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Hierarchical clustering of bipartite data sets based on the statistical significance of coincidences
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When some ‘entities’ are related by the ‘features’ they share they are amenable to a bipartite network repre-
sentation. Plant-pollinator ecological communities, co-authorship of scientific papers, customers and purchases,
or answers in a poll, are but a few examples. Analyzing clustering of such entities in the network is a useful tool
with applications in many fields, like internet technology, recommender systems, or detection of diseases. The
algorithms most widely applied to find clusters in bipartite networks are variants of modularity optimization.
Here, we provide a hierarchical clustering algorithm based on a dissimilarity between entities that quantifies the
probability that the features shared by two entities are due to mere chance. The algorithm performance is O(n2)
when applied to a set of n entities, and its outcome is a dendrogram exhibiting the connections of those entities.
Through the introduction of a ‘susceptibility’ measure we can provide an ‘optimal’ choice for the clustering
as well as quantify its quality. The dendrogram reveals further useful structural information though—like the
existence of subclusters within clusters or of nodes that do not fit in any cluster. We illustrate the algorithm by
applying it first to a set of synthetic networks, and then to a selection of examples. We also illustrate how to
transform our algorithm into a valid alternative for one-mode networks as well, and show that it performs at
least as well as the standard, modularity-based algorithms—with a higher numerical performance. We provide
an implementation of the algorithm in PYTHON freely accessible from GitHub.
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I. INTRODUCTION

Among the networks that we can find in real life, bipartite
networks stand on their own because of their special nature.
Bipartite (two-mode) networks divide their nodes into two
different categories, and links join nodes of one category only
with nodes of the other. Bipartite networks can be used to
describe plant-pollinator mutualistic interactions [1–3], words
in documents [4,5], scientists and co-authored papers [6,7],
genes in viral genomes [8,9], actors in films [10,11], people
attending events [12], recommender systems [13–15], etc.,
and they have been successfully applied to problems rang-
ing from internet technology [16,17] to systems biology and
medicine [18]. A defining feature of any system amenable to
bipartite-network modeling is that one set can be thought of as
‘entities’ and the other one as ‘features’. For instance, if the
entities are scientists, the features are papers they author—or
vice versa, if the entities are the papers, the features are their
authors. Which is the set of entities and which is the set of
features very much depends on the problem one aims to solve,
because a typical question regarding this kind of datasets is:
how do entities cluster according to their set of features?

Finding clusters (also called modules or communities) in
networks has been an active topic of research for a few
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decades (see [19] and references therein). There is no clear-cut
definition of what a cluster or community is. Intuitively, one
expects that nodes in a cluster are more densely connected to
each other than to the nodes outside the cluster, but the actual
definition is part of the answer to the clustering problem.
For this reason, there is a plethora of different methods to
determine clusters, and although there is some overlapping in
their outcomes, they hardly obtain exactly the same partition
of the set of nodes. Which method to choose is then a problem-
dependent issue.

Bipartite networks require a purposeful definition, because
of their very particular connectivity—nodes of the same type
are never connected to each other. Roughly speaking, three
kinds of approaches have been explored. The most direct
one amounts to projecting the network on the type of nodes
whose clustering is sought [20–22]. The result is a weighted
network linking these nodes and only these—to which stan-
dard clustering algorithms can be applied. The success of this
approach very much relies on a suitable choice of the weights
for the links.

The second approach is, so to speak, global in nature. A
typical method amounts to defining a function of the partition
of nodes (‘modularity’), and then finding the partition that
maximizes it [23]. This function compares the actual linking
of the network with what a random null model would produce.
The clustering problem then becomes the problem of finding
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the partition that maximizes the modularity of the network.
Extending this method to bipartite networks requires choosing
a suitable null model [24,25]. An alternative to modularity
is to adopt a Bayesian viewpoint by introducing a stochastic
block model [15] whose parameters are obtained through like-
lihood maximization [26]. Although the use of these global
methods to determine the community structure of a network
is widespread, their application to large datasets is limited
because they are computationally demanding (they boil down
to performing a combinatorial optimization). Furthermore, the
very definition of modularity has some resolution limitations
that preclude these methods from detecting clusters that are
particularly small [27,28].

The last approach to the problem is represented by a set of
methods that go under the common name of hierarchical clus-
tering [29], Chap. 4. The idea of hierarchical clustering is to
define a ‘dissimilarity’ (often a true mathematical ‘distance’)
between entities based on the features that they do or do not
share, and then sequentially merge the least dissimilar clusters
(initially every node is a cluster), following some prescription.
The outcome of these methods is not a partition, but a dendro-
gram, i.e., a rooted tree in which nodes are grouped according
to the dissimilarity value at which they merged into the same
cluster. They look very much like phylogenetic trees and can
be interpreted similarly. If needed, one can obtain a partition
out of a dendrogram either by introducing a dissimilarity
threshold or by detecting groups of branches that separate
very near the root. As a matter of fact, the seminal work on
community detection in networks uses a particular form of
hierarchical clustering [30].

There are two main reasons why there is a current prefer-
ence for global methods over hierarchical clustering. One is
the fact that on the latter the definition of clusters eventually
depends on the choice of an arbitrary threshold—or a similar
ad hoc criterion. The other is the vast amount of different
dissimilarity measures that people have used in the litera-
ture [31]—each one yielding a different result [29], Chap. 3.
Nevertheless, the upside of these methods is that they can be
computationally more efficient because they do not involve
any combinatorial optimization process. If n denotes the num-
ber of entities, hierarchical clustering algorithms exist with
time complexity O(n2) [32,33]. If one is willing to sacrifice
exactness and can cope with approximate results, algorithms
can be found that reduce this complexity to O(n log n) [34] or
even O(n) using hash tables [35]. (Notice, however, that the
outcome of these algorithms depends on the right tuning of a
bunch of parameters, so their use is more complex.) Anyway,
this does not reduce the complexity of the full algorithm—
only that of the hierarchical clustering—because computing
dissimilarities has a complexity O(n2).

As of the fact that the result of hierarchical clustering is a
dendrogram, from which clusters need to be defined ad hoc,
this can be regarded as an advantage rather than a drawback.
Dendrograms provide a sort of multiresolution clustering
where one can see not only the main clusters, but also sets of
nodes forming clusters within clusters—something that may
be very informative for some applications (hence the success
of phylogenetic trees in evolutionary biology).

The true disadvantage of hierarchical clustering compared
to methods based on modularity or stochastic blocks is not

only that choosing the right dissimilarity measure is a prob-
lem, but that none of these measures uses a null model to
decide whether the dissimilarity found between two entities
may be spurious [29,31]—as global methods do. To illustrate
the problem, consider the case of words (the entities) in docu-
ments (the features). Suppose further that the subject of these
documents is ‘politics’. It is clear that a word like ‘politician’
is likely to appear in many of them; but on the other hand,
words like prepositions appear in every single document, so
the dissimilarity between, say, the word ‘of’ and the word
‘politician’ will be low regardless of the measure we have cho-
sen. And yet, this low dissimilarity is spurious because there
is no meaningful connection between these two words. This is
the reason why some datasets require an ad hoc pre-processing
before one of these algorithms can be applied to the data (for
instance, in the processing of texts, it is common to remove
words bearing no actual meaning, like articles, prepositions,
etc.).

The purpose of this paper is to introduce a random null
model for bipartite networks and define a dissimilarity mea-
sure between pairs of entities in terms of the statistical
significance of the shared and not shared features. This will
automatically remove spurious relationships such as the one
just described. Combined with, e.g., SLINK, an efficient al-
gorithm for single-linkage clustering [32], it will lead to an
O(n2) algorithm to generate a dendrogram from bipartite
datasets. Additionally, as we shall see, the algorithm can be
readily extended to the case of one-mode networks.

II. DESCRIPTION OF THE
METHOD AND THE ALGORITHM

Consider a set of entities E and a set of features F with
|E | = NE and |F | = NF elements respectively. Each entity
will have some of these features, so a bipartite network can
be defined with nodes E ∪ F and (bidirectional) links joining
entities with their features. The adjacency matrix of such a
network has the form

A =
(

0 B
BT 0

)
, (1)

where B = (bir ), i ∈ E , r ∈ F , is such that bir = 1 if entity i
has feature r and bir = 0 otherwise. Accordingly,

ni j = (BBT )i j, mrs = (BTB)rs, (2)

count the number of features that entities i and j have in
common, and the number of entities having both features r
and s, respectively. In particular, ni = nii counts the number of
features of entity i and mr = mrr counts the number of entities
having feature r.

With these numbers one can introduce all kinds of dissimi-
larity measures [29,31] with which to construct a hierarchical
clustering and produce a dendrogram for the entities revealing
which of them are closer to each other. Instead, we will com-
pute what is the probability that entities i and j have at least
ni j features in common if features are assigned randomly to
entities (without any bias).

The probability distribution p(ni j |ni, n j, NF ) is obtained as
follows. We tag all the ni elements of set F that correspond
to features of entity i, and then draw, randomly and without
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TABLE I. Contingency table to apply Fisher’s exact test. Entity
i has ni out a set of NF features, ni j of which are shared with j and
ni − ni j are not. Thus, nj − ni j features of j are not shared by i, and a
total of NF + ni j − ni − nj features are exhibited neither by i nor by
j.

�����i
j

features not features total

features ni j ni − ni j ni

not features nj − ni j NF + ni j − ni − nj NF − ni

total nj NF − nj NF

replacement, n j features out of the set F . The sought prob-
ability is the probability that exactly ni j of these extracted
elements are tagged, and it is given by the hypergeometric
distribution [36, §2.6]

p(ni j |ni, n j, NF ) =
( ni

ni j

)(NF −ni

n j−ni j

)
(NF

nj

) . (3)

What we are interested in is the p value

pi j =
∑
k�ni j

p(k|ni, n j, NF ). (4)

This will be our measure of dissimilarity between entities i
and j.

Interestingly, this is a standard problem is statistics that
can be solved by building the contingency Table I and ap-
plying Fisher’s exact test (FET), for which very efficient
algorithms are implemented in widely used programming lan-
guages such as PYTHON (scipy.stats.fisher_exact) and
R (fisher.test). The outcome of this test is precisely pi j ,
which allows us to easily build the dissimilarity matrix D =
(pi j ). Given D, we can apply any agglomerative clustering
method using the Lance-Williams algorithm, parametrized as
single linkage, for updating the dissimilarity between clusters
[29, Chap. 4] and get the desired dendrogram representing the
clustering structure of the entities.

Once we obtain a dendrogram, deciding the optimal num-
ber of clusters (if any) might not be a trivial matter. Several
cluster validity indexes (CVIs) have been proposed as a
way of selecting the best number of clusters, usually based
on between- and within-cluster distances [37]—in a metric,
mathematical sense. Given that our dissimilarity matrix D is
not a matrix of true distances (in the strict sense), we propose
a different approach. In particular, we will choose the partition
that maximizes the susceptibility of the system as used in
percolation theory. This susceptibility is formally defined as
χ = ∑

nss2/N , where ns is the number of clusters of size of
size s, and the sum is taken over all but the largest cluster (see
[38] for more details).

We prefer susceptibility—a measure taken from statistical
mechanics—rather than any of the more standard CVIs devel-
oped in computer science because, as the percolation example
shows, susceptibility is very sensitive to the breaking of a big
cluster into smaller ones—precisely the problem we face here.
Although several other measures (like silhouette coefficient,
Calinski-Harabasz index, or Davies-Bouldin index) could be
used, we convinced ourselves that susceptibility is indeed

more informative than several by comparing the outcomes in
a few examples.

As a technical comment, notice that the maximum pos-
sible value of χ is achieved when the network breaks
into two equally sized clusters, yielding χmax = N/4. To
make this measure independent of the network size—hence
comparable—we use χ = 4

∑
nss2 as our normalized suscep-

tibility.
For the sake of consistency, we will use χ to select the

optimal number of clusters in all the case studies reported in
this manuscript. This notwithstanding, we would like to recall
that the multiresolution nature of hierarchical clustering still
provides useful information, and that the actual best partition
of particular data is a problem-dependent question.

III. DATA ANALYSIS

We test the performance of our algorithm (henceforth re-
ferred to as clusterBip) with different datasets. Firstly, we
generate synthetic networks with a well-defined community
structure and challenge the algorithm to uncover it. Secondly,
we use real-world data from congressional voting records
(USA) and try to classify the congressmen in their correspond-
ing political parties—which act as background truth for the
underlying community structure. Lastly, we use data from a
massive survey carried out in France in 2003 to analyze how
some leisure activities are more related than others.

A. Computer-generated networks

We begin by analyzing bipartite networks created synthet-
ically with a community structure established ex ante. All of
these networks will consist of 100 entities and 400 features,
connected following different heuristics so that we have a
reliable background truth with which to compare the results
provided by the algorithm.

The most extreme case of a bipartite network with commu-
nity structure is a network created as the union of two separate
(bipartite) ones. To build such a network, we first select 50
entities and 200 features and create a link between any two
of them with probability 1/2. Then, we take the remaining
nodes (50 entities and 200 features) and proceed similarly.
When these two networks are put together, the result is, by
construction, a two-cluster bipartite network. In Fig. 1(a) we
can see how clusterBip captures this situation seamlessly. The
entities are grouped into two different clusters (red and black),
which exactly correspond to the original building blocks of the
network. Furthermore, the (normalized) susceptibility peaks
at p value p = 1, where the two clusters split, and achieves its
maximum possible value, χ = 1 (see Fig. S1 in the Supple-
mental Material [39]). Notice that some weak structure can
be observed within the two main clusters. It is just caused by
random fluctuations [40], and the low values of χ (Ref. [39],
Fig. S1) confirm this fact.

We now apply the algorithm to a purely random network.
We generate it from the previous two-cluster network by
adding links with probability 1/2 between the entities of each
block and the features of the other. The identity of the two
blocks has thus disappeared, and any pattern observed should
be spurious. The resulting dendrogram is depicted in Fig. 1(b).
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(a)

(b)

(c)

FIG. 1. Analysis of synthetic bipartite networks. (a) dendrogram of a two-cluster bipartite network. (b) dendrogram of a random network.
(c) dendrogram for an intermediate case with padd = 0.28. In (a)–(c) the dashed lines mark the point with highest susceptibility—that where
the ‘optimal’ partition should be found.
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FIG. 2. Analysis of synthetic bipartite networks. Maximum
value of the normalized susceptibility χ/χmax (which suggests the
point of optimal partition) as a function of padd, the probability that a
link connects with a node at the ‘wrong’ module. For each value of
padd we have generated 100 realizations of the networks. The values
of the susceptibility are the averages over these realizations and the
error bars indicate the corresponding standard deviations.

Just a glimpse to this figure reveals that there is no clear
structure—something that the low values of the susceptibil-
ity (χ = 0.134) at the threshold point (p = 0.013) confirm
(Ref. [39], Fig. S2). The high p value at the threshold also
confirms that the clustering has low statistical significance.

These results show that clusterBip performs well for the
two extreme cases that we have devised. But we can also
test it for intermediate cases. We generate these intermediate
benchmarks by connecting nodes of opposite modules with
varying probability 0 < padd < 1/2 (padd = 0 would corre-
spond to the two-block network and padd = 1/2 to the random
network). Figure 1(c) shows what the clusters formed looks
like for an intermediate case (padd = 0.28). The identity of a
few nodes can no longer be recovered, but the two cluster are
still clearly identifiable. Figure 2 shows the largest value of
the susceptibility for several values of padd, which identifies
the point of the ‘optimal’ partition for each network. The
susceptibility remains close to 1 up to padd ≈ 0.25, indicating
that the two modules are clearly identified even if one fourth
of the links connect to the ‘wrong’ module. Then the suscep-
tibility undergoes a sharp decay and beyond padd ≈ 0.35 it
practically vanishes—as for the random network. Figure 1(c)
illustrates a case within this region of sharp decay of the
susceptibility. What we see in this figure is representative of
what happens, that is, the identity of the two clusters degrades
as padd increases.

We have also tested the robustness of these re-
sults for networks with heterogeneous degree distribu-
tion. To this purpose we have generated the two blocks
as bipartite networks with power-law degree distribu-
tion using the preferential attachment algorithm (function
preferential_attachment_graph from the NetworkX
PYTHON package [41]). The results are similar—clusterBip is
able to capture the network structure regardless of the degree
distribution of the network (see Fig. S22 in the Supplemental
Material [39]).

B. Congressional voting records

The US Congressional voting records dataset [42] gathers
all roll call votes made by the United States Congress during

the years 1789–2017. Each Congressman is represented by a
set of features describing how he voted on every bill for a
Chamber (Senate or House), for a particular Congress (period
of two years). There are nine different ways of voting—the
so-called ‘cast codes’ (see Ref. [42] for more details). Prior to
analyzing the data, we process them as in Ref. [43], that is, we
group cast codes 1, 2, and 3 (ways of voting ‘yea’), cast codes
4, 5, and 6 (ways of voting ‘nay’), and cast codes 0, 7, 8, and
9 (not voting). As a result, we build bipartite networks which
consist of congressmen (entities) linked to their particular vote
(‘yea’, ‘nay’, or ‘not voting’) on a particular bill (features).

It is well known that congressmen usually vote according
to their political party commandments—more so in the recent
period [44]. Hence, clusterBip should be able to determine the
political party of the different congressmen based on how they
voted the different bills. To test this hypothesis, we analyze the
congressional voting records of both the House and Senate for
Congresses 114th (years 2015–2016) and 36th (years 1959–
1960).

The results for both Congresses confirm our hypothesis.
The algorithm detects two main clusters, and these clusters
correspond to the different political parties (Democrats and
Republicans). In Fig. 3 we present results for Senate 114,
in which congressmen are more polarized (exhibiting higher
values of susceptibility, Fig. S12 of the Supplemental Material
[39]) and the number of Congressmen is smaller than those in
House’s datasets—hence making it more suitable for visual
interpretation of the dendrogram. We predict congressmen
groups (membership to party) with a 92% of accuracy for Sen-
ate 114, 98.41% for House 114 (Ref. [39], Figs. S6 and S7),
88.57% for Senate 36 (Ref. [39], Figs. S8 and S9), and 78.37%
for House 36 (Ref. [39], Figs. S10 and S11). As a matter of
fact, this lower accuracy in the results for the 36th Congress
is not attributable to a lower performance of the algorithm,
but to the higher polarization trend that congressmen have
undergone over the years [44]. The effect is also observed in
other clustering techniques (see Sec. V; see also Figs. S13–
S16 in Ref. [39] for a multiple correspondence analysis [45]
of the same data).

C. “Life story” dataset

We illustrate another application of the method by an-
alyzing data from the 2003 INSEE (Institut National de
la Statistique et des Études Économiques) survey on iden-
tity construction, the so-called “life story” survey [46]. The
study was conducted in the metropolitan areas of France and
recorded answers are related to family and professional sit-
uation, geographic and social origins, ethical commitments,
cultural practices, and state of health. In particular, the dataset
we analyze comprises the answers of 8403 people (55%
female) to the question ‘Which of the following leisure ac-
tivities do you practice regularly?’, and the answer choices
were: Reading, Listening to music, Cinema, Shows, Exhibi-
tions, Computer, Sport, Walking, Travel, Playing a musical
instrument, Collecting, Voluntary work, Home improvement,
Gardening, Knitting, Cooking, Fishing, Number of hours of
TV per day on average (0–4). In addition to this information,
the data includes four supplementary variables: sex, age, pro-
fession, and marital status (see Figs. S17 and S18 of Ref. [39]
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FIG. 3. Dendrogram of the clustering of roll cast votes of congressmen for Senate 114. Colors red and black in the dendrogram identify
clusters of congressmen; gray color is used for congressmen not assigned to any cluster. Labels in horizontal axis identify congressmen
and their color identifies the political party they belong to. (The dendrogram is cut at p values around 10−300 because below this value the
computation yielded underflows.)

for a brief summary of descriptive statistics). The dataset is
available within the R package FactoMineR [47].

With these data, we build a bipartite network of people
(entities) and leisure activities (features) and apply the algo-
rithm to find groups of activities whose co-appearance in the
individuals’ answers is statistically significant. Each of the
activities is represented by two nodes in the set of features,
one corresponding to practicing it, and the other to not doing
so. That way, we can get clusters that include doing some
activities and not doing some other ones. The dendrogram
represented in Fig. 4 exhibits two main clusters: the black
one groups all the nodes corresponding to actively performing
activities, whereas the red one collects all the nodes corre-
sponding to not performing them. On the other hand, watching

TV does not seem to be particularly related to any of these
clusters. Therefore, the main contrast between the different
leisure activities is, precisely, whether they are actively per-
formed or not.

These two clusters are identified by the peak of the
susceptibility. However, each of them is further structured
in interesting subgroups. For instance, watching movies
at the cinema and spending time with the computer ap-
pear as two very closely related activities. Moving one
step above in the hierarchical dendrogram we see that
these two activities are also commonly performed by peo-
ple who enjoy attending to shows and, moving even
one step further, by people who enjoy exhibitions and
traveling.

FIG. 4. Dendrogram of the clustering of leisure activities in the “life story” dataset. The dashed line marks the p value with the largest
susceptibility.
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FIG. 5. Same as Fig. 4, but including the supplementary variable ‘sex’.

More relevant information is gained if we include the vari-
ables male (sex = 0) and female (sex = 1) as features. Figure 5
shows the resulting dendrogram. We can observe that the
activity more closely related to sex is knitting, which seems
to be predominately practiced by females. Not only that: a bit
below the first splitting into two main clusters (at the peak of
the susceptibility) there is a secondary splitting that associates
fishing, gardening, mechanics, not cooking, and not knitting
with males (and the opposite with females), whereas activities
such as walking, reading, listening to music, practicing sports,
going to shows, exhibitions or the cinema, using computers,
and traveling, form a cluster weakly related to sex. Lastly,
the analysis also reveals that activities such as collecting or
volunteering are not preferred by any particular sex.

For the “life story” data set there is no absolute background
truth that we can use to validate our results. However, we
can compare them with what is obtained applying one of the
most commonly used techniques for analyzing the structure of
categorical data: multiple correspondence analysis (MCA), an
adaptation of standard correspondence analysis to categorical
data [45]. Like principal component analysis, MCA represents
the data as points in a low-dimensional Euclidean space that
retains the maximum variance of the data. A χ -square test is
used to examine whether rows and columns of a contingency
table are statistically significantly associated, and component
analysis decomposes the χ -squared statistic associated with
this table into orthogonal factors (dimensions). Eventually,
MCA can be used to find groups of categories (features) or
individuals (entities) that are similar.

We performed MCA on the “life story” data set using the
R package FactoMineR [47]. In the so-called factors map (see
Fig. 6), the distance between two features is a measure of their
dissimilarity. Each feature is represented at the barycenter
of the individuals in it. Features with a similar profile are
grouped together, and negatively correlated features appear
on opposite sides of the plot origin (opposed quadrants). The
distance between feature points and the origin measures the
quality of the feature points on the factor map. Feature points
that are away from the origin are well represented on the factor

map. In our example, this representation only captures a 24%
of the variance of the data set.

Grouping features in a MCA factor map is rather subjec-
tive. In Fig. 6 we have represented our data points using two
different colors: green for actively performed activities, and
black for nonperformed ones. The points seem to be cluttered
in two groups, separated by an imaginary diagonal going from
the second to the fourth quadrant. This separation is congruent
with the two main clusters detected by our algorithm (see
Fig. 4), signaling that this division is indeed present in the
data. However, looking for further structure using the factor
map is rather complicated. Let us recall that a factor map is a
two-dimensional representation of the data that only captures
part of its variance (24% in this case). Hence, the distance

FIG. 6. Factors map of the “life story” data set. In green, the
activity is performed; in black, the activity is not performed.
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FIG. 7. Dendrogram of Zachary’s karate club network. The dashed line corresponds to the point with the largest susceptibility.

between any two points in the map can not be trusted as a
measure of their true dissimilarity.

Unlike MCA, clusterBip does not lose information by pro-
jecting into a lower dimensional space, and takes into account
the fact that co-occurrences between features can be due to
chance (unlike other hierarchical methods [29,31]). Hence,
even though both techniques are coincident in their coarse
grain classification of the data, the method we introduce here
is able to unveil finer substructure that remains hidden in the
MCA map, and can provide deeper insights when analyzing
survey data—or any other data with bipartite structure.

IV. APPLICATION TO ONE-MODE NETWORKS

As a final application of clusterBip, we will illustrate how
it can be applied to ordinary, one-mode networks. As we
discussed in the Introduction, when trying to analyze bipar-
tite networks, a typical procedure is to project them onto
one-mode ones, so that one can take advantage of the many
techniques developed for this type of graphs [20] (alterna-
tively, these techniques can be sometimes extended to be
directly applied to two-mode networks [48]). What is rarely
done is the reverse procedure, that is, to create a bipartite
network out of a one-mode one in order to benefit from
techniques initially tailored for the former. We propose here a
simple way to do this. What we gain from doing so is that we
can exploit the faster performance of our algorithm to quickly
produce a multi-resolution clustering of an ordinary network.

Consider the network G with a set of nodes N and ad-
jacency matrix C—which we consider symmetric with zero
diagonal (no self-loops) for simplicity. Now, we identify N
with the set of entities, E , create a replica of the same set,
and identify it with the set of features, F . Links joining nodes
of N now join nodes of E with its neighboring nodes in the
replica F , thus transforming the original network G into a
bipartite network. Furthermore, in order to eliminate the pos-
sibility for this bipartite network to be disconnected, we need
to link each node of E with its own replica in F . Therefore, the

bipartite network will be described by the adjacency matrix

A =
( 0 I + C

I + C 0

)
. (5)

In order to reveal the statistical meaning of the adjacency
matrix so obtained notice that

ni j = ((I + C)2)i j = δi j + 2Ci j + (C2)i j . (6)

Now if Vi denotes the set of nodes at distance at most one
from node i (the neighborhood of node i, including itself),
then ni j = |Vi ∩ V j |, in other words, nii is the size of Vi and
ni j , for i �= j, counts the number of common nodes in the
neighborhoods of nodes i and j. Accordingly, the dissimilarity
of nodes i and j is a measure of the statistical significance
of the overlap of their neighborhoods with respect to the
null model provided by the configuration model—with neither
loops nor multiple links.

To illustrate this application of the algorithm, we turn to
two well-known benchmarks, one-mode networks with com-
munity structure: the Zachary’s karate club study [30,49],
and the College Football dataset [30]. In the first of them,
Zachary monitored the relationships of 34 individuals attend-
ing a karate club that eventually split into two different ones.
Very often in the literature, the performance of community
detection algorithms is assessed by how well they predict this
partition [19]. Our algorithm accomplishes this task almost
perfectly, classifying incorrectly only two nodes. One of them
is node 9, which Zachary himself misclassified in his study
[49]. Furthermore, in Fig. 7 we can detect at least one clear
subgroup composed by nodes 17, 6, 7, 5, and 11 (all in black),
which is also captured by other classic algorithms for one-
mode networks [30].

The College Football network is formed by a set of 115
College Football teams (nodes) which are connected to each
other if they were confronted during the regular-season of
the Division I in 2000 (USA) [30]. In reality, the differ-
ent teams are divided into what is known as conferences,
each containing between 8 and 12 teams. Intraconference
games are more common than interconference ones, so teams
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FIG. 8. Dendrogram of the American football dataset. The dashed line corresponds to the point with the largest susceptibility.

belonging to the same conference are highly interconnected in
the network, and a community detection algorithm should be
able to account for this. In Fig. 8 we can appreciate how our
algorithm does so. The labels at the horizontal axis represent
the different clubs, colored according to the conferences they
belong to. As we can see, most of them are grouped together
under the same branch in the dendrogram, which is able to
uncover the structure of the conferences. Let us note that the
branches are colored according to the partition that maximizes
the susceptibility, which should be taken as a guidance, but
that, as in this case, it might not correspond to the (actual)
best partition (see also the discussion in Sec. II).

V. COMPARISON WITH STATE-OF-THE-ART
ALGORITHMS

As we have explained before, a dendrogram provides much
more information at several scales that a simple partition
into clusters. Despite this, it can be informative to have a
comparison with some state-of-the-art, clustering methods.
Since clusterBip can be applied both to bipartite and one-
mode networks, the class of algorithms we can compare it
with is different in each case. Thus we perform two separated
analyses.

As bipartite networks, we have analyzed the southern
women (S.W.) dataset [50] (which records the attendance at
14 social events by 18 southern women) both ways: clustering
women and clustering events; the two cases of the congres-
sional voting records dataset—a heavy politically polarized
house (H114 for House 114) and a more diverse house (H036
for House 36)—of Sec. III B; and the “life story” dataset of
Sec. III C (Hobbies and Hobbies*, which includes gender).
Table II shows the number of clusters found by Brim [24],
Rnetcarto [25], Infomap [51], and clusterBip for each of these
dataset. It is striking the poor performance of Infomap when
applied to projected bipartite networks, probably because pro-
jection looses too much relevant information in the process
[52]. Leaving Infomap aside, overall the number of clusters

found by clusterBip is similar to those found by the other
two methods. The southern women dataset is an exception
when applied to cluster women, because clusterBip detects
five clusters where Brim and Rnetcarto detect three and two,
respectively. However, the disagreement between these two
methods and the fact that clusterBip detects women that can-
not be clustered reveals that any clustering of women in this
dataset is doubtful and may respond to some cues and not
others. A dendrogram in this case provides more insights into
the classification (more details can be found in the captions of
Figs. S24 and S25 of the Supplemental Material [39]).

One interesting feature of clusterBip that provides an ad-
vantage over its alternatives is the fact that some nodes remain
unclassified. This is the case, for example, of the Congres-
sional voting records dataset: we found eight congressmen in
H114 and six in H036 whose voting behavior does not align
well with any of the two political parties, which suggests that

TABLE II. Comparison of the number of clusters found by clus-
terBip first number in the pair; the second one is the number of
unclassified nodes with those found by two state-of the-art com-
munity detection algorithms for bipartite networks (Brim [24] and
Rnetcarto [25]), as well as Infomap [51], an algorithm for one-mode
networks that can be applied to the weighted projected network of
the original bipartite one. Datasets considered: the southern women
(S.W.) dataset [50] (both ways, women and events), the two congres-
sional voting records dataset of Sec. III B: House 114 (H114) and
House 36 (H036), and the ‘life story” dataset of Sec. III C (Hobbies
and Hobbies*, which includes gender).

Brim Rnetcarto Infomap clusterBip

S.W. (women) 3 2 2 (5, 3)
S.W. (events) 3 2 1 (2, 1)
H114 2 3 1 (2, 8)
H036 3 3 1 (3, 6)
Hobbies 1 2 1 (2, 5)
Hobbies* 4 2 1 (2, 5)
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TABLE III. Normalized mutual information (NMI) and adjusted
rand index (ARI) of the clusters obtained for the congressional vot-
ing records dataset, using the political party of the congressmen as
ground truth. We compare the results of two common community-
detection methods for bipartite networks (Brim [24] and Rnetcarto
[25]), as well as of clusterBip. Infomap [51] has been excluded from
the comparison because it is unable to detect clusters in this dataset
(see Table II).

Brim Rnetcarto clusterBip

NMI ARI NMI ARI NMI ARI

H114 0.98 0.99 0.99 0.99 0.93 0.97
H036 0.65 0.69 0.68 0.67 0.68 0.73

these congressmen act with some degree of independence. If a
party were looking for favorable votes from the opposite party,
these are the candidates they should focus on.

Another example can be found in the clustering of events
in the Southern Women dataset (see Figs. S26 and S27 of the
Supplemental Material [39]). Although clusterBip detects two
clusters, just as Rnetcarto, it also singles out one particular
event as not belonging to any cluster. It turns out that this is
a popular event which women of both cluster attended at, so
any coincidence with other events is therefore not significant.
It is precisely eliminating spurious relations what clusterBip
is particularly good at.

In Table III we analyze again the H114 and H036 datasets,
assuming as ground truth the membership to a party of the
congressmen. We evaluate the clustering results by computing
the normalized mutual information score (NMI) [57] and the
adjust Rand index (ARI) [58]. In spite that clusterBip cannot
score 1 in any of these indexes because of the existence of
unclassified nodes, its performance is comparable to that of
Brim or Rnetcarto (Infomap is excluded from this comparison
because it fails to find any cluster in these datasets). It fol-
lows that there is a strong coincidence in the clusters found
by all three methods. However, clusterBip is providing more
insightful information: it is questioning the very validity of the
ground truth by revealing congressmen that do not fit well in
either cluster.

As for one-mode networks, we have compared the per-
formance of clusterBip with that of six standard community-

detection algorithms, namely Louvain [59], Fastgreedy [60],
Infomap [51], Eigenvector [61], LP [62], and Pereda et al.’s
[56], when applied to five standard such networks whose
ground truth is known: Zachary’s karate club [49], Polbooks,
a network of books about politics which are frequently bought
together [53], the College Football network of Sec. IV, a
network of associations of bottlenose dolphins [54], and Pol-
blogs, the political blogosphere [55]. For each algorithm and
dataset we have computed the modularity (Q) of the clustering
and of the ground truth, as well as the NMI score. The results
are collected in Table IV. The performance of clusterBip is
comparable to the best results of the other methods, except
for the networks Dolphins and Polblogs. In both networks,
the small value of the susceptibility χ questions the existence
of a clear community structure. For the case of Polblogs,
clusterBip detects two clusters of 153 and 127 nodes, as well
as 992 unclassifiable nodes.

All in all, we see that clusterBip performs as well as other
state-of-the-art methods, but is able to provide both, further
structure within clusters, and sets of nodes that do not belong
in any of the detected clusters. Often this information is as
important as that of the clustering itself.

VI. DISCUSSION AND CONCLUSIONS

There are lots of algorithms to analyze clustering in net-
works, bipartite or otherwise, so why another one? The
algorithm we presented here has certain important advantages
with respect to previous ones. The main one is its faster perfor-
mance. It is based on two operations: first of all, conducting
a FET between every pair of entities, and secondly, running
SLINK to obtain a hierarchical clustering of the entities based
on the outcomes of the pairwise FETs. Both operations have
a complexity O(n2) when applied to a bipartite network of n
entities—or to a one-mode network with n nodes. The fastest
modularity-based algorithm requires a matrix diagonalization,
whose complexity is O(n3).

But this is not the only advantage of our algorithm: its
outcome is a multiresolution analysis of the relations between
the nodes in the form of a dendrogram. If so needed, we
can make use of the susceptibility measure that we have
introduced to determine an ‘optimal’ partition of the nodes.
This measure has the bonus of quantifying the quality of the
partition (the higher the susceptibility the better the partition).

TABLE IV. Comparison of modularity (Q) and normalized mutual information (NMI) of the clusters detected by clusterBip as well as by
six different standard community-detection techniques, when applied to five common one-mode-network benchmarks: Zachary’s karate club
[49], Polbooks [53], Football [30], Dolphins [54], and Polblogs [55]. The second and third columns show the number of clusters (C) and the
modularity (Q) of the ground truth of the networks. In the case of clusterBip, we also include the value of the susceptibility χ at the cut point.
Data for the twelve right columns are taken from Ref. [56].

ground truth clusterBip Louvain Fastgreedy Infomap Eigenvector LP Pereda et al.

Networks C Q NMI Q χ NMI Q NMI Q NMI Q NMI Q NMI Q NMI Q

Karate 2 0.37 0.78 0.36 0.78 0.59 0.42 0.69 0.38 0.70 0.40 0.68 0.39 0.70 0.40 1.00 0.37
Polbooks 2 0.41 0.56 0.47 0.62 0.51 0.52 0.53 0.50 0.49 0.52 0.52 0.47 0.57 0.50 0.89 0.38
Football 12 0.55 0.89 0.55 0.33 0.88 0.60 0.70 0.55 0.92 0.60 0.70 0.49 0.92 0.60 0.91 0.66
Dolphins 2 0.38 0.31 0.38 0.21 0.48 0.52 0.61 0.50 0.50 0.52 0.54 0.49 0.69 0.50 0.60 0.44
Polblogs 2 0.41 0.18 0.20 0.04 0.63 0.43 0.65 0.43 0.48 0.42 0.69 0.42 0.69 0.43 0.71 0.52
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But we should not neglect that the multiresolution clustering
provided by the dendrogram contains useful information that
remains hidden in standard clustering algorithms—see for
example our analyses of survey data in Sec. III C and how they
compare to standard techniques such as MCA (Sec. III C).

Furthermore, typically there are nodes that do not fit in
any cluster of the dendrogram. The fact that modularity-based
algorithms always assign every node to a cluster may mislead
us to think of this issue as a drawback of the method. On the
contrary, as the example of the congressional voting records
shows (Sec. III B), it may be revealing a special status of these
nodes (in case of voting, the relative independence of some
congressmen). This information is often as useful as that of
the clustering itself.

Finally, the dissimilarity introduced by the FET is statisti-
cally meaningful: it measures the probability that observing
those coincidences between the features of two entities is
purely due to chance, and this information is normally lacking
in other clustering algorithms.

The availability of a dendrogram prevents some problems
inherent to the optimization of a network measure such as
modularity. It has been shown [28,40] that modularity-based

methods can find spurious structure in random networks.
Fluctuations are a source of meaningless associations, but as
we have shown, they are easy to spot on a dendrogram. To
begin with, there are no obvious clusters that partition the
network in big blocks, and furthermore, the p values for which
associations occur are too high to be statistically meaningful.
Of course, the calculation of the susceptibility will always
provide an ‘optimal’ partition even for a random network,
however its small value is an indication that this clustering
is not to be trusted.

Our algorithm is very easy to implement as well, given the
availability of efficient algorithms for calculating the p value
of a FET and for performing the hierarchical clustering. As a
matter of fact, we provide an open-access, documented imple-
mentation of the complete algorithm in PYTHON, clusterBip,
for public download. The code is available on GitHub [63].
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