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Abstract

One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among

cooperators in the most stringent form of social dilemma, namely the prisoner’s dilemma (PD). Specifically, for a group of players that

collect payoffs by playing a pairwise PD game with their partners, we consider an external entity that distributes a fixed reward equally

among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward

despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor

reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including

the traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a

complete classification of the equilibria of the n-player game as well as of its evolutionary dynamics.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Selfish behavior seems to be one of the consequences of
evolutionary dynamics. Genes, organisms, generic entities
acting in their own benefit do better in a struggle for
reproductive (understood in a wide sense) success and are
selected in the long term. In spite of this general trend, we
find in every evolutionary context (be it biological, socio-
logical, economic, etc.) many instances in which coopera-
tive behaviors are evolutionarily successful. The
explanation of this puzzle has developed into an active
line of research, and providing a complete answer to it is
one of the big open problems of XXI century (Pennisi,
2005). Many mechanisms have been identified as respon-

sible for these cooperative associations. Among them we
find kinship (Hamilton, 1964a, b), reciprocity (Axelrod and
Hamilton, 1981), reputation gain (Nowak and Sigmund,
1998), and others (Axelrod, 1984; Nowak, 2006). One of
the most interesting mechanisms of this kind that has been
identified is altruistic punishment and rewarding (Sigmund
et al., 2001) or voluntary participation (Hauert et al.,
2007). Through this mechanism social groups that are
engaged in social dilemmas, such as the one represented by
the public goods game, can overcome the well-known
tragedy of the commons (Hardin, 1968).
The rewarding mechanisms just mentioned are of the

bottom-up type, i.e., they arise at the individual level and
lead to cooperation at the group level. However, in
ecological and social contexts, there are several levels of
organization which make possible top-down approaches.
For instance, parents, educators, governments, and other
institutions promote prosocial behavior by rewarding
individuals in different manners (prizes, incentives, tax
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deductions, etc.). In biological or ecological contexts, some
species reward symbionts that cooperate at the required
level by providing them with more resources (see Kiers
et al., 2003 and references therein). Companies also use
similar mechanisms in their own benefit to induce
customers to supply useful information about consumption
habits or social networks (Iribarren and Moro, 2007).
Finally, another instance of top-down rewarding can be
found in team formation of animal societies (Anderson and
Franks, 2001), e.g. in cooperative hunting (Packer and
Ruttan, 1988).

Top-down rewarding mechanisms can be generically
implemented in two different ways. The simplest one is to
provide a fixed benefit to every cooperator. In terms of
game theory, this is tantamount to shifting the payoff
matrix by a constant added to entries related to coopera-
tion. Thus, for instance, if one starts off with a prisoner’s
dilemma (PD) to model the baseline social behavior,
introducing such a reward transforms the dilemma into
another one, either snowdrift (Maynard-Smith and Price,
1973; Sugden, 1986) or stag hunt (Skyrms, 2003), or even
suppresses completely the dilemma, changing it into a
harmony game (Licht, 1999). A second, more subtle
mechanism is to distribute a fixed amount between all
cooperators in the population. In this case, the original PD
becomes a new dilemma, because there is a clear incentive
to cooperate but if there are too many cooperators the
incentive disappears and hence defecting pays. This is
reminiscent of the minority game paradigm (Moro, 2004)
and, in fact, it may be seen as an alternative form of
describing situations in which being in the minority
(understood in a lax sense) is the best option. We will
refer to this situation as the shared reward dilemma.

In this work we study the shared reward dilemma by
considering an interaction group of n individuals. In order
to understand it in the most stringent form of social
dilemma, interaction among individuals follows the PD
(see Doebeli and Hauert, 2005 for a review). Thus, we
introduce a game in which payoffs can be obtained from
two sources: first, all players collect payoffs by playing a n-
player generalization of the PD game with their partners
(Hauert and Szabó, 2003), and second, players who have
chosen to cooperate share an extra payoff coming from a
pool. In the next section we analyze in detail the n-player
game. Situations in which multiple interior equilibria occur
are completely determined, as well as the parametric
settings in which equilibria increase, decrease, or jump
discontinuously with the reward. In Section 3 we analyze
the evolutionary stability of the equilibria discussed in
Section 2 and provide the different asymptotic scenarios of
cooperation according to the replicator dynamics. Section
4 summarizes our conclusions and presents some future
prospects. Appendix A contains the main mathematical
results on which the discussions of previous sections rest: a
theorem and a corollary that provide closed formulae for
the symmetric Nash equilibria in terms of the reward for
finite and large number of players, respectively. To

complete our analysis, we present in Appendix B a theorem
which characterizes all asymmetric Nash equilibria in pure
strategies of the game.

2. The shared reward dilemma

Consider an assembly of n players, each of whom can
choose one out of two actions: cooperate (C) or defect (D)
with the rest of the n� 1 players in a one-shot game (i.e.,
all player’s actions are simultaneously performed). Players
collect payoffs according to a PD game from every one of
the n� 1 opponents. In addition, players who have chosen
to cooperate obtain an extra payoff coming from a fixed
reward r, provided by an external source, that is evenly
distributed among all cooperators.
To provide the strategic form of this game we introduce

some notation. Let k be the number of cooperators in the
group. Payoffs of pairwise interactions are denoted by the
standard parameters of the PD game: a defector that
exploits a cooperator obtains the temptation T, but when
she faces up another defector she receives the punishment
P; instead, the payoff for a cooperator meeting another
cooperator is the reward R (not to be confused with r, the
reward to be shared that we propose in this work), but
obtains the sucker’s payoff S when she confronts a
defector. For the game to be a PD, the payoffs must be
ordered according to T4R4P4S. Since the game is
symmetric, in the sense that the payoff to a particu-
lar player is independent of her label and only depends
on her actions, the total payoff of an arbitrary player is
given by

U ¼
ðk � 1ÞRþ ðn� kÞS þ

r
k

if she cooperates;

kT þ ðn� 1� kÞP if she defects:

8<
: (1)

The remaining of this section is devoted to study the Nash
equilibria of this game.
Let us begin with the symmetric Nash equilibria in pure

strategies, which can be easily obtained from (1). Full
cooperation is an equilibrium if no player increases her
payoff by defecting unilaterally, that is, if and only if
Tðn� 1Þpðn� 1ÞRþ r=n. Similarly, full defection is an
equilibrium if no player increases her payoff by cooperat-
ing unilaterally, i.e., if and only if ðn� 1ÞS þ rpðn� 1ÞP.
The former constraint on r suggests a normalization of the
shared reward, namely

d ¼
r

nðn� 1ÞðT � RÞ
, (2)

which will henceforth be referred to as scaled reward. With
this parameter, the condition for full cooperation to be a
Nash equilibrium is simply dX1. As for the second constraint,
if we introduce a new parameter, the defection ratio

z ¼
T � R

P� S
, (3)
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the condition for full defection to be a Nash equilibrium is
dp1=nz. All the analysis of the game can be performed solely
in terms of these two parameters instead of the five
parameters that originally define the game. As we have
shown, the scaled reward is the ratio between the actual
reward and the reward needed for full cooperation to be a
Nash equilibrium; as for the defection ratio, it compares, in a
pairwise interaction, the excess of payoff a defector gets over a
cooperator when both confront a cooperator, with that when
both face up a defector.

Note that both full defection and full cooperation will
coexist if and only if 1pdp1=nz. Clearly, no reward meets
this condition unless zp1=n. Thus we see that, by
increasing the reward, the symmetric Nash equilibrium in
pure strategies changes from full defection to full coopera-
tion, and in between these two extremes there may be either
coexistence or absence of both equilibria, depending on
whether z is smaller or larger than 1=n, respectively.

The space of symmetric mixed strategies Nash equilibria
consists of all 0pqp1 such that a player cooperates with
probability q and defects with probability 1� q. The
expected total payoffs of an arbitrary cooperator and of an
arbitrary defector when the rest of the players play an
equilibrium q, are given by

f CðqÞ ¼ E½U jshe cooperates� ¼ ðn� 1ÞqRþ ðn� 1Þð1� qÞS

þ rmn�1ðqÞ, ð4Þ

f DðqÞ ¼ E½U jshe defects� ¼ ðn� 1ÞqT þ ðn� 1Þð1� qÞP,

(5)

where mmðqÞ ¼ E½ðSm þ 1Þ�1�, Sm being a binomial random
variable which is the sum of m i.i.d. Bernoulli’s random
variables with mean q. As has been observed by Chao and
Strawderman (1972), mmðqÞ has the expression

mmðqÞ ¼

1 for q ¼ 0;

1� ð1� qÞmþ1

ðmþ 1Þq
for 0oqp1:

8><
>: (6)

Symmetric Nash equilibria in completely mixed strategies
can be computed by solving f CðqÞ ¼ f DðqÞ. To do that, it is
convenient to distinguish when there are more than two
players and when there are just two players involved. The
latter case is particularly simple because it reproduces the
major binary games used in the study of cooperation. The
payoff matrix (Gintis, 2000) of this binary game can be
easily obtained from (1) by setting n ¼ 2, and it is shown in
Table 1. Thus, depending on r, the game becomes a:

(i) prisoner’s dilemma, if T4Rþ r=2 and P4S þ r;
(ii) snowdrift, if T4Rþ r=2 and PoS þ r;
(iii) stag hunt, if ToRþ r=2 and P4S þ r;
(iv) harmony, if ToRþ r=2 and PoS þ r.

The Nash equilibria of these games are well known. Thus,
the snowdrift game has two asymmetric Nash equilibria in
pure strategies, fðC;DÞ; ðD;CÞg, while the stag-hunt game

has two symmetric Nash equilibria, fðC;CÞ; ðD;DÞg. Both
games have a unique Nash equilibrium in mixed strategies
q 2 ð0; 1Þ. Otherwise, the PD and the harmony game have
just one Nash equilibrium (both players defecting and both
cooperating, respectively).
In terms of d and z, the above conditions (i)–(iv) can be

rephrased as

(i0) prisoner’s dilemma if dominð1; 1=2zÞ;
(ii0) snowdrift if 1=2zodo1;
(iii0) stag hunt if 1odo1=2z;
(iv0) harmony if d4maxð1; 1=2zÞ.

In general, our results permit to characterize the changes in
the structure of equilibria by varying d and fixing z.
Therefore, we can study the effect of rising the reward. In
order to illustrate our approach, consider once more the
binary game. Upon increasing d the game changes from PD
to harmony. For z ¼ 1=2 this change occurs directly when
d crosses at 1, but depending on whether z41=2 or zo1=2,
the change occurs via snowdrift or via Stag-hunt,
respectively.
Taking n ¼ 2 in (4) and (5) (hence m1ðqÞ ¼ 1� q=2) and

solving f CðqÞ ¼ f DðqÞ we obtain a unique Nash equilibrium
in mixed strategies 0oqo1 given by

q ¼
1� 2dz

1� ð1þ dÞz
. (7)

If z41=2 (respectively zo1=2) q is a continuous increasing
(respectively, decreasing) function of d. Fig. 1 illustrates
these two scenarios as well as the parametric conditions for
the existence and coexistence of equilibria in pure
strategies. When d lies in between 1 and 1=2z, there is
uncertainty as to the strategy that players will choose: for
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Table 1

Payoff matrix for the binary case of the shared reward dilemma
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Fig. 1. Symmetric Nash equilibria of the binary game as a function of the

scaled reward d for the two types of possible behavior, z41=2 (left) and

zo1=2 (right).
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z41=2, because no symmetric Nash equilibrium in pure
strategies exists when 1=2zodo1; for zo1=2, because
there is coexistence of both full cooperation and full
defection in the range 1odo1=2z. In the former case the
mixed strategies Nash equilibrium that fills the gap has the
expected behavior: the probability of cooperating increases
with the reward; however, in the latter case the behavior of
this Nash equilibrium is counterintuitive, as the probability
of cooperating decreases with the reward. This phenomen-
on can be explained in the framework of evolutionary
dynamics, where the binary game models pairwise interac-
tions between individuals of a large population. In this
context, it is well known that, under the replicator
dynamics, the equilibrium in mixed strategies of the stag
hunt game is unstable and separates the basins of
attraction of the two equilibria in pure strategies (full
defection and full cooperation). We will come back to this
issue in Section 3 in a more general setting, where we study
in detail the replicator dynamics by considering interac-
tions in groups of n individuals.

Let us now analyze the case nX3. Notice that mn�1ðqÞ

defined in (6) is now a nonlinear function of q and thus
there can be more than one solution of f CðqÞ ¼ f DðqÞ.
However, as such solutions are obtained as the intersection
points of a straight line with a strictly convex function,
there can be up to two equilibria in the open interval ð0; 1Þ.
As is proven in Theorem 1 of Appendix A, the number of
equilibria depends only on the values of d and z. Moreover,
the changes on the structure of equilibria when d increases
correspond to three possible scenarios, determined by
zo1=n, 1=npzo1=2 and zX1=2. (Notice that for n ¼ 2 the
middle case is empty, and the other two cases correspond
to those discussed above.) Fig. 2 depicts the typical
structure of equilibria for these three cases.

For the case zX1=2, Theorem 1 shows that there exists a
unique symmetric Nash equilibrium which is a continuous
increasing function of d. It is strictly increasing within
½1=nz; 1� from full defection at d ¼ 1=nz to full cooperation
at d ¼ 1, and constant outside the interval. However, when
zo1=2 we have two nontrivial, different scenarios. One
feature common to both of them is the existence of a range
of rewards, namely maxf1; 1=nzgododc, for which two

symmetric equilibria in mixed strategies coexist. One of
these equilibria increases and the other decreases when the
reward increases within this range. At the critical value dc

these equilibria collapse and a further increase in d yields a
discontinuous jump from a Nash equilibrium with qo1 to
full cooperation. An upper bound for dc is provided in
Theorem 1. The fundamental difference between the cases
zo1=n and 1=nozo1=2 arises in the region
minf1; 1=nzgodomaxf1; 1=nzg, where there exists a unique
equilibrium 0oqo1: for 1=nozo1=2 we see that q

increases with d, while for zo1=n, we see that q decreases
with d, exhibiting the same counterintuitive behavior
reported for the binary case.
A case of particular importance is z ¼ 1, because it

reproduces the cost/benefit parametrization of the PD
game, by letting T ¼ b, R ¼ b� c, P ¼ 0 and S ¼ �c, with
b4c40. For this popular framework, suitable for biolo-
gical applications, our result shows that the equilibrium of
the shared reward dilemma only depends on the fixed
amount r to be shared by the cooperators and on the cost c

of cooperation, but it is independent of the benefit b. An
analogous result is observed in a spatial evolutionary
version of the shared reward dilemma (Jiménez et al.,
2007).
When the number of players n!1, we provide a

simplified asymptotic version of Theorem 1, in Corollary 1
of Appendix A. As in this limit the threshold 1=nz! 0, the
third of the three cases shown in Fig. 2 disappears. Notice
that in order to get 0odo1 in the n!1 limit, we have
to scale the reward with the number of interactions in the
game, nðn� 1Þ. The reason is that the payoffs collected per
player from their pairwise interactions, in the first step of
the game, are OðnÞ, therefore the reward per player must be
of the same order to produce an effect. This makes
r ¼ Oðn2Þ. In that case, the shapes of the first two cases in
Fig. 2 are preserved, with a shift of the threshold 1=nz to 0
(full defection is an equilibrium if and only if r ¼ oðn2Þ).
The critical value of the scaled reward, dc, at which the
equilibrium jumps discontinuously from a value qo1 to
full cooperation when zo1=2, can be exactly computed in
the asymptotic case n!1. As it is proved in Corollary 1,
dc ¼ 1=4zð1� zÞ.
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Fig. 2. Symmetric Nash equilibria of the n-player game ðnX3Þ as a function of d for the three types of possible behavior, z41=2 (left), 1=nozo1=2
(middle), and zo1=n (right).
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The limit case z!þ1 (equivalent to P! Sþ) has also
received special attention in the analysis of PD games on
complex networks (Nowak and May, 1992; Nowak and
Sigmund, 2000; Eguı́luz et al., 2005). Our results show (c.f.
Eq. (A.1)) that a well-defined mixed Nash equilibrium
exists for 0odo1 which monotonically increases with d
from 0 to 1, reaching full cooperation for dX1. In the
n!1 limit, using Corollary 1, we can obtain an estimate
for the equilibrium when P! Sþ, namely the smallest
value between

ffiffiffi
d
p

and 1.
Asymmetric Nash equilibria in pure strategies, in which

part of the players in the group cooperate and the rest
defect, can also be found for this game. For an interval of
rewards starting at 1=nz (the maximum reward for which
full defection is a Nash equilibrium) there exist asymmetric
equilibria with k cooperators and n� k defectors. The
value of k increases stepwise, starting from k ¼ 1, at
reward values 1=nz ¼ d1od2o . . . (see Eq. (B.1)), with
equilibria with k and k þ 1 cooperators coexisting precisely
and only at the separating values dk. For instance, upon
increasing d above 1=nz, the full defection equilibrium is
replaced by one with a single cooperator and n� 1
defectors. In turn, this is the only Nash equilibrium in
pure strategies up d2, where it is replaced by another
equilibrium with two cooperators and n� 2 defectors. The
maximum number of cooperators in asymmetric equilibria
is n� 1 if zX1=2, or else the largest integer kpðn� 1Þ=
2ð1� zÞ if zo1=2. In order to complete the analysis of the
static game, a full characterization of these equilibria is
given by Theorem 2 of Appendix B. There is a particular
aspect of them which we would like to call attention upon:
the fraction of cooperators in the asymmetric Nash
equilibria approaches either the unique or the lowest mixed
strategies Nash equilibrium 0oqo1 in the limit n!1.
As we will see in Section 3, for the study of the replicator
dynamics based on the shared reward dilemma, only the
knowledge of symmetric Nash equilibria is necessary.

3. Evolutionary dynamics

In population dynamics, the evolution of cooperation
can be modeled in several ways. According to the replicator
dynamics (Hofbauer and Sigmund, 1998), the dynamics in
infinitely large populations is described by

dx

dt
¼ xð1� xÞ½f CðxÞ � f DðxÞ�, (8)

xðtÞ being the fraction of cooperators at time t and f CðxÞ

and f DðxÞ the average fitness (which is the evolutionary
counterpart of the concept of payoff) of cooperators and
defectors in the population, respectively. In this paper we
consider the approach presented by Hauert et al. (2006) to
study replicator dynamics based on interaction groups of
individuals. The standard setup to obtain the replicator
equation is to assume a large population of individuals who
randomly select partners to play a two-person game. In this
alternative approach, players select groups of n� 1

individuals and play an n-person game instead. This is an
appropriate approach to study the evolutionary behavior
of populations interacting through Public Goods games
(Hauert et al., 2006), and it is also suitable to study the
evolutionary behavior of the shared reward dilemma.
If the population is well mixed, the number of

cooperators at time t in an interaction group of n

individuals is a binomial random variable with mean
nxðtÞ. Therefore, the average fitnesses at time t are given by
formulae (4) and (5) with q ¼ xðtÞ. Inserting these formulae
in (8) we model the evolution of cooperation when a
reward r is available for each interaction group.
It is clear that x ¼ 0 and 1 are always fixed points of the

replicator equation (8), but there will be further fixed
points at the solutions of f Cðx

�Þ ¼ f Dðx
�Þ in the open

interval (0,1). All of them are the symmetric Nash
equilibria discussed in previous section. By the folk theorem

of evolutionary game theory (Cressman, 2003), the
asymptotic stability of these fixed points will depend on
the sign of f CðxÞ � f DðxÞ. For example, if it is always
positive, x ¼ 0 is unstable whereas x ¼ 1 is stable, and if it
is always negative it is the other way around. The situation
is different if f CðxÞ � f DðxÞ changes sign in the interval
(0,1). By Theorem 1 (see Appendix A), we can determine
how many roots (none, one or two) has f CðxÞ � f DðxÞ in
the open interval ð0; 1Þ. On the other hand, since
f Cð0Þ � f Dð0Þ ¼ nðn� 1ÞðT � RÞðd� 1=nzÞ, then x ¼ 0 is
stable if do1=nz and it is unstable otherwise. Thus, we will
find the following stability patterns, depending on the
number of roots of (A.1) in the interval (0,1):

(I) if do1=nz (in this case there is either none or just one
root),
(a) if there are no roots, x ¼ 0 is a stable and x ¼ 1 an

unstable fixed point;
(b) if there is one root 0ox1o1, then x ¼ 0 is a stable,

x1 an unstable and x ¼ 1 a stable fixed point, with
x1 separating the basins of attraction of x ¼ 0 and
x ¼ 1;

(II) if d41=nz,
(a) if there are no roots, x ¼ 0 is an unstable and x ¼ 1

a stable fixed point;
(b) if there is one root 0ox1o1, then x ¼ 0 is an

unstable, x1 is a stable and x ¼ 1 an unstable fixed
point;

(c) if there are two roots 0ox1ox2o1, then x ¼ 0 is
an unstable, x1 a stable, x2 an unstable and x ¼ 1 a
stable fixed point, and x2 separates the basins of
attraction of x1 and x ¼ 1.

All these situations are illustrated in Fig. 3. Obviously the
structure of fixed points of the replicator equation is the
same as that of the symmetric Nash equilibria described in
the previous section. The only difference is that now x ¼ 0
and 1 are always fixed points. What is really new is the
stability patterns induced by the dynamics. These patterns
are shown in Fig. 3 through flux lines which indicate the
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direction in which the dynamics approaches the stable
equilibria. It is worth noticing that for the two cases with
zo1=2 (middle and right panels of Fig. 3) there is a critical
value of the reward, dc, at which, starting from a zero
fraction of cooperators, the asymptotic cooperation level
jumps discontinuously from a value qo1 to full coopera-
tion. In both of them there is also a region of d in which,
depending on the initial fraction of cooperators, the
outcome may be full cooperation or a smaller fraction of
cooperators. This smaller fraction outcome may even be 0
in the case in which zo1=n. An important consequence is
that, x ¼ 0 being unstable for any d41=nz, for a suitable
reward, a single mutant in an interaction group of defectors
will spread cooperation in the population.

To complete our analysis, we summarize the different
dynamical regimes that can be obtained, by varying d and
z, in Fig. 4. These diagrams illustrate the transitions
between the different evolutionary outcomes: full defec-
tion, coexistence of cooperators and defectors, bi-stabi-
lity—where full defection or full cooperation can be

reached, depending on the initial population—full coop-
eration, and—only for nX3 players—bi-stability between a
mixed population and full cooperation.

4. Conclusions

In this paper we have studied the effect of rewarding
cooperation in a strict social dilemma through the
distribution of a fixed amount among all cooperative
individuals. By adding this payment to the standard
payoffs of the prisoner’s dilemma, cooperators and
defectors in an interaction group confront a dilemma: on
the one hand, individuals may be inclined to choose for
shared reward despite the possibility of being exploited by
defectors; on the other hand, if too many players do that,
cooperators will obtain a poor reward and defectors will
outperform them. In the simplest case with only two
players, we recover the traditional binary games for the
study of cooperation where the social dilemma is relaxed:
stag hunt and snowdrift.

ARTICLE IN PRESS

1

δ

0

1
fr

a
c
ti
o
n
 o

f 
c
o
o
p
e
ra

to
rs

1/nζ

ζ >1/2

1/nζ 1 δc

δ

0

1

fr
a
c
ti
o
n
 o

f 
c
o
o
p
e
ra

to
rs

1/n<ζ<1/2

1 1/nζ δc

δ

0

1

fr
a
c
ti
o
n
 o

f 
c
o
o
p
e
ra

to
rs ζ<1/n

Fig. 3. Equilibria of the replicator equation (8). Solid lines represent the asymptotically stable fixed points, while dashed lines represent the unstable ones.
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n!1 this curve moves toward the lower-left corner, thus shrinking these two regions, which disappear in the strict limit. The other curve of the right

figure corresponds to the value of d at which the two mixed equilibria which are found for zo1=2 coalesce (dc; see text).
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Although intuition suggests that in this game there
should be a threshold value of the reward above which
cooperation increases monotonically up to reaching
saturation, the game exhibits more complex situations.
The equilibrium structure has been characterized for the
static game as well as for an evolutionary version of the
game based on the replicator dynamics. For a wide range
of parameters, scenarios with multiple interior equilibrium
points are obtained, featuring critical values of the reward
at which cooperation jumps discontinuously. Also, coun-
terintuitive behavior where cooperation decreases as the
reward increases may be observed. On the other hand, the
replicator dynamics provides additional stability criteria
for these equilibria. In the light of the stability patterns that
arise, counterintuitive equilibria in the static game,
exhibiting a decrease of cooperation upon increasing
reward, turn out to be unstable equilibria of the dynamics
separating basins of attraction of other stable equilibria.
As a consequence, a most relevant conclusion is that for
many choices of the game parameters and initial condi-
tions, the equilibrium with lower value of the coopera-
tion level is dynamically selected instead of the full
cooperation one.

The results presented in this paper allow for a complete
characterization of the shared reward dilemma in the
following terms. Cooperation does not appear until the
reward increases above the threshold d ¼ minf1; 1=nzg.
Interestingly, for d41=nz, even a single cooperator can
spread cooperation in the population, the more the larger
the reward. This is an important point supporting the
effectiveness of the reward mechanism for promoting the
emergence of cooperation (Jiménez et al., 2007). Subse-
quently, for zX1=2 the fraction of cooperators increases
monotonically until full cooperation is reached for d ¼ 1.
However, and quite unexpectedly, for zo1=2 an interesting
phenomenon is observed: starting with a single cooperator,
full invasion of the population only takes place when the
scaled reward d4dc, for some dc41. This resistance to
cooperation is remarkable because for d41 full coopera-
tion is a stable equilibrium of the dynamics, and agrees
with the dynamical analysis that shows that full coopera-
tion is only reached if the initial fraction of cooperators
is already large. When crossing dc cooperation suddenly
invades. At that point, if we decrease the reward again,
full cooperation persists down to d ¼ 1. A slight decrease
below this point produces an abrupt spread of defection
in the population, which can even be completely invaded
if zp1=n. This hysteresis is typical of critical phenomena,
and it is very striking to find it in a model like this,
where naı̈ve intuition says that the more one rewards
cooperation, the more cooperators should appear. The
general, most important conclusion that can be drawn
from this picture is that the effects of rewarding coopera-
tion are neither trivial nor as straightforward as might
be intuitively expected, and demand a more careful
analysis. The origin of this complexity lies in the dilemma
that the players confront and the impossibility to

know a priori how much reward a player can get by
cooperating.
One important issue for the shared reward dilemma is

where this reward comes from. In Section 1 we have
mentioned situations in biology that can fit the setup of the
shared reward dilemma, as well as mechanisms of direct
rewarding to foster more social behavior. To name just
one, companies have realized the need of searching for
mechanisms that motivate, provide incentives, or encou-
rage cooperative behavior among their employees in order
to contribute to the effective success of the teamwork. This
context leads to another variant that we have not
considered here: the case in which the reward is detracted
from the payoff of all players. This case is particularly
interesting for two reasons: first of all, for the feedback
mechanism that it implies, and secondly, because it models
a common scenario of taxation and subsequent subsidy of
only certain people. Given the complexity of the shared
reward game as we have analyzed it here, the results of this
new scenario are presumed very rich. This tax-subsidy
scenario has already been explored by some of us (Lugo
and Jiménez, 2006) in a spatial evolutionary setup, but
further, more detailed research is needed in view of the
present findings. This issue will be the subject of a
forthcoming work.
In closing, we have shown that rewarding introduces a

new social dilemma. Depending on the parameters, the
game casts the classical scenarios of full defection,
coexistence of cooperators and defectors, bi-stability of
full defection and full cooperation, or full cooperation, as
well as more complex scenarios with two interior mixed
equilibria, where bi-stability between a mixed equilibrium
and full cooperation can occur. In addition, we have seen
that the cooperative response may not be continuous on
the reward, implying that promoting cooperation may
require substantial incentives. We have shown that the
classical (static) analysis of the game requires an evolu-
tionary (dynamic) counterpart: while in the static case the
counter-intuitive phenomenon of the decrease of the
cooperation level upon increasing the reward may occur,
this is never found dynamically; on the other hand, in the
evolutionary framework we observe that very large rewards
may be needed to establish a significant cooperation level,
but once it is established, the reward may be very much
reduced without damage to the cooperative behavior.
Therefore, our general conclusion is that promoting
cooperation through a reward mechanism is far from
trivial, in agreement with the nontrivial behavior found in
many social contexts, and deserves careful consideration
prior to, and during, application.
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Appendix A. Characterization of symmetric Nash equilibria

Theorem 1. Let d ¼ r=nðn� 1ÞðT � RÞ be the scaled reward

of the game and z ¼ ðT � RÞ=ðP� SÞ the defection ratio.
Then, the following three scenarios can be found for the

symmetric Nash equilibria of the shared reward dilemma

with a number of players nX3:

1. For zX1=2,
(i) if dp1=nz, the unique Nash equilibrium is full

defection ðq ¼ 0Þ;
(ii) if 1=nzodp1, the symmetric Nash equilibrium is a

continuous function of d which increases from 0þ to 1,
corresponding to the unique solution on (0,1] of

ðz� 1Þxþ 1� dz
1� ð1� xÞn

x
¼ 0; (A.1)

(iii) if d41 the unique Nash equilibrium is full coopera-

tion (q ¼ 1).
2. For 1=npzo1=2,

(i) if dp1=nz the only Nash equilibrium is full defection;
(ii) if 1=nzodo1 the symmetric Nash equilibrium is a

continuous function of d which increases from 0þ to

some limit smaller than 1, corresponding to the

unique solution on (0,1) of (A.1);
(iii) if dX1 there exists dc41 such that if d4dc the

unique Nash equilibrium is q ¼ 1, whereas if

1pdpdc there are two additional symmetric Nash

equilibria corresponding to the solutions 0oq1

pq2p1 of (A.1) (equality, q1 ¼ q2 holds only for

d ¼ dc). The equilibria q1 and q2 are continuous

monotone functions of d (increasing and decreasing,
respectively) and q2 ¼ 1 when d ¼ 1.

3. For zo1=n,
(i) if do1 the only Nash equilibrium is full defection;
(ii) if 1pdo1=nz the symmetric Nash equilibria are full

defection, full cooperation and the unique solution on

ð0; 1� of (A.1), which is a continuous function of d
which decreases from 1 to some limit greater than 0;

(iii) if dX1=nz there exists dc41=nz such that if d4dc

the unique Nash equilibrium is q ¼ 1, whereas if

1pdpdc there are two additional symmetric Nash

equilibria corresponding to the solutions 0pq1

pq2o1 of (A.1) (equality, q1 ¼ q2 holds only for

d ¼ dc). The equilibria q1 and q2 are continuous

monotone functions of d (increasing and decreasing,
respectively) and q1 ¼ 0 when d ¼ 1=nz.

An upper bound for dc is given by

dcp
1

4z
n

ðn� 1Þ

1þ
2z

n� 1

� �2

1�
n� 2

n� 1
z

� �. (A.2)

Proof. As we discussed in Section 2, full cooperation is a
Nash equilibria iff dX1 and full defection is iff dp1=nz. To
consider the remainder cases, let us define the ‘‘loss
function’’ f : ½0; 1� ! R,

fðxÞ ¼
f DðxÞ � f CðxÞ

ðn� 1ÞðP� SÞ
¼ f1ðxÞ � dzf2ðxÞ, (A.3)

where f1ðxÞ ¼ xðz� 1Þ þ 1 and

f2ðxÞ ¼ nmn�1ð1; xÞ ¼

n for x ¼ 0;

1� ð1� xÞn

x
for 0oxp1:

8<
:

(A.4)

(c.f. Eqs. (4)–(6)). First of all, for d ¼ 0 the only root of the
loss function is at x ¼ 1=ð1� zÞ, which, for any z40, is
outside the interval ½0; 1�. Hence fðxÞ40 for all x 2 ½0; 1�
and the only Nash equilibrium if full defection. Let us
henceforth assume d40. Function f2ðxÞ decreases mono-
tonically with x and, for any n42, is strictly convex within
the interval ½0; 1�; instead, f1ðxÞ is a straight line with
nonnegative or negative slope depending on whether zX1
or zo1, respectively. For reasons that will be clear in a
while, we need to consider separately the cases zX1, zo1=n

and 1=npzo1.
Case zX1: As f1ðxÞ is nondecreasing, the loss function

fðxÞ monotonically increases with x and the only
symmetric Nash equilibrium depends on the signs of
fð0Þ ¼ 1� dzn and fð1Þ ¼ ð1� dÞz.

(i) If dp1=nz we have 0pfð0Þofð1Þ and the unique
Nash equilibrium is full defection. This equilibrium is
strict for do1=nz.

(ii) If 1=nzodo1 we have fð0Þo0 and fð1Þ40, and the
symmetric Nash equilibrium in mixed strategies is the
solution 0oqo1 of (A.1). Note that fðxÞ decreases
with d, thus q increases with d.

(iii) If dX1 we have fð0Þofð1Þp0 and the unique Nash
equilibrium is full cooperation, which is strict for d41.

In the next two cases zo1 and therefore both f1ðxÞ and
f2ðxÞ are decreasing functions of x. As f2ðxÞ is convex, the
situations that can occur are all sketched in Fig. A.1.

Case zo1=n: (i) If do1 then fð0Þ40 and fð1Þ40 and we
have the situation sketched in Fig. A.1(a). The only Nash
equilibrium is full defection.
(ii) If 1pdo1=nz we have fð0Þ40 and fð1Þp0, so the

situation is as sketched in Fig. A.1(b) and therefore there
will be a symmetric equilibrium 0oqp1. Note that q ¼ 1
for d ¼ 1 and decreases as d goes to 1=nz.
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(iii) If 1=nzpd then fð0Þp0 and fð1Þo0. Thus we will
have one of the two situations plotted in Figs. A.1(d) and
(e) depending on the slopes of f1ðxÞ and f2ðxÞ at x ¼ 0 at
the crossover d ¼ 1=nz, where fð0Þ changes sign. If
f01ð0Þ4f02ð0Þ=n the situation will be as illustrated in Fig.
A.1(d), and if f01ð0Þpf02ð0Þ=n it will be as in Fig. A.1(e). In
the former case there will be two Nash equilibria,
0oq1oq2o1, and in the latter the only Nash equilibrium
will be q ¼ 1. As f01ðxÞ ¼ z� 1 and

f02ðxÞ ¼
nxð1� xÞn�1 � 1þ ð1� xÞn

x2
, (A.5)

we have f01ð0Þ ¼ z� 1 and f02ð0Þ ¼ �nðn� 1Þ=2. The
condition f01ð0Þ4f02ð0Þ=n reads z4ð3� nÞ=2, which holds
for any nX3. We thus find two equilibria, 0pq1oq2o1,
which, upon increasing d, approach each other (q1

increases and q2 decreases) up to dc, where they coalesce
in one Nash equilibrium q 2 ð0; 1Þ. Finally, for d4dc the
only Nash equilibrium is full cooperation.

Case 1=npzo1: (i) If do1=nz then fð0Þ40 and fð1Þ40
and we have the situation sketched in Fig. A.1(a). The only
Nash equilibrium is again q ¼ 0.

(ii) If 1=nzpdo1 (this case is empty if z ¼ 1=n) then
fð0Þp0 and fð1Þ40, and we have the situation depicted in
Fig. A.1(c). There is a unique symmetric Nash equilibrium
q 2 ½0; 1Þ determined by (A.1). Also q ¼ 0 for d ¼ 1=nz and
increases as d goes to 1.

(iii) If dX1 then fð0Þp0 and fð1Þp0. In this case
we may have two additional equilibria if the situation of
Fig. A.1(d) occurs, or just one if either d41 and we have
the situation of Fig. A.1(e), or d ¼ 1 and the situation is
like in Fig. A.1(f). The separation between the first case and
the last two cases depends on which scenario, Fig. A.1(d)
or (f), we have at d ¼ 1. This, in turn, depends on the slopes
of f1ðxÞ and f2ðxÞ at x ¼ 1 when d ¼ 1: if f01ð1Þozf02ð1Þ
then we will have Fig. A.1(d), and if f01ð1ÞXzf02ð1Þ we will
have Fig. A.1(f). The former is equivalent to zo1=2, the
latter to zX1=2. So if zX1=2 the only Nash equilibrium is

q ¼ 1, whereas if zo1=2 there will be, for 1pdodc, two
equilibria, 0oq1oq2p1, which coalesce in a single one at
d ¼ dc. For d4dc the only Nash equilibrium is q ¼ 1.
The limiting value dc can be determined as the value of d

at which the curve f1ðxÞ is tangent to dczf2ðxÞ at a point
xc 2 ð0; 1Þ. At this point the two equations

f1ðxcÞ ¼ dczf2ðxcÞ; f01ðxcÞ ¼ dczf
0
2ðxcÞ, (A.6)

hold simultaneously. These two equations can be combined
to yield

dczð1� xÞn ¼ x2
cð1� zÞ � xc þ dcz, (A.7)

½ðn� 1Þ � ðn� 2Þz�x2
c � ðn� 1þ 2zÞxc þ dczn ¼ 0. (A.8)

For xc to exist it is necessary that the second equation has a
solution. The condition for this to happen is

ðn� 1þ 2zÞ2 � 4½ðn� 1Þ � ðn� 2Þz�dcznX0. (A.9)

Since zo1=2 then ðn� 1Þ � ðn� 2Þz40, so the above
equation holds provided

dcp
ðn� 1þ 2zÞ2

4½ðn� 1Þ � ðn� 2Þz�zn
¼

1þ
2z

n� 1

� �2

4z 1�
n� 2

n� 1
z

� � n� 1

n

� �
.

(A.10)

This expresses an upper bound for dc. &

Corollary 1. Consider a sequence frng of rewards such that

rn !1 as n!1 in such a way that

d ¼ lim
n!1

rn

n2ðT � RÞ
, (A.11)

with 0pdo1. Let us define dz ¼ 1=4zð1� zÞ. Then, in the

limit n!1, the Nash equilibria of the shared reward

dilemma are

(i) full defection if d ¼ 0;
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Fig. A.1. Relative situations of f1ðxÞ and dzf2ðxÞ (see text).
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(ii) a unique equilibrium in mixed strategies

q ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d=dz

p
2ð1� zÞ

(A.12)

if 0odo1;
(iii) full cooperation and two equilibria in mixed strategies,

0oq1pq2o1, where q1 is given by (A.12) and

q2 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d=dz

p
2ð1� zÞ

, (A.13)

if 1odpdz and zo1=2 (equality q1 ¼ q2 ¼ 1=2ð1� zÞ
only holds if d ¼ dz), and

(iv) full cooperation otherwise.

Proof. 1. As n!1 only two of the three cases of
Theorem 1 remain, corresponding now to zX1=2 and
0pzo1=2. Besides, Eq. (A.1) becomes the quadratic
equation

ðz� 1Þx2 þ x� dz ¼ 0, (A.14)

whose two solutions are

q1 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4zð1� zÞd

p
2ð1� zÞ

; q2 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4zð1� zÞd

p
2ð1� zÞ

.

(A.15)

Both are real whenever 0pdpdz ¼ 1=4zð1� zÞ. On the
other hand, q1 monotonically increases with d. If zX1=2, q1

runs from 0 to 1 as d moves from 0 to 1; if zo1=2, q1 goes
from 0 to 1=2ð1� zÞ as d goes from 0 to dz. As for q2, the
condition for it to be within the interval ½0; 1� is zp1=2 and
1pdpdz. When z ¼ 1=2 and d ¼ 1 then q2 ¼ q1 ¼ 1. When
zo1=2 then q2 provides a second solution, monotonically
decreasing from 1 down to 1=2ð1� zÞ as d runs from 1 to
dz, where it coalesces with q1.

Finally, for d4dz we have

ðz� 1Þx2 þ x� dz40, (A.16)

so the only Nash equilibrium is full cooperation. &

Appendix B. Characterization of asymmetric Nash

equilibria

Theorem 2. Let d ¼ r=nðn� 1ÞðT � RÞ be the scaled reward

of the game and z ¼ ðT � RÞ=ðP� SÞ the defection ratio. Let

dk ¼ k
n� 1þ ðk � 1Þðz� 1Þ

nðn� 1Þz
; k ¼ 1; 2; . . . ; n� 1. (B.1)

Then a configuration with 1pkpn� 1 cooperators and n� k

defectors will be a Nash equilibrium in pure strategies of the

shared reward dilemma if and only if dkpdpdkþ1 and, when

zo1=2, kpðn� 1Þ=2ð1� zÞ.

Proof. According to (1), in a configuration with k co-
operators and n� k defectors the payoff of a cooperator is

PCðkÞ ¼ ðk � 1ÞRþ ðn� kÞS þ
r
k

(B.2)

and of a defector

PDðkÞ ¼ kT þ ðn� 1� kÞP. (B.3)

For such a configuration to be a Nash equilibrium in pure
strategies two requirements must be met: (i) a cooperator
cannot get higher payoff by defecting, and (ii) a defector
cannot get a higher payoff by cooperating. Condition
(i) amounts to saying that PCðkÞ �PDðk � 1ÞX0, i.e.

ðk � 1ÞðT � RÞ þ ðn� kÞðP� SÞ �
r
k
p0, (B.4)

and condition (ii) amounts to saying that PDðkÞ�

PCðk þ 1ÞX0, i.e.

kðT � RÞ þ ðn� 1� kÞðP� SÞ �
r

k þ 1
p0. (B.5)

By defining the parabola

cðxÞ ¼ x2ðz� 1Þ þ ðn� zÞx� D, (B.6)

where D ¼ r=ðP� SÞ ¼ nðn� 1Þdz, and taking into ac-
count that P� S40, the two conditions above can be
rewritten

cðkÞp0; cðk þ 1ÞX0. (B.7)

In other words, an asymmetric Nash equilibrium in pure
strategies exists if and only if there exists k ¼ 1; 2; . . . ; n� 1
such that (B.7) holds.
The two roots of the parabola (B.6) are

x� ¼
�ðn� zÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 þ 4Dðz� 1Þ

q
2ðz� 1Þ

, (B.8)

so for the discussion to follow we should treat separately
the cases z41, z ¼ 1, and zo1.

Case z41: In this case the parabola is convex, both roots
are real and x�o0 and xþ40. So there will be an
asymmetric Nash equilibrium in pure strategies with k

cooperators if and only if kpxþpk þ 1, i.e.

2kðz� 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 þ 4Dðz� 1Þ

q
� ðn� zÞ

p2ðk þ 1Þðz� 1Þ ðB:9Þ

or equivalently

ð2k � 1Þzþ n� 2kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 þ 4Dðz� 1Þ

q

pð2k þ 1Þzþ n� 2ðk þ 1Þ. ðB:10Þ

As z41 we have ð2k � 1Þzþ n� 2k4n� 140, so all three
terms in (B.10) are positive numbers and can be squared to
obtain, after simplifying,

k½n� k þ ðk � 1Þz�pDpðk þ 1Þðn� k � 1þ kzÞ. (B.11)

Given that D ¼ nðn� 1Þdz, these inequalities can be
rewritten as

dkpdpdkþ1; dk � k
n� 1þ ðk � 1Þðz� 1Þ

nðn� 1Þz
. (B.12)

Notice that if z41 then fdkg forms an increasing sequence
and that d1 ¼ 1=nz and dn ¼ 1.
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Case z ¼ 1: In this case only the root x0 ¼ D=ðn� 1Þ ¼
nd exists, thus the condition kpx0pk þ 1 is equivalent to
(B.12), where, of course, dk ¼ k=n.

Case zo1: The parabola (B.6) is now concave and the
roots can be rewritten

x� ¼
ðn� zÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 � 4Dð1� zÞ

q
2ð1� zÞ

. (B.13)

For them to be real we must have

ðn� zÞ2 � 4Dð1� zÞX0. (B.14)

Suppose this inequality holds; then we have x�40 and
xþox�. For an asymmetric Nash equilibrium with k

cooperators to exist we must have kpxþpk þ 1px�.
The inequalities xþpk þ 1px� are equivalent to

jn� 2k þ ð2k � 1Þzjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 � 4Dð1� zÞ

q
. (B.15)

Squaring again this expression boils down to dpdkþ1. The
inequality kpxþ can be rewrittenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� zÞ2 � 4Dð1� zÞ

q
pn� 2k þ ð2k � 1Þz. (B.16)

No value of D satisfies this inequality unless the right-hand-
side is nonnegative; in other words, unless

kp
n� z

2ð1� zÞ
. (B.17)

Assuming (B.17) holds we can square and simplify once
more to get dXdk.

But there is one last remark to make: dkpdpdkþ1 is
empty unless dkpdkþ1. If zX1 then dk is an increasing
sequence, but for zo1 this is no longer true, and the
constraint dkpdkþ1 implies

kp
n� 1

2ð1� zÞ
, (B.18)

which is more restrictive than (B.17). Notice that this only
constraints the value of k provided zo1=2.

Finally, one can check that (B.14) holds for any dk

because

ðn� zÞ2 � 4nðn� 1Þzð1� zÞdk

¼ ½ð2k � 1Þð1� zÞ � nþ 1�2X0: & ðB:19Þ
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Hauert, C., Szabó, G., 2003. Prisoner’s dilemma and public goods games

in different geometries: compulsory versus voluntary participation.

Complexity 8, 31–38.

Hauert, C., Michor, F., Nowak, M., Doebeli, M., 2006. Synergy and

discounting of cooperation in social dilemmas. J. Theor. Biol. 239,

195–202.

Hauert, C., Traulsen, A., Brandt, H., Nowak, M.A., Sigmund, K., 2007.

Via freedom to coercion: the emergence of costly punishment. Science

316, 1905–1907.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population

Dynamics. Cambridge University Press, Cambridge.

Iribarren, J.L., Moro, E., 2007. Information diffusion epidemics in social

networks. hhttp://arxiv.org/pdf/0706.0641i.
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