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Editors’ Suggestion

Microbial populations hardly ever grow logistically and never sublinearly
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We investigate the growth dynamics of microbial populations, challenging the conventional logistic model.
By analyzing empirical data from various biomes, we demonstrate that microbial growth is better described
by a generalized logistic model, the θ -logistic model. This accounts for different growth mechanisms and
environmental fluctuations, leading to a generalized gamma distribution of abundance fluctuations. Our findings
reveal that microbial growth is never sublinear, so they cannot endorse—at least in the microbial world—the
recent proposal of this mechanism as a stability enhancer of highly diverse communities. These results have
significant implications for understanding macroecological patterns and the stability of microbial ecosystems.
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I. INTRODUCTION

Ever since Verhulst proposed it in 1838 [1], the logistic
growth equation has become a standard in modeling popula-
tions in ecology—so much so that it has become a common
default assumption when devising any population framework.
Its rationale is simple—the per capita growth is assumed to be
proportional to the fraction of resources left by the rest of the
population. However, in Murray’s words [2], the logistic equa-
tion “is more like a metaphor for a class of population models
with density-dependent regulatory mechanisms ... and must
not be taken too literally.” In fact, it is not difficult to figure out
mechanistic benchmarks leading to other types of density-
dependent growth [3,4]. Tumors, for instance, are better mod-
eled with a Gompertz’s law than with a logistic model [5,6].

Whether population growth is logistic or not may have
important consequences for ecological communities. For in-
stance, in a recent work, Hatton et al. [7] show that a sublinear
growth (a growth scaling with biomass x as xμ, with 0 < μ <

1) might resolve the longstanding stability-diversity contro-
versy [8,9]. Even though this result has been contested [10],
there is no doubt that the growth law may influence important
aspects of ecological communities. Furthermore, empirical
evidence accumulated over decades [11,12] suggests that the
growth laws governing populations of birds, mammals, fish,
and insects are indeed heterogeneous.

The question becomes particularly relevant for microbial
communities because simple mechanisms of cellular growth
that consider both excluded volume and cell diffusion [3]
generate effective growth laws other than the logistic model.
Until the arrival of metagenomics, determining how micro-
bial populations grow was out of the question. At present
though, the unprecedented amount of available data [13–15]
renders the problem amenable to analysis. Whether or not
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microbial populations grow logistically can be crucial to ex-
plain macroecological patterns observed in these communities
[16–23] because some of them seem to depend critically on
the logistic assumption [16].

In this work we will show (i) that the microbial growth in
several real biomes [24] is better described by a generalization
of the logistic model; (ii) that it does affect the emergent
macroecological patterns; (iii) that, in spite of this, the pro-
posed explanation for these patterns [16] can be "saved"
if properly stated; and (iv) that microbial growth is never
sublinear—discarding any alleged benefit on the stability of
microbial communities [7,10].

II. GENERALIZED GROWTH MODEL FOR MICROBES

A generalization of the logistic model that covers a wealth
of different growth mechanisms is the θ -logistic model [25],
defined by the equation

ẋ = x

τθ

[
1 −

(
x

K

)θ
]
, (1)

where x represents the population of a species (also referred
to as abundance, or density of individuals), τ is its intrinsic
growth time, and K is the carrying capacity. The parameter
θ governs the dependence of the per capita growth rate with
the abundance. The exponent θ encapsulates the effect of the
different growth processes [3,4]. A value θ > 0 describes a
linear growth for small abundances (ẋ ∝ x)—with θ = 1 rep-
resenting the logistic model—whereas −1 < θ < 0 describes
a sublinear growth (ẋ ∝ x1−|θ |). The transition from θ > 0 to
θ < 0 is smooth because in the limit θ → 0 the equation re-
covers Gompertz’s model [26]

ẋ = − x

τ
log

(
x

K

)
, (2)

commonly employed to describe tumor growth [5,6].
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FIG. 1. (a) Generalized gamma corresponding to the abundance fluctuation distribution P(x), Eq. (7), for several values of θ (indicated
by the colorbar). (b) Realizations of the SθLM (3) for θ = −2.5, −2, −1.5, 1.5, 2, 2.5, were obtained using an Euler-Maruyama integration
scheme [27] with initial condition x(0) = 0.1 and integration time-step �t = 10−3. The black dotted line signals the value of the carrying
capacity K , while the gray dot-dashed line provides the solution of Eq. (2) (corresponding to Gompertz’s limit θ → 0). (c) Graphical
representation of log P̄(z) [c.f. Eq. (16)], i.e., the logarithm of the abundance fluctuation distribution expressed as a function of the standardized
abundance z [c.f. Eq. (10)], for several values of θ . The black dots portray the fit to the biomes of inset (d), where we illustrate log P̄(z) for nine
real biomes: seawater, soil, sludge, oral1, gut1, gut2, glacier, river, and lake [24]. All plots have been performed with τ = 0.1, K = 1, w = 0.5.

However, real biomes are subject to environmental
changes. The rapid fluctuations they cause in species abun-
dance calls for a stochastic modeling [16,18,28,29]. This is
achieved by adding a noise term to the θ -logistic model (1).
Analysis of the abundance fluctuations in empirical data sug-
gests introducing a multiplicative noise proportional to x, as
in Grilli’s stochastic logistic model (SLM) [16,18,30,31] (see
[32], Fig. S1). The result is the stochastic θ -logistic model
(SθLM) [4], defined by the Langevin equation

ẋ = x

τθ

[
1 −

(
x

K

)θ
]

+ xξ (t ), (3)

where ξ (t ) is a zero-mean, Gaussian, white noise such that
〈ξ (t )ξ (t ′)〉 = wδ(t − t ′), w being the noise variance. Fig-
ure 1(b) illustrates typical realizations of the SθLM for
different values of θ (θ = 1 reproduces the SLM).

Equation (3) describes the intrinsic stochastic dynamics of
the abundance of different microbial taxa, each of which is
expected to be described by specific parameters. For the sake
of clarity though, no taxonomic identity is explicitly included
in the equation.

III. ABUNDANCE FLUCTUATION DISTRIBUTION

The probability distribution of the SθLM (3) in the steady
state (the so-called abundance fluctuation distribution, AFD)
can be readily obtained through its associated Fokker-Planck
equation Pt + Jx = 0, where

J ≡ x

τθ

[
1 −

(
x

K

)θ
]

P − w

2

∂

∂x
(x2P). (4)

In the steady state, the current is constant. This constant is zero
because of the boundary conditions P(0) = P(x → ∞) = 0,
so we can find the stationary probability P(x) as the solution
of

x

τθ

[
1 −

(
x

K

)θ
]

P = w

2
(x2P)′. (5)

Denoting q(x) = x2P(x), this equation becomes

(log q)′ = α

(
1

x
− xθ−1

Kθ

)
, α ≡ 2

wτθ
, (6)

hence

P(x) = xα−2

Z
exp

[
−α

θ

(
x

K

)θ
]
, (7)

where

Z =
∫ ∞

0
xα−2exp

[
−α

θ

(
x

K

)θ
]

dx

=
(

θ

α

)β Kα−1

|θ | 
(β ), β ≡ α − 1

θ
. (8)

It is important to notice that β > 0 for any θ < 0, as well as
for any 0 < θ < 2/wτ .

Probability density (7)—whose shape for different values
of θ is illustrated in Fig. 1—describes how the abundance of a
species fluctuates as a consequence of environmental noise. In
the context of macroecology [33,34] this is one of the patterns
that characterize microbial communities. As a matter of fact,
it has been recently proposed that this AFD has the shape
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of a gamma distribution [16], which corresponds to the case
θ = 1 (logistic growth). Instead, when θ 	= 1, the AFD (7) has
the shape of the generalized gamma distribution [4], whose
moments are given by

〈xn〉 = Kn

(
θ

α

) n
θ 


(
β + n

θ

)

(β )

. (9)

A generalized gamma is a versatile distribution. Apart
from recovering the gamma distribution for θ = 1, it can also
adopt other familiar shapes for different parameter choices.
For instance, it can be a stretched exponential (α = 2), an
ordinary exponential (α = 2, θ = 1), a (positive) half-normal
(α = θ = 2), or a Weibull (α = θ ). In the limit θ → 0 it be-
comes a lognormal (see Appendix A). Furthermore, for θ < 0
it abruptly drops to zero for small x whereas it decays as a
power law for large x.

As the gamma shape of the AFD is an empirically well-
established macroecological pattern in microbial communities
[16,21–23], the previous result seems to rule out any other
growth mechanism but the logistic one. Before we jump to
a wrong conclusion though, let us notice that all empirical
analyses of the AFD of microbial species use the standardized
variable

z = log x − 〈log x〉√
Var(log x)

, (10)

so it is P̄(z), the probability density of this standard variable z
that we need to use for comparison.

In order to obtain P̄(z) let us introduce the intermediate
variable

u = log

(
α

θ

)
+ θ log

(
x

K

)
, (11)

whose probability density relates to (7) through P̃(u) =
P(x)|dx/du| = P(x)x/|θ |. Thus,

P̃(u) = 1


(β )
exp [βu − eu]. (12)

We can now relate u to z by noticing that

u − 〈u〉√
Var(u)

= εz,

where ε ≡ sign(θ ). In order to calculate 〈u〉 and Var(u) we use
the identity


(β ) =
∫ ∞

−∞
exp [βu − eu] du, (13)

in terms of which

〈u〉 = ∂

∂β
log 
(β ) = ψ (β ), (14)

Var(u) = ∂2

∂β2
log 
(β ) = ψ ′(β ), (15)

where ψ (x) denotes the digamma function [35]. Thus, as
P̄(z) = P̃(u)

√
ψ ′(β ), we conclude that P̄(z) takes the form of

an exp-gamma distribution, namely

P̄(z) =
√

ψ ′(β )


(β )
exp [βu − eu],

u ≡ ψ (β ) + ε
√

ψ ′(β )z. (16)

This distribution is depicted in Fig. 1(c) for different choices
of θ . Figure 1(d) also shows good agreement with empirical
AFDs.

Two remarkable features of distribution (16) are worth
noticing: first of all, it is independent of K , and second, except
for the sign of θ it depends on the rest of the parameters (τw

and θ ) only through the combination β. Hence, the value of
β obtained by fitting P̄(z) to a set of data, can be interpreted
in very different ways—either we assume θ = 1 and use β

to determine τw, or we fix τw and use β to determine θ .
In other words, the fact that (16) is a good description of
empirical AFDs does not rule out a θ -logistic growth. Pre-
vious macroecological patterns are perfectly compatible with
alternative growth laws.

We still have to discuss the dependence on ε = ±1. This
parameter discriminates the two classes of growth at low
abundances: linear (ε = +1) and sublinear (ε = −1). The
skewness coefficient of P̄(z) is (see Appendix B)

γ = 〈z3〉 = εψ ′′(β )

ψ ′(β )3/2
∼ − ε√

β
(β → ∞), (17)

so −ε determines the sign of the skewness of this distri-
bution. Notably, all empirical distributions are negatively
skewed, hence supporting the value ε = +1, i.e., linear
growth [see Fig. 1(c)]. This rules out—for microbes—the
sublinear growth proposed by Hatton et al. [7] as a stability
enhancer of highly diverse communities.

Unfortunately, the same feature that makes P̄(z), when
ε = +1, a universal macroecological pattern for microbial
communities (the dependence through the single parameter
β) renders it useless to discriminate the kind of growth law
followed by the different microbial species. In order to achieve
this goal, we need to fit Eq. (7) directly to the data of microbial
abundances.

IV. BAYESIAN INFERENCE OF THE GROWTH
PARAMETER

Estimates of the parameter θ have been obtained in the past
through least squares fits of the dynamic equation (1) to time
series data [7,12,25,36]. This method has many drawbacks—
such as the poor estimation of derivatives produced by a
finite-difference scheme applied to noisy data, or the under-
lying assumption that the noise follows a normal distribution.
The estimates of θ are thus unreliable. Instead, we took ad-
vantage of the knowledge of P(x) [c.f. Eq. (7)] and performed
a Bayesian inference of the parameter θ [37,38].

Databases of microbiomes do not provide lists of species
abundances. A typical sample is a vector of counts ns =
(n1,s, n2,s, . . . , nS,s), where ni,s is the number of reads at-
tributed to taxon i = 1, . . . , S in sample s. The total number of
reads across all taxa in each sample,

∑
i ni,s = Ns, is referred

to as "sampling effort" or "sampling depth." Thus, we must
add the variability introduced by the sampling process to the
inherent variability of the abundances induced by the dynam-
ics [captured by the distribution (7)]. We can describe this
sampling by a Poisson distribution with mean xi,sNs. There-
fore, the probability to observe ni counts of the ith taxon in the
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given sample s is obtained by marginalizing over xi, namely

P(ni|Ns,�i ) = Nni
s

ni!

∫ ∞

0
dxi P(xi|�i )x

ni
i e−xiNs , (18)

P(x|�) being the generalized gamma distribution (7)—which
for the sake of simplicity we parametrize as in the R package
dgen.gamma, i.e.,

P(x|�) = θaβθxβθ−1


(β )
e−(ax)θ . (19)

Here � denotes the set of parameters β, a, θ , where

a = 1

K

(
α

θ

)1/θ

. (20)

Now, the posterior distribution of parameters �i can be
obtained as

P(�i|Ns, ni ) = P(ni|Ns,�i )P(�i|Ns)

P(ni|Ns)
. (21)

Guided by the maximum entropy principle [37], we use expo-
nential distributions as priors for the parameters:

P(�|Ns) = δβe−δββδae−δaaδθe−δθ θ , (22)

with δβ, δa, δθ > 0 small constants. These priors ensure the
positiveness of these parameters but are otherwise quite ag-
nostic with respect to what their values are.

The method just described produces an estimate of the
value of θ for individual species. However, a comparison of
the estimates for different species suggested that a gamma
distribution

P(θ |ν0, k0) = θν0−1e−θ/k0

kν0
0 
(ν0)

, (23)

for an appropriate choice of the “hyper-parameters” ν0, k0,
might be a reasonable model for the distribution of θ across
species. Accordingly, to estimate this distribution more accu-
rately we adopted a global strategy, inferring the parameters
for all species at once, using a hierarchical Bayesian model
[37]. In a hierarchical Bayesian inference, the values of the
parameter for the different species are assumed to arise from
some underlying probability distribution, and it is the (hy-
per)parameters of this distribution that are inferred.

More formally, we calculate the global posterior

P(�|Ns, n) = P(n|Ns�)P(�|Ns)

P(n|Ns)
, (24)

where n is the vector of counts of all species, and � denotes
the set of parameters of all species plus the hyperparameters
ν0, k0. Then we choose the prior

P(�|Ns) =
[

S∏
i=1

δβδae−δββi−δaai
θ

ν0−1
i e−θi/k0

kν0
0 
(ν0)

]

× δν0δk0 e−δν0 ν0−δk0 k0 , (25)

where we have also used exponential priors for the hyperpa-
rameters.

This hierarchical Bayesian approach not only refines the
estimates but also allows crosslearning among taxa, enhanc-
ing the overall robustness and accuracy of our parameter

FIG. 2. Marginal posterior distributions for parameters θ , β, and
a [see Eq. (19)] as obtained for a synthetic data set consisting of
S = 4 taxa with θ = 0.5, 1, 1.5, 2, and the same values of β = 2
and a = 0.2. The true parameter values are marked by red lines; the
mean of the posterior predictive distributions [Eq. (26)] by blue lines.
The narrow and peaked posteriors around the true values prove the
identifiability of these parameters using Bayesian inference. Total
number of samples Nc = 15 000, sampling depth Ns = 5000.

estimations while reducing overfitting at the same time. Im-
plementation details can be found in Appendix C.

An important issue related to Bayesian inference is iden-
tifiability. Roughly speaking, we say that a parameter is
identifiable if its posterior distribution is relatively narrow
and peaked. We have conducted a synthetic test to prove that
the parameters of the SθLM can actually be inferred by the
described procedure. Thus, we generated a random sample of
size Nc and fixed sampling depth Ns from a synthetic popu-
lation consisting of S = 4 independent taxa. We then applied
the Bayesian inference method just described, assuming that
abundances follow the generalized gamma distribution (19)
with equal parameters β = 2 and a = 0.2, but different θ

parameters (θ = 0.5, 1, 1.5, 2). Given that there are only four
taxa, the θs are inferred individually—using a prior δθe−δθ θ .
The high reliability in recovering these parameters exhibited
by the method (as illustrated in Fig. 2) is reassuring.

Figure 3 shows the distributions for θ for several biomes
estimated as we have just explained. The gamma functions
plotted in this figure correspond to the inferred maximum
posterior hyperparameters. For comparison, the value θ = 1
(logistic growth) is marked with a dashed vertical line. The
figure reveals that logistic growth is hardly the most probable
growth law among microbes—the values of θ ranging from
nearly zero to θ ≈ 5.
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FIG. 3. Gamma distributions of θ across species for several
biomes as obtained from the estimated maximum posterior hyper-
parameters. Dashed blue lines mark the value θ = 1 corresponding
to logistic growth. For computational limitations, in making this
figure we only included species appearing in more than 95% of the
samples.

To assess the quality of our Bayesian inference, we
checked that the outcome of the posterior predictive agrees
well with the AFD of individual species (see [32], Figs. S6
and S7). Posteriors predictive are obtained as

P(ñ|Ns, n) =
∫

P(ñ|Ns,�)P(�|Ns, n) d�, (26)

where the integral covers the whole parameter space. These
distributions can be sampled by Monte Carlo simulations if
we interpret the integral above as the average of the likelihood
P(ñ|Ns,�) over the posterior distribution P(�|Ns, n).

We can illustrate the accuracy of this posterior predictive
by comparing averages [Fig. 4(a)] and variances [Fig. 4(b)],
as obtained from (26) and from empirical data. As a reference,
the insets in these figures provide the results obtained assum-
ing that the AFD follows a gamma distribution (as derived
from the logistic, θ = 1, growth).

As a final test, we computed the distribution of the logarith-
mic fold-change λ = log(xs+1/xs) of two consecutive samples
(xs and xs+1) of the abundance of a given species. This distri-
bution has been proposed as another macroecological pattern
and has been the focus of interest of several recent studies
[17,20,39,40]. It is straightforward to derive it from the AFD
provided the two samples are sufficiently uncorrelated. The
result is (see Appendix D)

P(λ) = |θ |
(2β )


(β )2

[
2cosh

(
θλ

2

)]−2β

∼ |θ |
(2β )


(β )2
e−β|θλ| (|λ| → ∞). (27)

Interestingly, this is the distribution reported for λ when it
is averaged across all samples and taxons [17]. In Fig. 5 we
compare P(λ) as obtained from the inferred parameters with
the empirical one. For each taxon, we calculate the maximum
a posteriori estimate (the mode of the posterior distributions)
and the 95% confidence interval. A more thorough compari-
son can be found in [32], Figs. S8 and S9.

V. DISCUSSION

We conclude from our previous analyses that there is
sufficient evidence to rule out logistic growth among mi-
crobes in favor of more sophisticated mechanisms, in line
with previous evidence obtained from birds, mammals, fish,
and insects [11,12]. Deviations from the logistic growth can
originate in excluded volume effects [3], collective behavior
(cooperation or competition) of bacteria [4], difficult access
to external resources of microbes living at the interior of a
colony, a combination of diffusion and environmental noise in
metapopulations [41], or any other complex dynamics. This
fact brings about a crucial change in an important macroe-
cological pattern: the AFD takes the form of a generalized
gamma distribution instead of the gamma shape that had been
claimed so far [16,21–23]. This does not mean that previous
analyses were incorrect, because all of them were performed
using the variable z [c.f. Eq. (10)]. As we have shown in this

(a) (b)

FIG. 4. Plot of (a) the abundance average; and (b) the variance for different biomes [24], as obtained from Eq. (9) with the inferred
parameters, vs their corresponding empirical values. Dots provide a coarse-grained visualization of these magnitudes, with error bars
intentionally left aside for the sake of clarity (see [32], Figs. S2–S5). Insets show the same test applied to the SLM (with logistic growth). Its
tendency to overestimate both magnitudes across most of the population enforces the conclusion that microbes rarely grow logistically.

044404-5



CAMACHO-MATEU, LAMPO, CASTRO, AND CUESTA PHYSICAL REVIEW E 111, 044404 (2025)

FIG. 5. Logarithmic fold-change (see main text) distribution (27)
for four randomly chosen species of the gut1 microbiome [24]. Lines
are the inferred distributions; orange regions span 95% confidence
intervals for each λ value; dots are obtained from empirical data. The
good agreement assesses the accuracy of the AFD in reproducing the
data. (In cross-sectional data, where autocorrelations are negligible,
this distribution follows from the AFD; see Appendix D.)

paper, in terms of this variable all generalized gammas fall
into two distinct patterns that are otherwise indistinguishable.
This is the reason why previous research has misinterpreted
the shape of the AFD as a gamma distribution. Interestingly,
all microbes seem to fall into just one of the two patterns. This
rules out the possibility of sublinear growth, and therefore of a
possible mechanism to enhance the stability of highly diverse
ecosystems [7]. Thus, whether this is a plausible mechanism
or just an artifact as it has been recently argued [10], is a
controversy that has no relevance for microbial communities.

Our findings impact another common macroecological pat-
tern: Taylor’s law. It has been argued [16] that the variance
and the mean across microbial species are related by the
power law σ 2

x ∝ 〈x〉2. In a previous work [22] we showed
that interactions introduce significant variability, albeit this
law represents a general trend. Different growing mechanisms
introduce an extra source of variability. As a matter of fact,
given the expression (9) for the moments of the AFD, the
ratio σ 2

x /〈x〉2 depends on θ , and this contributes an additional
source of variability to Taylor’s law. How much of the vari-
ability observed in empirical data is due to this effect or to
the existence of interactions is a question that deserves to be
explored.

We have performed our analysis on the available micro-
bial datasets as if species were isolated from each other.
We are aware that the presence of interactions might impact
the growing behavior of each species and provide an alter-
native explanation for the nonlogistic growth, and it is not
unreasonable to argue that the parameter θ could be an ef-
fective proxy for those interactions. Addressing this question

theoretically is problematic because inferring interactions is
already a complex problem by itself [23,42,43]. Accordingly,
the best approach to decide on the growth behavior of mi-
crobes would be to carry out specific experiments to determine
how populations of different microbial species grow in isola-
tion from the rest of the species—as opposed to how they do
within their communities.

We cannot resist adding a few thoughts on the problem of
the stability of highly diverse microbial communities. Having
ruled out the alleged mechanism based on a sublinear growth,
and taking into account different alternatives proposed in the
literature [44–49], as well as recent theoretical speculations on
microbial ecosystems [50], we advocate for the spatial distri-
bution as the most plausible mechanism favoring the increase
of diversity observed in microbiomes. A spatial distribution of
microbes can be regarded as a metacommunity, where many
smaller communities coexist. Their small size reduces com-
petition, and the distribution of species across them enhances
biodiversity [49,50]. Whether this can be proved to be a valid
mechanism, theoretically and empirically, is a very interesting
open problem.

We would like to finish with a word of caution. In line
with Murray’s remark on the logistic equation, and despite the
analyses we have presented here, we do not think that Eq. (3)
should be taken too literally either. The equation is nothing
but an effective description of microbial dynamics that is
more accurate than the simple logistic law. This means that
we should not worry too much about attributing a biological
meaning to the parameter θ . As we have already mentioned,
an effective θ -logistic growth might be a consequence of
excluded volume [3], collective behavior [4], different ac-
cess to external resources, or spatial diffusion in the face of
heterogeneous growth in metapopulations [41]. It might also
arise as a consequence of interactions—although this deserves
further scrutiny. As a matter of fact, previous works reveal that
interactions are not incompatible with the kind of fluctuations
observed in empirical data [23].

Microbial models are no more—but not less—than useful
tools to describe real ecosystems. They nonetheless provide
valuable insights about bacterial interactions and spatial or-
ganization, so we hope that this work helps trigger new
experiments beyond the recollection of species abundances.
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APPENDIX A: THE GOMPERTZ LIMIT

We shall derive this limit from Eq. (16). When θ → 0
we have β → ∞. In this limit we can use the asymptotic
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expansions

log 
(β ) =
(

β − 1

2

)
− β + log

(√
2π

) + o(1), (A1)

ψ (β ) = log β − 1

2β
+ o(β−1), (A2)

ψ ′(β ) = 1

β
+ 1

2β2
+ o(β−2), (A3)

from which u and eu become

u = log β + εz

β1/2
− 1

2β
+ o(β−1),

eu = β exp

[
− 1

2β
+ εz

β1/2
+ o(β−1)

]
(A4)

= β − 1

2
+ εβ1/2z + z2

2
+ o(1).

Therefore,

log P̄(z) = − log(
√

2π ) + z2

2
+ o(1), (A5)

the equation of a lognormal distribution.

APPENDIX B: SKEWNESS OF THE EXP-GAMMA
DISTRIBUTION

Given that 〈z〉 = 0 and Var(z) = 1, the skewness coeffi-
cient of P̄(z) can be obtained as

γ = 〈z3〉 =
√

ψ ′(β )


(β )

∫ ∞

−∞
z3 exp[βu − eu] dz. (B1)

In terms of the variable u = ψ (β ) + ε
√

ψ ′(β )z,

γ = ε

ψ ′(β )3/2
(β )

∫ ∞

−∞
[u − ψ (β )]3 exp[βu − eu] du. (B2)

Finally, since [cf. Eq. (13)]∫ ∞

−∞
uk exp[βu − eu] du = ∂k�

∂βk
= 
(k)(β ), (B3)

then

γ = ε

ψ ′(β )3/2

[

′′′(β )


(β )
− 3ψ (β )


′′(β )


(β )
+ 2ψ (β )3

]

= εψ ′′(β )

ψ ′(β )3/2
. (B4)

APPENDIX C: BAYESIAN INFERENCE
IMPLEMENTATION

Bayesian inference was performed in R using JAGS, a soft-
ware for analysis of Bayesian graphical models using Gibbs
sampling [38]. JAGS is a very intuitive software that allows
chaining distributions of different parameters that depend on
each other, so it does not require us to know a closed ex-
pression for the likelihood (18). Figure 6 is a pseudocode of

FIG. 6. JAGS pseudocode for the hierarchical Bayesian infer-
ence described in Sec. IV.

the JAGS algorithm employed in the hierarchical Bayesian
inference described in Sec. IV.

APPENDIX D: LOG-FOLD CHANGE DISTRIBUTION

The log-fold change λ = log(xs+1/xs) is a frequently em-
ployed metric to measure these fluctuations in microbial
abundances around a stationary state [17,39]. In its definition,
xs and xs+1 denote the abundances of a taxon at consecutive
samples. In our study, focused on cross-sectional data, the
samples are collected from various communities: thus, s and
s + 1 merely label different samples. Thus, the so-called log-
fold change distribution (LFD) is a result of the AFD. In order
to show this, we used the variable u defined by Eq. (11), in
terms of which

λ = 1

θ
(us+1 − us). (D1)

Coming from two different samples, us and us+1 are in-
dependent random variables with probability density (12).
Therefore,

P(λ) =
∫ ∞

−∞
du P̃(u)

∫ ∞

−∞
du′ P̃(u′)δ

(
λ − u′ − u

θ

)

= |θ |
∫ ∞

−∞
P̃(u)P̃(u + θλ) du

= |θ |eβθλ


(β )2

∫ ∞

−∞
exp[2βu − (1 + eθλ)eu] du.

Changing to the variable t = (1 + eθλ)eu,

P(λ) = |θ |

(β )2

(
eθλ/2

1 + eθλ

)2β ∫ ∞

0
t2β−1e−t dt, (D2)

which immediately yields (27).
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FIG. S1. The mean absolute difference between abundances at successive time points suggests that environ-
mental linear noise is the main source of stochasticity. Microbial communities may be subjected by a myriad of noisy
processes. In order to decide what is the main source of stochasticity we analyzed the differences between abundances at
successive time points. Grey points in the background reflects the whole variability in the data sets, while the color points are a
(binning) average. The figure illustrates that a model incorporating linear noise ∝ x most accurately reflects the experimental
data.
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FIG. S2. Predicted average abundance over posterior samples using the SθLM for the biome species vs. empirical
ones. Dots provide a coarse-grained visualization of the average with error bars displaying the variability within groups. For
all biomes the posterior samples correctly predicts the mean abundance.
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FIG. S3. Predicted average abundance over posterior samples using the SLM for the biome species vs. empirical
ones. Dots provide a coarse-grained visualization of the average with error bars displaying the variability within groups. For
all biomes the posterior samples tends to understimate the mean abundance, specially for low abundances.
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ical ones. Dots provide a coarse-grained visualization of the average with error bars displaying the variability within groups.
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FIG. S5. Predicted abundance variance over posterior samples using the SLM for the biome species vs. empirical
ones. Dots provide a coarse-grained visualization of the average with error bars displaying the variability within groups. For
all biomes the posterior samples tends to understimate the abundance variance, specially for low abundances.
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FIG. S8. Log-fold change distribution (LFD) as a consistency test for Bayesian estimates of the Gut1 dataset.
This figure illustrates the log-fold change distribution for several randomly selected taxa, comparing empirical data (colored
points) with predictions made using maximum a posteriori estimates from Eq. (27) of the main text (blue lines). The results
demonstrate that the Bayesian approach accurately captures the LFD, with most empirical data points falling within the
predicted confidence intervals, thereby validating the model.
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FIG. S9. LFD as a consistency test for Bayesian estimates of the Seawater dataset. Same as Fig. S8 using the
Seawater biome database.


