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We introduce a toy model of ecosystem assembly for which we are able to map out all assembly

pathways generated by external invasions. The model allows us to display the whole phase space in the

form of an assembly graph whose nodes are communities of species and whose directed links are

transitions between them induced by invasions. We characterize the process as a finite Markov chain and

prove that it exhibits a unique set of recurrent states (the end state of the process), which is therefore

resistant to invasions. This also shows that the end state is independent of the assembly history. The model

shares all features with standard assembly models reported in the literature, with the advantage that all

observables can be computed in an exact manner.
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Understanding why ecosystems are both stable and
complex is still one of the open questions in ecology [1].
At present, it is widely accepted that the dynamic process
by which ecological communities are assembled is key to
solving this puzzle. It also has profound implications for
conservation—e.g., it can shed light on how biodiversity
may recover after major crisis, or the influence it has on
community stability. Although ecosystem assembly has
been studied experimentally [2,3], the bulk of the studies
are theoretical [4–10]. These assembly models are but
idealizations of the complex processes taking place in
real ecosystem assembly, which nevertheless implement
the same mechanisms acting in the formation of real
ecosystems [11]. In this respect these models are close in
spirit to the general approach of statistical physics of
devising oversimplified paradigms which provide insights
into the real phenomena.

Previous work on ecosystem assembly made stochastic
realizations of sequential invasions based on a finite set of
possible invaders (known as ‘‘regional species pool’’ [7])
whose trophic interactions are determined in advance.
These studies conclude that (i) at the end of the process,
a final end state resistant to invasions is reached, which can
be either a single community or a set involving more than
one community between which the system fluctuates [8],
(ii) the average resistance of an ecosystem to be colonized
increases in time, and (iii) species richness also increases
in time. Then the assembly process favors increasing spe-
cies richness as well as stability, understood as resistance to
invasions.

Successful as these models may be to provide insights
into the formation of ecosystems, we still lack a global
picture of the process. The reason is at least twofold. First,
these models are defined as very complex stochastic pro-
cesses not amenable to analytical treatment, so that one can
only hope to simulate a limited set of realizations of the

process and take averages on them. This leaves some
questions open such as, for instance, whether the end state
depends on the assembly history. Although most evidence
points to the uniqueness of this end state [11], it is still a
matter of discussion [12]. Second, the size of the typical
species pool is always small, so that it has been argued [13]
that the exhaustion of good invaders might justify the
increasing resistance to invasion.
Our aim in this Letter is to propose a toy version of an

assembly model which, despite the stylized communities it
deals with, still contains all the ingredients of standard
assembly models (something like the ‘‘Ising model’’ of
ecosystem assembly) and lacks some of its limitations (like
the finiteness of the regional species pool). Its major ad-
vantage over them is that it allows us to map out the whole
‘‘phase space’’ of the system, as well as to analyze all
assembly pathways, something that permits us to obtain
exact results, to explore the set of parameters characteriz-
ing different regimes, and to answer questions out of reach
of standard assembly models. The model recovers all the
results mentioned above and provides new ones—the in-
dependence of the end state from the assembly history
being the most prominent among them.
In what follows ecosystem will refer to the system as a

whole, whereas community will stand for any particular
collection of species, i.e., any realization of the ecosystem.
There are two ingredients that assembly models build

upon: a deterministic population dynamics for the species
forming the community, and a stochastic invasion process.
For the former we essentially adopt a mean-field-like
Lotka-Volterra model recently proposed to study coexis-
tence in competing communities and trophic level organi-
zation in food webs [14–16] (these kind of models are
called neutral in ecology [17], although neutral models
assume a stochastic population dynamics, unlike the one
defined here). In this model, communities are arranged in
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trophic levels, and species at level ‘ are assumed to feed
only on species at level ‘� 1, and on all of them alike
(mean field). Although omnivory (i.e., feeding from lower
levels) can be accounted for, it is still a matter of debate
how common it is [18], so we disregard it. Accordingly, if
n‘i denotes the population of species i at level 1 � ‘ � L,

_n‘i
n‘i

¼ ��þ �þN‘�1 � ð1� �Þn‘i � �N‘ � ��N‘þ1;

_n0
n0

¼ R� n0 � ��N1; (1)

where N‘ � Ps‘
i¼1 n

‘
i , s‘ being the number of species at

level ‘, �þ controls the amount of energy available to
reproduction for each predation event, and �� takes into
account the mean damage caused by predation to prey
reproduction. Following the standard rule of efficiency
on upwards energy transport to the next trophic level
[19], we assume that these two constants are related by
�þ ¼ 0:1��. Direct interspecific competition is measured
by � < 1, while intraspecific competition is set to one to fix
the population scale [16]. We regard all these species as
consumers, and so they have a death rate �> 0. For
simplicity all parameters are assumed to be the same for
all species (this assumption is harmless because the system
has been shown to be structurally stable against variations
of the constants [15]). The second of Eqs. (1) states that all
species at the first level (basal species) predate on a single
resource whose ‘‘amount’’ is given by n0. In the absence of
basal species this resource reaches a steady value of n0 ¼
R; thus, this constant determines the maximum amount of
resource available to consumers. Finally, as real popula-
tions cannot be arbitrarily small, it is required that extant
species have a population n‘i > nc, the extinction thresh-
old. If a population falls below this value it is considered
extinct and removed from the community (see below). Low
populations are vulnerable against external variations or
adverse mutations [20], and this stochastic effect is some-
how accounted for in the deterministic dynamics (1) by the
introduction of this viability condition. Calculations have
been carried out with � ¼ 1, nc ¼ 1, �� ¼ 5, � ¼ 0:3 and
0<R � 1700. We have checked that variations of these
parameters do not change the qualitative picture.

Equations (1) have several equilibria, the main one being
the interior equilibrium. In it all species of level ‘ have the
same population n�‘. These are the solution to the system

� � ¼ ��N�
‘þ1 þ ½1þ ðs‘ � 1Þ��N�

‘=s‘ � �þN�
‘�1;

R ¼ N�
0 þ ��N�

1 ; (2)

where ‘ ¼ 1; . . . ; L, N�
‘ ¼ s‘n

�
‘, and we have the con-

straints s0 ¼ 1, sLþ1 ¼ 0. The remaining equilibria are
obtained by setting to zero any subset of the populations
and solving the linear system resulting from eliminating
those variables. Therefore one only needs the solutions of
the linear systems (2) for all possible choices of s‘ in order
to characterize the dynamical equilibrium of this model.

Interior equilibria are globally stable if, and only if, n�‘ > 0
for all ‘ ¼ 0; . . . ; L, because

Vðfn‘i gÞ ¼
XL

‘¼0

�
��
�þ

�
‘ Xs‘

i¼1

ðn‘i � n�‘ logn
‘
i Þ (3)

is a Lyapunov function [21] for (1). Therefore, given the set
of species numbers fs‘gL‘¼1, the corresponding community

is viable and stable if, and only if, n�‘ > nc for all ‘ ¼
1; . . . ; L. Thus by solving (2) for all choices of species
numbers we can determine all viable and stable commun-
ities. Let F denote the set of these communities. Although
the total size of a trophic level is not explicitly limited in
any way, the extinction threshold nc imposes a constraint
and therefore F is finite.
Equilibrium communities will undergo invasions which

change their composition. We shall assume that they take
place at a uniform rate �. Two hypotheses underlying this
model, as well as most assembly models, are (i) the typical
dynamical time is much smaller than ��1, so that com-
munities are never invaded during transients, and (ii) the
population of invaders is small [22]. Obviously, if the
invasion rate is too high [23,24] or if invaders arrive with
high populations [25], the assembly dynamics—and, con-
sequently, the final end states—will be seriously altered.
These situations are outside the scope of this model.
The invasion process goes as follows. Consider a com-

munity E 2 F , with L trophic levels, at its equilibrium
point. Invasions can occur at any level ‘ ¼ 1; . . . ; Lþ 1, so
we randomly select ‘ and add a new species, with initial
population nc, at level ‘ of the community E. Because of
the global stability of our model, the extended community
evolves to the equilibrium given by (2) with s‘ replaced by
s‘ þ 1. If this equilibrium is viable, then we will have a
new community E0 consisting of E plus the invader, and a
transition will have occurred from E to E0. If, on the
contrary, the population of the species of at least one level
falls below nc, then extinctions will occur. It is unrealistic
to extinguish the whole level, even though all its species
have the same population. In reality, if many species are
threatened, by chance one of them will be the first to
become extinct. This fact may help the remaining species
to survive. Accordingly we shall extinguish species in an
inviable level as follows. As we are monitoring the whole
trajectory of the system, we can detect the moment when
the first trophic level crossed nc. At that point we remove
one species from that level and restart the evolution from
that point. We keep on removing one species at a time and
restarting until the new resulting equilibrium becomes
viable. Two things can thus happen: Either the first level
to fall below nc is the invaded level, in which case the
invader is simply rejected and no transition occurs, or it is
another level that falls below nc. In this case we end up
with a new community E00, and a transition will have
occurred from E to E00.
Starting from the empty community,[, and considering

for every community all possible invasions, we construct a
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directed graph, the assembly graph, G, whose nodes are
elements of F and whose links are the transitions obtained
by the invasion process just described. Figure 1 represents
a typical assembly graph. From the viewpoint of statistical
mechanics, G is the phase space of our system.

The assembly process becomes a Markov chain if to
every pair of communities E andE0 we assign the transition
probability PEE0 ¼ �EE0 þ �QEE0 , where QEE0 is the frac-
tion of the Lþ 1 different invasions of E that lead to E0
(QEE0 � 0 provided G contains the link E ! E0). P is the
transition matrix of a finite, aperiodic, Markov chain, so its
states are either transient or recurrent. There can be one or
several subsets of recurrent states, the chain being ergodic
in each of them [26]. Every recurrent subset is a different
end state of the assembly process. The assembly will
depend on the history only if there are at least two such
recurrent subsets. Each recurrent subset has a stationary
probability distribution on its states.

It is worth noticing that the computation of P is exact.
This means that we have a complete and exact description
of the evolution of the assembly process on the phase
space. In particular this means that we can compute the
evolution of any observable in an exact—albeit numeric—
manner, without resorting to taking averages over realiza-
tions of the process. This is the most important difference
of this model with respect to all assembly models consid-
ered so far.

Let us now describe the results. First of all, the process
has a unique set of recurrent states for all 0< R � 1700.
This means that for this model we are able to prove that the
end state does not depend on the assembly history [5]. This
result agrees with previous evidence found in other assem-
bly models [8,11] as well as in experiments [3], where the
same kind of assumptions about the invasion rate are made.
For some values of R this end state contains a single
community but typically it contains more than one, often
very many. Figure 2 illustrates one of these sets along with
the transitions between its states. At any time the ecosys-
tem is realized by one of the communities of the set.
Invasions may induce transitions between communities
of this set but never lead outside it; hence, the set as a
whole is resistant to invasions. The frequency with which a
community is visited defines a stationary probability on the
set. Notice that only a few communities (rather similar to
each other) are visited with a high probability, so the net
result is as if the community were ‘‘fluctuating.’’ Figure 3
shows the number of communities in the end state vs R.
One can see that as R is increased towards the onset of a
new level appearance the number of communities increases
considerably, to drop down to just one once the new level
has established.
Inset in Fig. 3 represents the mean number of species in

the end state vs R. The dependence is basically linear,
except for some dips near the onset of a new level followed
by a discontinuous jump once the new level is established.
This behavior reflects a top-predator effect: Top predators
control the populations of their preys, avoiding their ex-
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FIG. 1 (color online). Assembly graph obtained for R ¼ 140.
It displays 130 communities with up to three trophic levels. The
numbers indicate how many species are in each level. Black
arrows represent accepted invasions; red arrows represent tran-
sitions inducing a species loss. The only node in blue (corre-
sponding to the community f16; 4; 1g) represents the end state of
the assembly process.
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FIG. 2 (color online). End state of the assembly process ob-
tained for R ¼ 430. It contains 68 communities (the assembly
graph contains 3060 communities). Black arrows represent ac-
cepted invasions, whereas yellow ones represent transitions with
species loss (width is proportional to the number of extinctions).
The diameter of the nodes is proportional to the stationary
probability of its community. Labels provide the number of
species at each level.
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tinction by overconsumption of their resources [27]. As a
matter of fact we have checked that when a new level
appears it contains a single top predator and the number
of species at lower levels rises.

Other interesting observables are the probabilities of
accepting the invader, PiðtÞ, and of undergoing a reconfigu-
ration after the invasion, PaðtÞ. Both are obtained as

Pi=aðtÞ ¼ P
Eð
P0

E0PEE0 ÞðPtÞE[, where the inner sum runs

over transitions from E to E0 � E in which the invader is
accepted, or in which there is a reconfiguration of the
community, respectively. Both functions show a monotonic
increase of the resistance to invasion as the community
assembles. Species richness can be computed similarly. It
grows monotonically up to saturation in the steady state.
Both features, increasing resistance to invasion and in-
creasing species richness, are common results of standard
assembly models [7,8].

In summary, this minimalistic assembly model exhibits
the same behavior as those reported in the literature, in-
dicating that this behavior is very robust and probably
shared also by real ecosystems. Our model, however, pro-
vides a complete and exact description of both, the set of
microstates and the dynamical pathways of the assembly
process. So we are not limited, as in standard assembly
models, to compute averages over a small set of realiza-
tions of the process. To give a hint about what this means,
we have calculated, for R ¼ 300 (a case with an end state
made of a single community of three trophic levels and 50
species), that there are �1010 different minimum-length
pathways leading from the empty to the end state. This
number is nothing that a simulation can come close to. This
model allows us to prove rigorously that its end state does
not depend on the assembly history. Whether this is a fea-
ture that real ecosystems exhibit will, of course, depend on
how well they fulfill the assumptions about the invasion
rate underlying this and other assembly models. But a ca-
veat should be made: As species of each trophic level are
indistinguishable, uniqueness (and hence independence on
history) refers only to the number of species at each level.
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FIG. 3. Number of recurrent states of the Markov chain as a
function of the resource saturation R, obtained using the algo-
rithm of Ref. [28]. Inset: Mean number of species in the sta-
tionary state vs R.
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