though the model is identifiable, MBAM still purges 4 parameters while preserving the structure and idiosyncrasies

of the data.
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S8. The problem of forecasting with overparametrized models
In this section, we show that fitting data for different times does not necessarily solve the problem of interpretability and
sloppiness of gLV-like models. Specifically, longer time series can only help if they add more effective information than that
already implicit in the shorter series. It is only through more relevant information that we can determine more parameters.
But if extending the time series ends in a steady state, for instance, then it doesn’t matter how many new points we add to
the time series—it doesn’t improve prediction.

To illustrate this, in Fig. S26, we show an example with N = 6 species. In Fig. S26(A), we show how the full gLV (with
42) parameters and a reduced version where we have eliminated 12 fit the data accurately for times t <= 3 where they have
been fitted, but both predict poorly and even the full model extrapolates worse for longer times, as shown in Fig. S26(B).
So, not only is the interpretability of the interactions not attainable, but more complex models also perform worse for
out-of-sample data.

(A) (B)

Figure S26. Time series obtained from a gLV model with N = 6 species. (A) Abundances of the species as obtained from the exact model (dotted

lines), the fit to the bullet points (obtained from the exact data by adding a small amount of noise) of the full model with 42 parameters (dashed lines),

and the fit to a reduced model with 30 (out of 42) non-zero parameters (full lines). (B) Difference between the abundances predicted by both fitted models

(full and reduced) and the exact abundances. The vertical dotted line marks the end of the fitted data. Beyond this point, the curves are forecasting. This

figure illustrates the impossibility of long-term forecasting these time series. As time passes beyond the available data, both models start forecasting

poorly—the worse the longer the time.

To test this, in Fig. S27, we demonstrate why we claim that inferring parameters is doomed. The main message is that
we can remove the same number of parameters, but the removed parameters in both models are different (shown in red).
In particular, for shorter times, the removed parameters are

r2, β12, β22, β25, β32, β42, β52, β54, β61, β62, β65, β66,

and for longer,
r2, β16, β25, β26, β36, β46, β52, β54, β56, β62, β64, β66,

where those in red are missing in the other scenario. This removal procedure is computationally expensive, so for N = 6

we have stopped at 12 removed parameters, but extending the series does not have any effect in this case. As said above,
if the longer times contain additional or richer features, we agree that there will be more relevant parameters, but this is
precisely our overarching point: With poor data, you have poor estimates and ecological data is typically not rich enough
(except, as suggested by Reviewer 1, the dynamics is chaotic and the whole series is contingent).

Finally, note that the time series we use are almost noiseless, so using noisier data will provide much more different
estimations of the parameters, so their interpretation in microscopic terms is meaningless (as the higher experimental
errors will accommodate higher variability in the set of parameters that provide curves that are close to the data).
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(A) (B)

Figure S27. Extending the fitting time changes the interpretation of the inferred parameters. (A) Data generated (symbols) with the same (42) parameters

as in Fig. S26 but extending the data until t= 6 and comparison with the fitting to a reduced model with just 30 parameters (solid lines). The agreement

is excellent, considering the reduced model has 12 fewer parameters. (B) We compare the parameters of both reduced models (the ones fitted up to

t= 3 and t= 6, respectively). The solid line is a reference line with slope 1. The dashed lines are a guide to the eye to identify those parameters that

are, indeed, 0 in the reduced model obtained by fitting to times up to t= 3 and t= 6. The removed parameters in both models are different (shown in

red). The fact that they lie on the lines and not on the origin shows that both sets of zero parameters are not identical.
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