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Phase behavior of additive binary mixtures in the limit of infinite asymmetry
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We provide an exact mapping between the density functional of a binary mixture and that of the effective
one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto
that of parallel adhesive hard cubes. Its phase behavior reveals that demixing of a very asymmetric mixture can
only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids
with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behavior of
very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an
adhesivelike potentia[S1063-651X98)51610-9

PACS numbgs): 61.20.Gy, 64.75tg, 82.70.Dd

Since Biben and Hansen showd that a binary mixture the functional of the mixture onto that of the corresponding
of hard sphere$¢HS) in Rogers-Young approximation has a adhesive fluid, and hence their respective phase behaviors.
spinodal instability for diameter ratios smaller than 0.2, itis  The procedure is as follows. As usual in these systems we
generally accepted that a demixing transition occurs in thigix the chemical potential of the small particlgsg (semi-
fluid if the asymmetry between the two component sizes igrand ensembje and therefore the system is described by
large enough. This fact has been confirmed with other theathe functional
ries[2], simulationd 3], and experiments in colloidal suspen-
sions[4]. The question is no more whether such a mixture
demixes but which is its phase behavior. Some approximate
theories[5] suggest that the phase rich in large spheres is a ) , ) )
crystal instead of a fluid, in agreement with what is observedL(s) P€ing the density profile of the largemal) particles,
in the experiment$§4]. The depletion potential between the andF.the Helmholtz free—e'nergy functional. The equmbr_lum
large spheres due to the small ones has been determined b&ﬂuatl_on forps in EQ.‘ (l_) IS u'su'al'ly a nonlinear quatlon
perturbatively[6] and in simulation§7]. If the interaction of involving both densities; the infinite asymmetry limit then

the small spheres is replaced by this potential the resultinggogﬁ dticr)l eép|'0'tl¥h?sb?'2’; gtiisn ?rgni)]fgﬁzz'%%l\)'v:motzrrs
effective fluid can be simulatdd@—9]. In the unstable region P 9 O, - P

f the bi it | lust f depleted soh effective Helmholtz free-energy functional for the depleted
ot the binary mIXIUre large clusters ot depieted spheres ar|%1rge—component fluidup to some divergent terms that do
formed, which evolve very slowlly7]. The phase behavior of

. . ) ) ; not affect the phase behavipwith the fugacity of the sol-
this effective fluid for diameter ratios smaller than @819] o playing the role of an inverse temperature.
shows a large coexistence region between a diluted fluid and The direct correlation functioDCF) of the effective

a highly packed solid, and even an isostructural solid-solidyyid is defined as minus the second functional derivative of
transition, .|f the small spheres packing fraction and the dithe excess part of Eq1) with respect top, . It is straight-
ameter ratio are low enough. forward to see that this leads to the following relationship

The picture emerging from these studies is that the phasgith the components of the DCF of the mixture, written in
behavior of a very asymmetric binary mixture can be underfourier space:

stood in terms of the phase behavior of a fluid of HS inter-

SF
Y(MS-[PL]):F[PLvPS]_MSJ Ps: Ms=5 ) 1

acting via a depletion potential. This potential has a very R R pSéLS(k)Z
narrow (essentially the diameter of the small sph¢rasd Ce(K)=C_ (k) + ——. 2
deep well[7,6], and this type of potential has been proven to 1-psCsdk)

have no liquid phasgl0,11]: there is only fluid-solid coex-
istence, or, if it is narrower and deeper, in addition there mayn terms of the structure factor this expression is equivalent
appear an isostructural solid-solid transition. to assumingSe(K)=S | (k). This is precisely the procedure
In this Rapid Communication we will explore this con- used in[13] to map a binary HS mixture onto an adhesive
nection between the phase behavior of an additive binar¥iS fluid in the limite=os/0 —0, o\ (5 denoting the diam-
mixture and that of the effective depleted one-componeneter of the larggsmall) spheres.
fluid by explicitly showing that the Helmholtz free-energy ~ To proceed with the functional mapping we have de-
functional of the mixture reduces to that of the correspondingcribed above we need a free-energy functional able to deal
one-component adhesive fluid in the limit of infinite asym-with strong inhomogeneitie@he solvent can be regarded as
metry. That in this limit the solvent induces an adhesivea fluid confined in between the large partiglésundamental
interaction between the large particles is already a knowmeasure functionals are perfect candidéfies-17 both be-
result[12,13; but we are going a step further by mapping cause of their ability to reduce dimensional[ty5,17] and
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because they are formulated directly for mixtures. On thewneighted densities generically defined as the convolution
other hand, for the sake of simplicity we have chosen ton,=3p;* w{®, where
apply this procedure to a binary mixture of parallel hard

cubes(PHCO). This fluid has also been shown to have a spin- w0V=66Y6%,

odal instability both in simulations on a latti¢&8] and in

continuum spacg16], thus its phase behavior can be ex- Wh=(0X8Y5%,6%0Y5%,6%8Y67),
pected to be qualitatively similar to that of HS. The proce-

dure applied to the latter, however, has a higher level of W2=(5%0Y0%,075Y0%,01075%),
complexity both because of the more complicated shape of

the functionald15] and because the weaker depletion in this 0P=0%0Y07,

fluid requires expansion to a higher ordereirThere is noth-

ing fundamental, though, which prevents its application towith 6;'=0 (/12— |ul), and §;'=(1/2)8(o/2—|u]).

HS, and we are currently working along this line. According to Eq(1) the equilibrium scaled density of the
In order to determine the appropriate scaling of the solsolventé(r)=e“pg(r) is given by

vent packing fractionyg we first take thee—0 limit in Eq.

(2), forcing it to produce a finite nontrivial result. The right o N=Bu+In — J e 0@ (r 9
choice isys=0(¢€); thus, if we defineps= €&, the resulting 9 &(=PBus € Z, an, ws™(r). ©
DCF will be (oy=1 in what follows Cg4=Cpnct Cags ) )

where If we now take into account that, for any functidi(r),

fxw{®=e*f+0(e**?), for «=3 or any vector component
z of @=2,1, andf*w®=f+(e%/8)V2f+0O(e?), then &(r)
- 2 . 1=y S y
Cad") 2(1_7]){5com(r)+y8(r)+6y vy @) =27[1-"3(r) ]+ €&1(r) + €2£,(r) + O(€2) is the e expansion
_ of ¢£in terms of then, andz (for the sake of brevity we omit
Cpn(r) is the DCF of a one-component PHC flUfiti6,17  the expressions of; and¢,). By overline we are denoting
of packing fractionn= 7, (actually the total packing frac- weighted densities of only the large component.

tion in the limiting fluid); z=€? expBu®™) = &/(1— 7) is the We can now insert the expansion &fnto the definition
“renormalized” excesgover ideal fugacity of the solvent; of Y [Eq. (1)] and expand the whole functional in powers of
y=nl/(1-17); and e. This leads to
SconfF)=8(1—|x])L(y)L(2)+ 8(1—|y])L(x)L(Z) Y (us,[p])=—Io(€)V+ po(€)N+Fpapct O(E),( )
10
+8(1—[zhHL(x)L(y), (4)
S(N=0(1-|x)L(y)L(z)+O(1-|y|)L(X)L(2) ,BFPAHC:J dr{®ig+ Doyt Pyd- (12)
+O(1-[ZhLOIL(Y), ) The term—TI,V+ uoN diverges withe—0: nevertheless it

B is irrelevant for the phase behavior because it simply adds
V(N =LX)L(Y)L(2), 6) I, to the pressure angl, to the chemical potential of the
with L(u)=(1—|u)®(1—|u|) and ®(v)=1 if v=0 and large particles. These are two divergent constants @at just

=0 otherwise. cancel out in the equilibrium equations. The functichg

Apart from corrections proportional to the overlap surfaceand ® ., are given by Eqs(7) and(8) but only for the large
(5) and volume(6), at larger densities, the lowest density component, and 4 is given by
correction(4) is a 6 on the contact surface, also proportional
to the actual contact surface. This has its origin in the effec- _Z | VN3|®—4nz- 1y
tive adhesivepotential on the surfaces of the cubes induced ad— g 1-ng
by the solvent, and it turns out to be a natural extension of
that for HS[13,19. We will thus refer to this fluid as the A few things are worth noticing here. First of all we can
parallel adhesive hard cuPAHC) fluid. see that out of this procedure a new weighted density has

Once we know the scaling of the density we can detercome up, namelyyns, which was missing at the beginning.
mine the free energy with the procedure described aboveédecond, the second functional derivative of the interaction
The fundamental measure functional of a mixture of PHC igpart of Fpayc yields the DCF(3), and this provides a con-
given by[17] BF = [dr{®4(r) + P(r)}, where sistency test. Finallyp 4 is a negative contribution, it arises

from an attractive interaction, as it can be easily realized
particularizing for the uniform fluidit can also be checked
®id(r)=§i: pi(r){loglVipi(r)]—1}, () that this term is negative fany density profile.

The equation of state of the PAHC uniform fluid, in terms
of y=»/(1— 5), turns out to be

(12

Ni-Ny  NpxNoyNy,
b (r)=—ngIn(1—njz)+ ) 8
od1) 0o In(1-ny) 1-n, " (1-ny)? 8) BP=y+3(1—2z/2)y?+2y3. (13

V., being the thermal volume of specieg;(r) its local num-  As in the case of the adhesive hard sph&fdsS) fluid [19]
ber density, andhg,n;,n,,n; are a set of “fundamental” this equation has a van der Waals loop, and hence yields a
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they are metastable phases, mostly separated from the close-
packed solid by large free-energy barriers. The limit of me-
chanical stability of these metastable phases is shown in Fig.
1(a). It can be seen that the larger the larger the density
range of metastability.

Thus, the situation one will typically find in the PAHC
fluid is the following. At large values of the fluid will
quickly collapse into the close-packed configuration. At
small values of, however, the fluid will be trapped in meta-
stable phases for very long times; upon increasjrige fluid
will be seen to undergo a continuous fluid-solid transition at
7n~0.3, and it can remain solid for a very long period of

n n time; if we move at still higher; the system will eventually
collapse, but as it may take long for the whole system to do

FIG. 1. Solvent fugacity vs solute packing fractiom of the it there may be an apparent expanded solid-collapsed solid
infinitely asymmetric binary mixture of PHC, both witho&# and  coexistence. This picture is a caricature of the typical phase
with (b) polydispersity Ao/o=4.5%). (a) The thick solid line  diagram of a fluid exhibiting an isostructural solid-solid tran-
separates the unstable regid)(from the metastable one; the thin sjtion [10,11].
one marks thécontinuous transition from a metastable fluid/F) A similar behavior has been observed for the AHS fluid
to a metastable soli@VS); the dashed one is the fluid-fluid spin- [21]: the phase diagram reveals a freezing transition in spite
odal._(b) The thick §0I|d line marks the fde_—soIld or §0|Id-§0|ld that the free energy becomes concave beyond a certain pack-
coem_s_tence; the thin ong marks ag_aln (bentlnuous;_ﬂwq-solld ing fraction (depending on the adhesiveneskhe latter was
transmon_beloyv the c_oemstence region; the dotted line is the meta\‘nterpreted in21] as a percolation transition; however, it is
stable fluid-fluid coexistence. simply a sign of the collapse singularity, which did not show

up because the density of vacancies was fixed t@rid
gas-liquid phase transitioisee Fig. 1with a critical point at hence the lattice parameter is forced todse 7 ¥*>1; we
z.=2(1+2/3)~3.63, .= (1+6) 1~0.29. observe the same behavior in our system when wevfix

Allowing for inhomogeneous phases, however dramati-=1). The reported phase diagram is thus metastatum-
cally changes the phase behavior. As usual in density fungare the qualitative agreement with the one shown in Fig.
tional theories we determine the solid free energy by writingl(a) for the PAHC fluid.
pL(r) as a sum of Gaussians centered at the nodes of a The collapse of the adhesive potential can be removed by
(simple cubig lattice, leaving their width as a variational adding a small amount of polydispersj®0,22. To see what
parameter. We also account for vacancies by multiplying bythe phase diagram looks like we have introduced a small
an occupancy probability, which acts as a second varia- amount of size polydispersity in the large cubes. In the fun-
tional parameter. This occupancy can be expressed in terng@mental measure formalism this simply amounts to replac-
of the lattice parameterd, as v=7d3 henced can be ing the weightsw(® by their average®® over the chosen
treated as an alternative variational parameter, subject to theze distribution. We have made the simplest computational
constraintd=1. The first thing we can see is that the fluid- choice for the latter: we have replaced the large cubes by
solid transition is continuous; therefore, we actually obtain itparallelepipeds, where each of their edge-lengths is chosen
directly from the DCH3) by a standard bifurcation analysis, random and independently from a Gaussian distribution of
and that it crosses the fluid-fluid coexistence at a packingnean 1 and deviatioAo. It turns out that this choice trans-
fraction n<#.. Hence, the fluid-fluid transition is pre- forms the former weights into “smoothed” versions of them,
empted by freezing. and that this removes the divergencedof; no matter how

But havingd as a variational parameter reveals that anysmall Ao be. Besides, this choice leaves the free energy of
of these phases is metastable. The reason isathaty value the uniform fluid unchanged.
of z, &4~ —o asd— 1. Thus, the only thermodynamically The results are plotted in Fig(H). It can be seen that now
stable phases this system possesses are a closed-packed sefidreally have the typical phase diagram of a fluid exhibiting
coexisting with a zero-density fluid. This is not surprising if an isostructural solid-solid transition, except that for this sys-
one compares it with the phase behavior of adhesive hart#m the fluid-solid transition is continuous. For large values
sphere§AHS). Computer simulations of a square-well fluid of z we have a very diluted fluid and a very dense solid
with well-range going to zerpl0] reveal that the AHS fluid separated by a large coexistence region. As we decrghse
also has the same phase behavior. This singularity was atoexisting fluid eventually becomes denser until it reaches
ready noticed by Stelf20], who proved that the partition the density at which freezing occurs. From then on and down
function of the AHS fluid diverges for a system of 12 or to a critical value zg, coexistence is between an expanded
more particleg12 is the coordination number of a fcc lat- and a dense solid with the same crystal structure.
tice). It simply expresses the fact that at any density and The results we have obtained can be reinterpreted in terms
adhesivenesssolvent fugacity in our cagehe system col- of the original very asymmetric binary mixture. The fluid
lapses into a close-packed solid lattice. phase would correspond to the stable mixture, and the solid

Nevertheless, a more detailed exploration of the phasphases to the solid of large particles permeated by a fluid of
diagram shows that the fluid or the normal solid are somesmall particles. According to the PAHC phase diagram, ei-
times local minima of the free-energy functional, and thusther mono- or polydisperse, no fluid-fluid phase separation
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will ever occur for very asymmetric binary mixtures of PHC; range of solvent fugaciti¢gsWe can see then that this phase
instead, at large solvent fugacitiarge solvent densijythere  behavior can be inferred from that of the AHS flUid1].
will be fluid-solid phase separation, and at smaller solvenfhis result is of great importance because it establishes a
fugacity the phase separation will take plaféer the large  connection between the phase behavior of mixtures and that
particles have crystallized. of the solvent fluid interacting via an adhesivelike potential
Notice that the existence of this fluid-solid phase separaf10,11], thus opening a new route to study demixing in hard-
tion largely increases the region of the phase diagram whergarticle fluids. This remarkable enhancement of the slow di-
the mixture is unstable. This explains why recent simulations/ergence of the pair correlation function of two large bodies
on very asymmetric binary mixtures of PHG] report the  at contact, induced by depleti¢t2], is probably due to the
mixture to be unstable at packing fractions of the large comfact that the confinement of the solvent in between the solute
ponent much smaller than those predicted by fluid-fluidparticles induces strong inhomogeneities in the forfisee
phase separatiofiL6] (notice that, according to Buhot and Eq. (9)] and hence largely increase depletion.
Krauth [3], the nature of the coexisting phases cannot be
discerned in their simulation
The same kind of phase behavior has been very recently It is a pleasure to thank Daan Frenkel and Pedro Tarazona
reported to occur in simulations of binary mixtures of HS atfor illuminating discussions. This work is supported by
finite (but smal) diameter ratios using the depletion potential Project No. PB96-0119 from the DireccioGeneral de
[8,9] (they also show a solid-solid transition in a certain Ensémnza SuperiofSpain.
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