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Instabilities in Complex Mixtures with a Large Number of Components
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Inside living cells are complex mixtures of thousands of components. It is hopeless to try to
characterize all the individual interactions in these mixtures. Thus, we develop a statistical approach
to approximating them, and examine the conditions under which the mixtures phase separate. The
approach approximates the matrix of second-virial coefficients of the mixture by a random matrix, and
determines the stability of the mixture from the spectrum of such random matrices.
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ing each individual value but we are interested in how the
system reacts to density perturbations, because if the free

the ith diagonal element equal to 1=�i: it contains the
ideal or perfect gas contributions to the free energy
Mixtures are not always simple, well-characterized,
and made up of two or three components. The mixtures
of biomacromolecules inside living organisms contain
thousands of different macromolecules, and the oil
extracted from wells by the petroleum industry also con-
tains many different hydrocarbons and related com-
pounds. This gives us two main problems: (i) the
number of components is so large that the data we have
are inadequate to characterize all the components,
(ii) even if we were able to precisely characterize each
component, then comprehending, and calculating with,
this mass of data would be difficult. The sheer complexity
of the mixture overwhelms us. An analogous problem
afflicted nuclear physics 50 years ago. Large nuclei,
such as 235U, are complex many-body systems with com-
plex spectra. Nuclear physicists were faced with energy
spectra with so many energy levels that comprehending
and predicting them directly was impossible. Starting
with Wigner [1–4], they resorted to statistical methods,
and replaced the complex and unknown Hamiltonian
matrix of a nucleus with a Hamiltonian matrix whose
elements were random variables. Using this rather drastic
approximation they were able to reproduce the statistical
properties of energy spectra, such as the probability dis-
tribution function of the level spacings. Subsequently,
random matrices have been applied in many areas of
physics [5,6].

Here, we will apply a statistical theory to complex
mixtures. We start by noting that, at the simplest level,
the interactions between two components i and j affect
the free energy, and hence potentially drive a phase
transition, via their second-virial coefficient Bij. These
second-virial coefficients form a symmetric matrix, of
course, and the eigenvalues of this matrix describe the
change in the excess free energy when the density is
perturbed. For an N � 1 component mixture we need a
huge number, of order N2, virial coefficients to specify
the mixture, but typically we are not interested in know-
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energy change when the density is perturbed becomes
negative, the system is unstable and will undergo a phase
transition. The parallels between our situation and that
faced by nuclear physicists 50 years ago are obvious, and
so we adopt their solution: we replace the matrix of,
unknown, second-virial coefficients of some mixture by
a random matrix. For large N, the eigenvalues of this
matrix depend on two variables only: the mean and
standard deviation of its elements, which we can vary
to fit a specific mixture or just vary to explore the generic
features of the phase behavior of such a mixture. Once we
are using random matrices, the fact that we have N � 1
components is a help, not a hindrance.

The Helmholtz free energy per unit volume, f, of an N
component mixture truncated after the second-virial
coefficient terms is

f �
XN
i�1

�i�ln�i � 1� �
1

2

XN
i�1

XN
j�1

�iBij�j; (1)

where �i is the number density of component i. The N
densities form a row matrix � � ��1�2 . . .�N�. We use
units such that the thermal energy kBT � 1. Here, we will
not calculate complete phase diagrams with the densities
and compositions of coexisting phases. We will calculate
the limits of stability, spinodals, where the system be-
comes unstable with respect to density perturbations.
Thus, we will be able to determine only qualitative fea-
tures of the phase behavior, such as whether or not a phase
transition occurs and whether the transition is demixing
of the components or their condensation. Stability of the
mixture requires that f be convex. Convexity requires that
the second order term, 
2f, in an expansion of f in
powers of 
�, be positive for any small perturbation

�. For our N component mixtures 
� is a row matrix
of length N.

Now, 
2f � 1
2
��P� B�
�T , where B is the matrix of

second-virial coefficients and P is a diagonal matrix with
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FIG. 1. The probability density function for the eigenvalues
of B, p���. The three curves are, from bottom to top, for
b=� � �1, 0, and 1. The curve for b=� � �1 is shifted
down by 0:05, and that for b=� � 1 is shifted up by 0:05, as
otherwise their central semicircular parts are almost on top of
each other.
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change. Of course, any 
� can be expressed as the sum of
eigenvectors of P� B, and so the requirement 
2f > 0
implies that all eigenvalues of P� B must be positive.
The mixture becomes locally unstable when the lowest
eigenvalue becomes zero. Stability is determined only by
the lowest eigenvalue. However, if each component has
more or less the same mobility, then the decay of small
density modulations can be described as the decay of the
set of eigenvectors of P� B, with each eigenvector com-
ponent of the density modulation decaying at a rate
proportional to its eigenvalue.

The eigenvalues of P� B form the row matrix . For
simplicity we will assume that in the mixture all compo-
nents are present in equal amounts �i � �T=N, i �
1; . . . ; N, where �T is the total density. Then P �
�N=�T�I, where I is the N by N unit or identity matrix,
and the eigenvectors of P� B are equal to those of B.
The eigenvalues of P� B are those of B, which form a
row matrix �, shifted by N=�T , i.e.,

 � �� �N=�T�u; (2)

where u � �1; . . . ; 1�.
Stability is determined by the sign of the lowest eigen-

value of P� B, min. It requires min > 0, and the spino-
dal is reached when min � 0. From Eq. (2) it follows
that the total density �T at the spinodal is �sp �
�N=�min, with �min the lowest eigenvalue of B.

Now, B is a random matrix, and for simplicity we
choose its elements Bij, i � j, as independent random
variables with mean b and standard deviation �. Since
Wigner’s pioneering work [1,2], the problem of character-
izing the spectrum of such a random matrix has received
a great deal of attention (see [6] for a review). In our
particular case, there are two theorems that fully describe
the spectrum of B.

The first theorem is due to Arnold [7], and states that
the density of rescaled eigenvalues, x � �=2�N1=2, of B
converges in probability, as N ! 1, to

W�x� �
�
2
�

��������������
1� x2

p
; if jxj � 1;

0; if jxj > 1:
(3)

This is known in the literature asWigner’s semicircle law.
When b � 0, we also require a second theorem, due to
Füredi and Komlós [8]. Under the further assumption that
jBijj � K for all i; j � 1; . . . ; N, this theorem states that if
b > 0 (b < 0), then the highest (lowest) eigenvalue is
asymptotically Gaussian distributed with a mean Nb�
�b0 � b� � �2=b�O�N�1=2� and variance 2�2, and the
remaining N � 1 eigenvalues follow Wigner’s semicircle
law. For this result we allow the diagonal elements, Bii, to
have a mean b0, which differs from the mean of the off-
diagonal elements b. So, for b � 0 there is an additional
eigenvalue which may lie outside the semicircular distri-
bution given by Eq. (3), whereas if b � 0, Eq. (3) gives the
complete distribution. This lone eigenvalue contributes a
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negligible amount to the density of eigenvaluesW but can
determine the limit of stability.

All this can be seen in numerically calculated spectra,
for N � 25, in Fig. 1. For jbj * �=N1=2 the probability
density function, p���, for the eigenvalues clearly exhib-
its a lone, Gaussian-distributed, eigenvalue, and for all b
there is a clear semicircle. To generate Fig. 1 we used
Gaussian-distributed values of the Bij but the distribution
of the Bij is irrelevant for large N. The theorems of
Arnold and of Füredi and Komlós [7,8] do not depend
on the exact distribution of the virial coefficients.

The two theorems above permit us to describe, for
largeN, the lowest eigenvalue of B and hence the spinodal
instability of our mixture. Let us define rescaled variables
� � N1=2b=� and �sp � �sp�=N

1=2. For � & �1, the
(rescaled) lowest eigenvalue, xmin, which determines the
spinodal is due to a lone eigenvalue; see the bottom curve
in Fig. 1. This eigenvalue has a mean value ��� ��1�=2
and standard deviation 1=

�������
2N

p
. As the latter goes to zero

when N ! 1, xmin is a self-averaging quantity. So, for
large N we can take [9]

h�spi �
�
�1

2xmin

�
(4)

for the spinodal. Replacing xmin by its mean value,

h�spi � �1=��� ��1�: (5)

The nature of the instability is described by the corre-
sponding eigenvector. Füredi and Komlós show that this
eigenvector is almost parallel to u [8], so it is a conden-
sation instability, as the densities of all the components
increase (or decrease) together according to the eigenvec-
tor: the instability looks like the incipient formation of
one phase enriched in all the components coexisting with
a phase depleted in all the components. Conversely, if
245701-2
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FIG. 2. The mean reduced total density at the spinodal,
h�spi � h�spi�=N

1=2, as a function of the reduced mean second
virial coefficient, � � N1=2b=�. The solid curves are the
numerically calculated mean density of the spinodal for N �
25, 100, and 400 (from top to bottom). The short-dashed
horizontal lines are the predictions of Eq. (9) for these values
of N (again from top to bottom). The N ! 1 limit of Eq. (5)
for �<�1, and of Eq. (9) (h�spi � 1=2) for � > �1, is plotted
as a long-dashed curve. For �<�1, it lies on top of the
numerically calculated values and so is not visible. The cross-
over between condensation and demixing at � � �1 is marked
by a vertical dotted line.
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FIG. 3. The mean (solid curve) of the absolute value of the
cosine of the angle � between the eigenvector with the smallest
eigenvalue and the vector with all its elements equal to 1,
hj cos���ji, and its standard deviation (dashed curve), as a
function of the reduced mean second virial coefficient, �.
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� * �1, then xmin, and hence the spinodal, is determined
by the semicircle. The lowest eigenvalue will be near the
lower end of the semicircle. We then estimate the distri-
bution of the lowest eigenvalue as follows.

Given the semicircle law, the expected number of (re-
scaled) eigenvalues between �1 and X will be given by
N
R
X
�1W�x�dx, so xmin will be in the interval ��1; X�N��,

where X�N� is defined by

N
Z X�N�

�1
W�x�dx � 1: (6)

Using Eq. (3), Eq. (6) becomes �� 2 arcsinX�

2X
���������������
1� X2

p
� 2�=N, whose solution is

X�N� � �1�m�
1

10
m2 �

11

350
m3 �O�m4�; (7)

with m � �1=2��3�=2N�2=3. Now, for a given (large) N,
xmin will be roughly distributed according to

pN�xmin� �

�
NW�xmin�; if � 1 � xmin � X�N�;
0; otherwise:

(8)

(Notice that
R
1
�1 pN�x�dx � 1, so it is a well defined

probability density.) As X�N� ! �1 when N ! 1, xmin

is self-averaging in this case as well. We can then make
use of Eq. (4) to determine the spinodal. Thus from
Eqs. (7) and (8),

h�spi �
1

2
�

3

10
m�

33

140
m2 �O�m3�: (9)

As for the eigenvector, we know that when there is a
lone eigenvalue its corresponding eigenvector is almost
parallel to u, so the eigenvector of any eigenvalue of the
semicircle must be almost orthogonal to u (the matrix is
symmetric). By continuity, this holds for xmin even when
there is no lone eigenvalue. Then, roughly half of the
components of the eigenvector are of one sign, while
the rest are of the opposite sign. The instability is with
respect to a density modulation in which about half the
components are separating from the other half: the insta-
bility looks like demixing into two phases, each one
enriched in some components and depleted in others.

The predictions of theory in both regimes, Eqs. (5) and
(9), are compared with the results of numerical calcula-
tions in Fig. 2, for N � 25, 100, and 400. The crossover
between demixing and condensation occurs for � ’ �1
in all cases. This crossover can also be seen by looking at
the angle, �, the eigenvector of xmin makes with u. In
Fig. 3, we have plotted the mean and standard deviation of
j cos���j, as a function of �, for N � 25. At around � �
�1 the cosine drops and the standard deviation peaks,
indicating that the instability eigenvector is switching
over from being nearly parallel to u to being nearly
perpendicular.

For �<�1, as N ! 1, the instability, which is with
respect to condensation, approaches that of a single com-
245701-3
ponent system with second-virial coefficient b. Such a
system becomes unstable at a spinodal density �spb �
�1, and Eq. (6) yields this result as N ! 1. For � > �1,
h�spi ! 1=2, as N ! 1, and so the total number density
at the spinodal diverges as N1=2. The mixture becomes
stable with respect to demixing at all densities as
N ! 1—also consistent with the mixture behaving as
a single component system. For finite but large N, de-
mixing requires either high densities or a broad distribu-
tion of the second-virial coefficients, i.e., large �. In
245701-3
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Fig. 2, we see that even for the smallest N of 25, the
prediction of our theory for demixing (� > �1) is quite
accurate. We also see that for condensation, our theoreti-
cal prediction is on top of the numerical curves for all
three values ofN, and that the density of the condensation
instability is insensitive to N.

Our analysis relies on several simplifying assumptions.
We have employed a second-virial coefficient approxima-
tion, have studied a mixture of components with equal
densities, and have taken the virial coefficients to be
independent random variables: hBijBiki � hBiji2, j � k.
All three assumptions can be relaxed.

Many properties of random matrices, such as the dis-
tribution of their eigenvalues (properly scaled), are self-
averaging [6]. A property R of an N by N matrix AN is
said to be self-averaging if R�AN� converges in probabil-
ity, as N ! 1, to hR�AN�i, where h i denotes an average
over some ensemble of matrices AN . This simply means
that, for large N, almost all matrices AN have the same
value of R. In particular, the lowest (scaled) eigenvalue
xmin of our random matrices B is a self-averaging prop-
erty of these matrices and hence so is the value of the
density at the spinodal. The distribution function of the
spacing of the eigenvalues of random matrices is also
self-averaging, and experimental data on nuclei show
that the spectra of nuclei far from their ground state
are, approximately, self-averaging [4,5]. The good agree-
ment between theory and experiment in the study of
nuclei relies on both the model and the experimental
system having a self-averaging property. As emphasized
by Dyson and others [2–5], the theoretical prediction is
obtained via statistical methods, but this is then com-
pared to the results for a single experimental system, e.g.,
a 235U nucleus.

So, are the thermodynamic properties of complex
mixtures, such as those found inside living cells, self-
averaging? We know of no experiments explicitly ad-
dressing this question, but self-averaging does have
measurable consequences. If the mixtures of proteins in
cytoplasms are self-averaging, then we would expect the
thermodynamics of the cytoplasms of different bacteria
cultured in the same environment to be rather similar,
even though the amino-acid sequences of many of their
proteins will be rather different. For example, if the
mixtures of proteins inside, say, E. coli and Salmonella
are extracted and subjected to a potentially destabiliz-
ing perturbation such as increased salt levels, then, if
bacterial cytoplasms are self-averaging, we would expect
the two extracts to become unstable at very similar
amounts of added salt.

Quite generally, to develop theories for very complex
systems, specified by very large numbers of parameters,
there seems little alternative to statistical approaches. By
statistical approaches we mean those that have parameters
which, instead of being definite numbers which are put
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into the model, are random variables taken from a proba-
bility distribution function which is put into the model.
The cytoplasm of bacteria such as E. coli is a very
complex system: it is a mixture of thousands of different
types of rather complex biomacromolecules, mostly pro-
tein but also RNA, DNA, polysaccharides, etc. [10,11,13].
We cannot obtain nor do we want details of all the
interactions of these molecules, but we do want to under-
stand and to be able to predict the collective properties of
this mixture, such as its osmotic pressure, where it be-
comes unstable and so on. In these circumstances, statis-
tical approaches, such as the one described here, are the
only means of making predictions. They rely on self-
averaging occurring in the experimental system, and so,
in order to establish their validity, we need to know
whether or not the complex mixtures found inside living
cells have self-averaging thermodynamic properties,
something that experiments will have to assess.
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