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Abstract

We study the problem of the emergence of cooperation in the spatial Prisoner’s Dilemma. The pioneering work by Nowak and May

[1992. Evolutionary games and spatial chaos. Nature 415, 424–426] showed that large initial populations of cooperators can survive and

sustain cooperation in a square lattice with imitate-the-best evolutionary dynamics. We revisit this problem in a cost–benefit formulation

suitable for a number of biological applications. We show that if a fixed-amount reward is established for cooperators to share, a single

cooperator can invade a population of defectors and form structures that are resilient to re-invasion even if the reward mechanism is

turned off. We discuss analytically the case of the invasion by a single cooperator and present agent-based simulations for small initial

fractions of cooperators. Large cooperation levels, in the sustainability range, are found. In the conclusions we discuss possible

applications of this model as well as its connections with other mechanisms proposed to promote the emergence of cooperation.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Emergence of cooperation; Evolutionary game theory

1. Introduction

The emergence of cooperative behavior among unrelated
individuals is one of the most prominent unsolved
problems of current research (Pennisi, 2005). While
such non-kin cooperation is evident in human societies
(Hammerstein, 2003), it is by no means exclusive of them,
and can be observed in many different species (Doebeli and
Hauert, 2005) down to the level of microorganisms
(Velicer, 2003; Wingreen and Levin, 2006). This conun-
drum can be suitably formulated in terms of evolutionary
game theory (Maynard-Smith, 1982; Gintis, 2000; Nowak
and Sigmund, 2004; Nowak, 2006a, b) by studying games

that are stylized versions of social dilemmas (Kollock,
1998), e.g., situations in which individually reasonable
behavior leads to a situation in which everyone is worse
off than they might have been otherwise. Paradigmatic
examples of these dilemmas are the provision of public
goods (Samuelson, 1954), the tragedy of the commons
(Hardin, 1968), and the Prisoner’s Dilemma (PD) (Axelrod
and Hamilton, 1981). The first two of them involve
multiple actors, while the latter involves only two actors,
this last case being the setting of choice for a majority of
models on the evolution of cooperation.
The PD embodies a stringent form of social dilemma,

namely a situation in which individuals can benefit from
mutual cooperation but they can do even better by
exploiting cooperation of others. To be specific, the two
players in the PD can adopt either one of the two
strategies: cooperate (C) or defect (D). Cooperation results
in a benefit b to the opposing player, but incurs a cost c to
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the cooperator (where b4c40). Defection has no costs
and produces no benefits. Therefore, if the opponent plays
C, a player gets the payoff b� c if she also plays C, but she
can do even better and get b if she plays D. On the other
hand, if the opponent plays D, a player gets the lowest
payoff �c if she plays C, and it gets 0 if she also defects. In
either case, it is better for both players to play D, in spite of
the fact that mutual cooperation would yield higher
benefits for them, hence the dilemma.

Conflicting situations that can be described by the PD,
either at the level of individuals or at the level of
populations are ubiquitous. Thus, Turner and Chao
(1999) showed that interactions between RNA phages co-
infecting bacteria are governed by a PD. Escherichia coli

stationary phase GASP mutants in starved cultures are
another example of this dilemma (Vulić and Kolter, 2001).
A PD also arises when different yeasts compete by
switching from respiration to respirofermentation when
resources are limited (Frick and Schuster, 2003). Her-
maphroditic fish that alternately release sperm and eggs
end up involved in a PD with cheaters that release only
sperm with less metabolic effort (Dugatkin and Mesterton-
Gibbons, 1996). A recent study of cooperative territorial
defence in lions (Panthera leo), described the correct
ranking structure for a PD (Legge, 1996). And, of course,
the PD applies to very many different situations of
interactions between human individuals or collectives
(Axelrod, 1984; Camerer, 2003).

In view of its wide applicability, the PD is a suitable
context to pose the question of the emergence of
cooperation. How do cooperative individuals or popula-
tions survive or even thrive in the context of a PD,
where defecting is the only evolutionarily stable strategy
(Maynard-Smith, 1982; Nowak, 2006a, b)? Several answers
to this puzzle have been put forward (Nowak, 2006a, b)
among which the most relevant examples are kin selection
theory (Hamilton, 1964), reciprocal altruism or direct
reciprocity (Trivers, 1971; Axelrod and Hamilton, 1981),
indirect reciprocity (Nowak and Sigmund, 1998), emer-
gence of cooperation through punishment (Fehr and
Gächter, 2002) or the existence of a spatial or social
structure of interactions (Nowak and May, 1992). This last
approach has received a great deal of attention in the last
decade and has proven a source of important insights into
the evolution of cooperation (see Szabó and Fáth, 2007 for
a recent and comprehensive review). One such insight is the
fact that cooperators can outcompete defectors by forming
clusters where they help each other. This result, in turn,
leaves open the question of the emergence of cooperation
in a population with a majority of defectors. Recently, it
has been shown (Ohtsuki et al., 2006) that, if the average
number of connections in the interaction network is k, the
condition b=c4k implies that selection favors cooperators
invading defectors in the weak selection limit, i.e., when the
contribution of the game to the fitness of the individual is
very small. However, a general result valid for any intensity
of the selection is still lacking.

In this paper, we propose a new mechanism for the
emergence of cooperation, which we call shared reward. In
this setting, players interact through a standard PD, but in
a second stage cooperators receive an additional payoff
coming from a resource available only to them and not to
defectors. It should be emphasized that similar reward
mechanisms may be relevant for a number of specific
applications, such as mutualistic situations with selection
imposed by hosts rewarding cooperation or punishing less
cooperative behavior (see, e.g., Kiers et al., 2003 and
references therein). Another context that may be modelled
by our approach is team formation in animal societies
(Anderson and Franks, 2001), e.g., in cooperative hunting
(Packer and Ruttan, 1988). On the other hand, the idea of a
shared reward could be implemented in practice as a way to
promote cooperation in human groups or, alternatively,
may arise from costly signaling prior to the game, when the
exchange of cooperative signals among cooperators is free
(Skyrms, 2006). As we will see, this scheme makes it
possible for a single cooperator to invade a population of
defectors. Furthermore, when strategies evolve by uncon-
ditional imitation (Nowak and May, 1992), cooperation
persists after the additional resource has been exhausted or
turned off. We present evidence for these conclusions
coming from numerical simulations on a regular network.
In the conclusion, we discuss the reason for this surprising
result and the relation of our proposal to previous work on
evolutionary games on graphs and to public goods games.

2. Spatial PD with shared reward

Our model is defined by a two-stage game on a network.
In the first stage, players interact with their neighbors and
obtained payoffs as prescribed by the PD game, whose
payoff matrix in a cost–benefit context is given by

C D

C

D

b� c �c

b 0

� �
:

(1)

Subsequently, in the second stage of the game, a fixed
amount r is distributed among all cooperators. It is
important to realize at this point that such a two-stage
game is only interesting in a population setting: in a two-
player game, the second stage would amount to shift the
cooperator’s payoff by r=2 or r, depending on the
opponent’s strategy. Then, for roc we would simply have
another PD, whereas for 2c4r4c we would have the
Hawk–Dove or Snowdrift game (Maynard-Smith, 1982),
and for r42c we would have the trivial harmony game
(also called byproduct mutualism (Dugatkin et al., 1992;
Connor, 1995)). In a population setting, the amount
received by a cooperator depends on the number of
cooperators in the total population and is therefore subject
to evolution as the population itself changes. Note that, as
players do not know in advance the total number of
cooperators in the system, they still face a dilemma because
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if too many players cooperate, their payoff will be smaller
than that of the defectors.

In order to write down the payoffs for the game after the
second stage, we need to introduce some notation. Let us
consider a population of N players, each of whom plays the
game against k other players. For player i, 1pipN, let us
denote by V i the number of cooperators among the
opponents of i, and by Nc the total number of cooperators
in the population. The payoffs can then be written as
follows:

Pi ¼
V ib� kcþ

r
Nc

if i cooperates

V ib if i defects:

8<
: (2)

This mechanism to reward cooperation has been studied by
Cuesta et al. (2007) in a game theoretical model of n players
with no spatial structure. As stated above, our goal here is
to understand whether or not the mechanism of the shared
reward can explain the emergence of cooperation in the PD
on networks. To address this problem, we will consider
below this game in the framework of a spatial setup
following the same general lines as Nowak and May (1992)
for comparison. We place N individuals on a square lattice
with periodic boundary conditions, each of whom co-
operates or defects with her neighbors (4, von Neumann
neighborhood). We have chosen this neighborhood for the
sake of simplicity in the calculation; results for Moore
neighborhood (used, e.g., by Nowak and May (1992)) can
be obtained in a straightforward manner. After receiving
their payoffs according to Eq. (2), all individuals update
their strategy synchronously for the next round, by imitate-
the-best (also called unconditional imitation) dynamics:
they look in their neighborhood for players whose payoff is
higher than their own. If there is any, the player adopts the
strategy that led to the highest payoff among them
(randomly chosen in case of a tie). We then repeat the
process and let the simulation run until the density of
cooperators in the lattice reaches an asymptotic average
value or else it becomes 0 or 1 (note that these two states,
corresponding to full defection and full cooperation, are
absorbing states of the dynamics because there are not
mutations). We note that this strategy update rule, being
deterministic, is of the cellular automaton type and, as
such, it must be regarded as a metaphor of an evolutionary
mechanism and may not be a reliable description of specific
real systems. We choose to use this rule inspired by the
work Nowak and May (1992), with which we intend to
compare (see below). Shortages and artificial features of
this dynamics have been studied in Nowak and May
(1993); and Nowak et al. (1994).

From the work by Nowak and May (1992), we know
that if we begin the simulation with a sufficiently large
cooperator density, then the lattice helps sustain the
cooperation level by allowing cooperators interacting with
cooperators in cluster to survive and avoid invasion by
defectors; defectors thrive in the boundaries between
cooperator clusters. What we are interested in is in the

question as to how the large initial cooperator level
required by Nowak and May (1992) may arise; if the
initial number of cooperators is small, they cannot form
clusters and full defection is finally established. On the
other hand, another relevant point is resilience, i.e., the
resistance of the cooperator cluster to re-invasion by
defectors. In this respect, we note that while the clusters
obtained by Nowak and May (1992) did show resilience,
their corresponding cooperation level was not large. As we
will see below, the mechanism we are proposing will lead to
higher cooperation levels with good resilience properties,
even for medium costs. To address these issues, we begin by
discussing the invasion by a single cooperator placed on the
center of the lattice (in fact, on any site, as the periodic
boundary conditions make all sites equivalent). This,
along with the possible scenarios of invasion by a single
defector, will lead to a classification of the different regimes
in terms of the cost parameter. Subsequently, we will carry
out simulations with a very low initial concentration of
cooperators.

3. Invasion by a single cooperator and resilience of

cooperation

As our strategy update rule is unconditional imitation,
the process is fully deterministic, so we can compute
analytically the evolution of the process. Thus, for the first
cooperator, seeded at time t ¼ 0, to transform her defector
neighbors into new cooperators, it is immediate to see that
r4bþ 4c; otherwise, the cooperator is changed into a
defector and the evolution ends. If the condition is
satisfied, the four neighbors become cooperators, and we
have now a rhomb centered on the site of the initial
cooperator. In what follows, we discuss the generic
situation in the subsequent evolution of the system.
After the initial cooperator has given rise to a rhomb,

there will always be four types of players in the system:

� The cooperators in the bulk, who interact with another
four cooperators.
� The cooperators in the boundary, defined as the set of

cooperators who have links with defectors. These
boundary players have two cooperator neighbors
(except for the initial, 5-site rhomb, in which they are
absent) or only one if they are at the corners of the
rhomb, but the key point is that they are always
connected to a cooperator who interacts only with
cooperators.
� The defectors in the boundary, who interact with

one (opposite to the corners of the rhomb) or two
cooperators.
� The defectors in the bulk, who interact with another

four defectors.

For the rhomb to grow two conditions must be met: first of
all, the payoff obtained by the boundary cooperators at the
corner (b� 4c plus the reward contribution) has to be
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larger than that of the boundary defectors with only one
cooperator (b); secondly, the payoff obtained by coopera-
tors that have two cooperator neighbors (2b� 4c plus the
reward contribution) has to be larger than that of the
boundary defectors who interact with two cooperators
ð2bÞ. If both conditions are verified, defectors are forced to
become cooperators by imitation. Therefore, we must have

b� 4cþ
r

NcðtÞ
4b and 2b� 4c

þ
r

NcðtÞ
42b ()

r
NcðtÞ

44c. ð3Þ

We thus find that the condition for invasion does not
depend on the benefit b. In addition, it predicts that
invasion proceeds until the rhomb contains too many
cooperators so that the condition is not fulfilled anymore.
In view of this result, we find it convenient to introduce a
parameter to measure the reward in terms of the cost:

d �
r

4cN
. (4)

With this notation, the prediction for the invasion by a
single cooperator is that it will proceed as long as the
fraction of cooperators verifies NcðtÞ=Npd. NcðtÞ, the
number of cooperators at time t, can be easily determined
from the recurrence relation for the growing rhomb: in case
the cooperators increase, a new boundary layer is added to
the rhomb, and we have NcðtÞ ¼ Ncðt� 1Þ þ 4t, which can
be immediately solved (with initial condition Ncð0Þ ¼ 1) to
give NcðtÞ ¼ 2t2 þ 2tþ 1. Inserting this result in the above
condition allows to determine the maximum growth time
for the cluster, that is t� ¼ maxft : 2t2 þ 2tþ 1pdNg, and
the fraction of cooperators in the steady state:

Ncðt
�Þ

N
. (5)

So far, we have seen that when the reward is large enough
ðr44cNÞ, full cooperation sets in, whereas for smaller
reward, a cooperator cluster grows up to a final size
that depends on d. Interestingly, when b=24c, the
reward mechanism is only needed to establish an initial
population of cooperators, i.e., the rhomb is resilient. To
show this, notice that boundary cooperators observe the
defectors who earn the largest payoff (those with two links
to two cooperators) and compare it with the payoff
obtained by bulk cooperators; boundary cooperators are
linked to both and unconditional imitation will lead them
to adopt the strategy of the neighbor with the largest
payoff. The condition for the cooperators to resist re-
invasion is then

4ðb� cÞ42b () co
b

2
. (6)

Indeed, if after a number of time steps we turn off the
reward, the rhomb structure arising from the evolutionary
process cannot be re-invaded by defectors, as can be seen
from Eq. (6). In the opposite case, c4b=2, the reward must
be kept at all times to stabilize the cooperator cluster.

In order to study the resilience of clusters of cooperators,
we consider the simplest case of invasion by a single
defector in the PD (without reward). It can be easily shown
that this leads to three different cost regimes (Jiménez
et al., 2007):

� Low cost case, cob=4: the defector is only able to
invade its four neighbors, giving rise to a five defector
rhomb.
� Medium cost case, b=4ocob=2: a structure with the

shape of a cross with sawtooth boundaries is formed,
implying a finite density of defectors in the final state
(cf. Fig. 1).
� High cost case, c4b=2: the system is fully invaded by the

defector, and cooperators go extinct.

4. Simulations with an initial concentration of defectors

After considering the case of the invasion of a defecting
population by a single cooperator, we now proceed to a
more general situation in which there appear a number of
cooperators randomly distributed on the lattice. To this
end, we have carried out simulations on square lattices of
size N ¼ 100� 100 for different initial numbers of
cooperators as a function of the cost parameter (we take
b ¼ 1 for reference) and the reward. A single simulation
consists of running the game until a steady state is reached,
as shown by the fraction of cooperators becoming
approximately constant. Generally speaking, the steady
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Fig. 1. Final stage of the invasion of a cooperator population by a single

defector, for the medium cost case b=4ocob=2. Defectors are white,

cooperators are black.
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state is reached in some 100 games per player. For every
choice of parameters, we compute an average over 100
realizations of the initial distribution of the cooperators.
Results are shown in Fig. 2 for low, medium and high
costs.

Fig. 2 shows a number of remarkable features. To begin
with, the case of invasion by a single cooperator reproduces
the analytical result (5). On the other hand, in all three
plots we see that if instead of a single cooperator we
have an initial density of cooperators, the resulting
level of cooperation is quite higher, particularly when
costs are low. Indeed, by looking at panel (a), for
which c ¼ 0:2 ðb ¼ 1Þ, we see that with a 10% of initial
cooperators cooperation sets in even without reward, as
observed by Nowak and May (1992). Notwithstanding, a
more remarkable result is the fact that with an initial
density of cooperators as low as 0.1% we find large
cooperation levels for small rewards, for all values of costs.
Clearly, the cooperation level decreases with increasing
cost, but even for high costs [panel (c), c ¼ 0:7], the
cooperation level is significantly higher than the single
cooperator one. In this last case, we also observe that the
final state becomes practically independent of the density
of initial cooperators. Finally, an intriguing result is that in
the low cost case, the observed cooperation fraction is not a
monotonically increasing function of the reward: As it can
be seen from the plot, for moderate and particularly for
large initial densities of cooperators, increasing the reward
may lead to lower levels of cooperation. The reason for this
phenomenon is that, if the reward increases, the cooperator
clusters arising from the cooperator invaders grow larger
and overlap. Therefore, clusters with rugged boundaries
are formed, allowing for defectors with three cooperators
which may then be able to reinvade. Further increments of
the reward restore the cooperation levels because then even
these special defectors are overridden. The important
consequence is that one cannot assume that, for any
situation, increasing the reward leads to an increasing of
the cooperation, i.e., one has to be careful in designing the
reward for each specific application.

The other relevant issue to address in the simulations is
the resilience of the attained cooperation levels. Fig. 3
summarizes our results in this regard. Both for low and
high rewards, we confirm the result for the single
cooperator invasion that cooperation disappears if the
reward is turned off when the costs are high ðc ¼ 0:74b=2Þ.
For moderate and low costs, the structures arising from the
evolution with reward do show resilience, at least to some
degree. Interestingly, the case of low reward [panel (a)]
gives rise to extremely robust cooperation levels, whereas
higher rewards [panel (b)] lead to structures for which
cooperation decreases when the reward is absent (medium
cost case). This result is connected with the one already
discussed that the cooperation level may not be monotonic
in the reward, and makes it clear that structures originating
from a very aggressive, high reward policy may be less
resilient than those built with low rewards.

Further insight on the cluster structure arising from the
invasion process fueled by the reward can be gained from
Figs. 4 and 5. Fig. 4 shows the stationary structure of the
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Fig. 2. Average fraction of cooperators in the steady state as a function of

the rescaled reward d ¼ r=4Nc, obtained starting with 1ðþÞ; 10ð�Þ; 100ð�Þ,
and 1000 ð�Þ initial cooperators. (a) low cost, c ¼ 0:2; (b) medium cost,

c ¼ 0:4; (c) high cost, c ¼ 0:7.
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cooperator clusters for the low reward case ðd ¼ 0:1Þ. As
we are now considering that the initial configuration
contains a 1% of cooperators randomly distributed, the
shapes are irregular, and some rhombs are larger than
others because they merge during evolution. In accordance
with Fig. 3, in the low cost situation the cooperation level
reached is much larger than in the medium cost case.
However, both structures are resilient and survive un-
changed if the reward is removed. This is due to the fact
that, as discussed above, in that case defectors can never
invade a cooperating population. The final structure for the
high cost case is similar to Fig. 4(b), but in this case
suppression of the reward leads to an immediate invasion
by defectors until they occupy the whole system. When the
reward is larger, the situation is somewhat different, as can
be appreciated from Fig. 5. While for low cost we again
obtain resilient structures that are preserved even without
reward, in the medium cost regime the patterns change.
Panel (a) shows the stationary state reached with the

reward; when the reward is taken away, the state changes
and evolves to the configuration shown in panel (b). What
is taking place here is that due to the high reward, a
cooperation level close to 1 is reached, most of the
defectors being isolated or along lines. When the reward
is switched off, these defectors are in a position to rip much
payoff from their interactions with the cooperators,
allowing for a partial reinvasion. Therefore, the final
cooperation level has more or less halved. We stress that
even then the cooperation level that remains after the
suppression of the reward is rather large (about 60%),
another hint of the efficiency of this mechanism to promote
cooperation.

5. Discussion and conclusions

We have proposed a mechanism that allows a population
of cooperators to grow and reach sizeable proportions in the
spatial PD in a cost–benefit framework. This mechanism is
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Fig. 3. Time evolution of the fraction of cooperators for the cases of low (dot-dashed line, c ¼ 0:2), medium (solid line, c ¼ 0:4) and high (dashed line,

c ¼ 0:7) costs, for simulations starting with 100 initial cooperators (density, 1%) randomly distributed. Shown are the cases of (a) low ðd ¼ 0:1Þ and
(b) high ðd ¼ 0:5Þ rewards. Reward is set in place until t ¼ 100 and turned off afterwards.

Fig. 4. System snapshots at the stationary state of a single realization of the evolution (before switching off the reward, see Fig. 3) for the low reward case

ðd ¼ 0:1Þ. The initial density of cooperators is 1%. (a) low cost ðc ¼ 0:2Þ, (b) medium cost ðc ¼ 0:4Þ. Defectors are white, cooperators are black.
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based in the distribution of a fixed-amount reward among
all cooperators at every time step. With this contribution
to the payoffs of the standard PD, even a single cooperator
is able to invade a fully defecting population. The resulting
cooperator fraction is determined by the amount of
the reward as compared to the total number of players
and to the cost of the interaction. Furthermore, for
low and medium costs ðcob=2Þ cooperation is resilient
in the sense that if at some time step the reward is
suppressed, the cooperator cluster cannot be re-invaded by
the defectors. Finally, we have seen that low rewards are
capable to induce a very large cooperation level, so the
mechanism works even when it changes only a little the
payoffs of the PD.

The result we have obtained is relevant, in the first place,
as a necessary complement of the original work by Nowak
and May (1992) within the cost–benefit context. In their
work they showed that the spatial structure allowed
cooperator clusters to survive and resist invasion by
defectors, but they began with a large population of
cooperators. Our work provides a putative explanation as
to where this population comes from. We note that in the
original work by Nowak and May (1992) they observed
that the cooperation level decreased with respect to the
initial population, so a mechanism leading to the appear-
ance of high cooperator levels is certainly needed. In this
regard, we want to stress that the reward mechanism gives
rise to structures with very good resilience properties:
Simulations without the reward show that starting from a
randomly distributed population of cooperators with very
large density ð	90%Þ, the final cooperation level is halved
for low costs, and practically disappears for moderate
costs.

We stress that, to our knowledge, this is the first time
that a mechanism based on a fixed-amount reward to be

shared among cooperators is proposed. Notwithstanding,
there are other proposals which are somewhat related to
ours, most prominent among them being those by Lugo
and Jiménez (2006) and Hauert (2006). Lugo and Jiménez
(2006) introduce a tax mechanism in which everybody in
the population contributes towards a pool that is subse-
quently distributed among the cooperators. This is
different from the present proposal in so far as the
contribution from the tax is not a fixed quantity but
rather it increases with the average payoff. On the
other hand, Hauert (2006) focuses on the effects of
nonlinear discounts (or synergistic enhancement) depend-
ing on the number of cooperators in the groups of
interacting individuals. Although the corresponding
game theoretical model, discussed by Hauert et al. (2006)
belongs to the same general class of n-player games
of our shared reward model, the spatial implementation
of the two models is very different. Thus, in Hauert
(2006), payoffs for a given individual depend on the
number of cooperators in her neighborhood, whereas in
the present work payoffs depend on the total number
of cooperators in the network. On the other hand, our
interest is also different, in so far as we are discussing a
mechanism to foster the appearance of an initial, sizeable
population of cooperators which can later be stable
without this additional resource. It is important to stress
that with our mechanism a large level of cooperation can
be established and (in the appropriate parameter range)
stabilized.
We believe that our results may be relevant for a

number of experimental situations where the PD has been
shown to appear in nature. Thus, the stabilization
of mutualistic symbioses by rewards or sanctions as
observed in, e.g., legume–rhizobium mutualism (Kiers
et al., 2003) is related to the mechanism we are proposing
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Fig. 5. System snapshots at the stationary state of a single realization of the evolution, (a) before and (b) after switching off the reward, see Fig. 3 for the

high reward case ðd ¼ 0:5Þ and medium cost ðc ¼ 0:4Þ. Defectors are white, cooperators are black.
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here: It is observed that soybeans penalize rhizobia that
fail to fix N2 in their root nodules. This decreases the
defector’s payoff which is similar to increasing the
cooperator’s payoff by a reward. On the other hand, a
description of the interaction between different strains of
microorganisms (see Crespi, 2001; Velicer, 2003 and
references therein) in terms of this reward mechanism
instead of the standard PD may prove more accurate
and closer to the actual interaction process. An example
could be the evolution of cooperators with reduced
sensitivity to defectors in the RNA Phage F6 (Turner
and Chao, 1999, 2003). Cooperative foraging is another
context where the mechanism of rewarding cooperation
may be relevant, ranging from microorganisms such as
Myxococcus xanthus (Dworkin, 1996) through beetles
(Berryman et al., 1985) to wolves or lions Anderson
and Franks (2001). Finally, the question arises as to the
validity of such a mechanism to promote cooperation
within humans, as individual players cannot predict in
advance the additional payoff they will obtain from the
reward, and therefore it is not clear whether it would
have an influence on them or not. Evidences from
cooperative hunting in humans (Alvard, 2001, 2004) show
that high levels of sharing help sustain cooperative
behavior. However, in the human case, contexts where
the reward would be more explicitly included in a manner
transparent to the players are possible and amenable to
experiments. Research along these lines is necessary to
assess the possible role of the reward mechanism in specific
situations.
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R. Jiménez et al. / Journal of Theoretical Biology 250 (2008) 475–483 483


