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Phase behavior of additive binary mixtures in the limit of infinite asymmetry

Yuri Martı́nez-Rato´n and Jose´ A. Cuesta
Grupo Interdisciplinar de Sistemas Complicados (GISC), Departamento de Matema´ticas, Escuela Polite´cnica Superior,

Universidad Carlos III de Madrid, c/ Butarque, 15, 28911 Legane´s, Madrid, Spain
~Received 20 April 1998!

We provide an exact mapping between the density functional of a binary mixture and that of the effective
one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto
that of parallel adhesive hard cubes. Its phase behavior reveals that demixing of a very asymmetric mixture can
only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids
with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behavior of
very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an
adhesivelike potential.@S1063-651X~98!51610-8#

PACS number~s!: 61.20.Gy, 64.75.1g, 82.70.Dd
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Since Biben and Hansen showed@1# that a binary mixture
of hard spheres~HS! in Rogers-Young approximation has
spinodal instability for diameter ratios smaller than 0.2, it
generally accepted that a demixing transition occurs in
fluid if the asymmetry between the two component sizes
large enough. This fact has been confirmed with other th
ries@2#, simulations@3#, and experiments in colloidal suspe
sions @4#. The question is no more whether such a mixtu
demixes but which is its phase behavior. Some approxim
theories@5# suggest that the phase rich in large spheres
crystal instead of a fluid, in agreement with what is observ
in the experiments@4#. The depletion potential between th
large spheres due to the small ones has been determined
perturbatively@6# and in simulations@7#. If the interaction of
the small spheres is replaced by this potential the resul
effective fluid can be simulated@7–9#. In the unstable region
of the binary mixture large clusters of depleted spheres
formed, which evolve very slowly@7#. The phase behavior o
this effective fluid for diameter ratios smaller than 0.1@8,9#
shows a large coexistence region between a diluted fluid
a highly packed solid, and even an isostructural solid-so
transition, if the small spheres packing fraction and the
ameter ratio are low enough.

The picture emerging from these studies is that the ph
behavior of a very asymmetric binary mixture can be und
stood in terms of the phase behavior of a fluid of HS int
acting via a depletion potential. This potential has a v
narrow ~essentially the diameter of the small spheres! and
deep well@7,6#, and this type of potential has been proven
have no liquid phase@10,11#: there is only fluid-solid coex-
istence, or, if it is narrower and deeper, in addition there m
appear an isostructural solid-solid transition.

In this Rapid Communication we will explore this con
nection between the phase behavior of an additive bin
mixture and that of the effective depleted one-compon
fluid by explicitly showing that the Helmholtz free-energ
functional of the mixture reduces to that of the correspond
one-component adhesive fluid in the limit of infinite asym
metry. That in this limit the solvent induces an adhes
interaction between the large particles is already a kno
result @12,13#; but we are going a step further by mappin
PRE 581063-651X/98/58~4!/4080~4!/$15.00
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the functionalof the mixture onto that of the correspondin
adhesive fluid, and hence their respective phase behavio

The procedure is as follows. As usual in these systems
fix the chemical potential of the small particles,mS ~semi-
grand ensemble!, and therefore the system is described
the functional

Y~mS ,@rL# !5F@rL ,rS#2mSE rS , mS5
dF

drS~r !
, ~1!

rL(S) being the density profile of the large~small! particles,
andF the Helmholtz free-energy functional. The equilibriu
equation forrS in Eq. ~1! is usually a nonlinear equatio
involving both densities; the infinite asymmetry limit the
allows to explicitly obtainrS as an expansion with term
depending onrL . This operation transforms Eq.~1! into an
effective Helmholtz free-energy functional for the deplet
large-component fluid~up to some divergent terms that d
not affect the phase behavior!, with the fugacity of the sol-
vent playing the role of an inverse temperature.

The direct correlation function~DCF! of the effective
fluid is defined as minus the second functional derivative
the excess part of Eq.~1! with respect torL . It is straight-
forward to see that this leads to the following relationsh
with the components of the DCF of the mixture, written
Fourier space:

Ĉeff~k!5ĈLL~k!1
rSĈLS~k!2

12rSĈSS~k!
. ~2!

In terms of the structure factor this expression is equival
to assumingSeff(k)5SLL(k). This is precisely the procedur
used in@13# to map a binary HS mixture onto an adhesi
HS fluid in the limite[sS /sL→0, sL(S) denoting the diam-
eter of the large~small! spheres.

To proceed with the functional mapping we have d
scribed above we need a free-energy functional able to
with strong inhomogeneities~the solvent can be regarded a
a fluid confined in between the large particles!. Fundamental
measure functionals are perfect candidates@14–17# both be-
cause of their ability to reduce dimensionality@15,17# and
R4080 © 1998 The American Physical Society
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because they are formulated directly for mixtures. On
other hand, for the sake of simplicity we have chosen
apply this procedure to a binary mixture of parallel ha
cubes~PHC!. This fluid has also been shown to have a sp
odal instability both in simulations on a lattice@18# and in
continuum space@16#, thus its phase behavior can be e
pected to be qualitatively similar to that of HS. The proc
dure applied to the latter, however, has a higher level
complexity both because of the more complicated shap
the functionals@15# and because the weaker depletion in t
fluid requires expansion to a higher order ine. There is noth-
ing fundamental, though, which prevents its application
HS, and we are currently working along this line.

In order to determine the appropriate scaling of the s
vent packing fractionhS we first take thee→0 limit in Eq.
~2!, forcing it to produce a finite nontrivial result. The righ
choice ishS5O(e); thus, if we definehS5ej, the resulting
DCF will be (sL51 in what follows! Ceff5CPHC1Cad,
where

Cad~r !5
z

2~12h!
$dcont~r !1yS~r !16y2V~r !%; ~3!

CPHC(r ) is the DCF of a one-component PHC fluid@16,17#
of packing fractionh5hL ~actually the total packing frac
tion in the limiting fluid!; z[e2 exp(bmex)5j/(12h) is the
‘‘renormalized’’ excess~over ideal! fugacity of the solvent;
y[h/(12h); and

dcont~r !5d~12uxu!L~y!L~z!1d~12uyu!L~x!L~z!

1d~12uzu!L~x!L~y!, ~4!

S~r !5Q~12uxu!L~y!L~z!1Q~12uyu!L~x!L~z!

1Q~12uzu!L~x!L~y!, ~5!

V~r !5L~x!L~y!L~z!, ~6!

with L(u)[(12uuu)Q(12uuu) and Q(v)51 if v>0 and
50 otherwise.

Apart from corrections proportional to the overlap surfa
~5! and volume~6!, at larger densities, the lowest dens
correction~4! is ad on the contact surface, also proportion
to the actual contact surface. This has its origin in the eff
tive adhesivepotential on the surfaces of the cubes induc
by the solvent, and it turns out to be a natural extension
that for HS @13,19#. We will thus refer to this fluid as the
parallel adhesive hard cube~PAHC! fluid.

Once we know the scaling of the density we can de
mine the free energy with the procedure described abo
The fundamental measure functional of a mixture of PHC
given by @17# bF5*dr$F id(r )1Fex(r )%, where

F id~r !5(
i

r i~r !$ log@Vir i~r !#21%, ~7!

Fex~r !52n0 ln~12n3!1
n1•n2

12n3
1

n2,xn2,yn2,z

~12n3!2 , ~8!

Vi being the thermal volume of speciesi ,r i(r ) its local num-
ber density, andn0 ,n1 ,n2 ,n3 are a set of ‘‘fundamental’’
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weighted densities generically defined as the convolut
na5( ir i* v i

(a) , where

v i
~0![d i

xd i
yd i

z ,

wi
~1![~u i

xd i
yd i

z ,d i
xu i

yd i
z ,d i

xd i
yu i

z!,

wi
~2![~d i

xu i
yu i

z ,u i
xd i

yu i
z ,u i

xu i
yd i

z!,

v i
~3![u i

xu i
yu i

z ,

with u i
u5Q(s i /22uuu), andd i

u5(1/2)d(s i /22uuu).
According to Eq.~1! the equilibrium scaled density of th

solventj(r )[e2rS(r ) is given by

log j~r !5bmS
ex1 ln e22(

a

]Fex

]na
* vS

~a!~r !. ~9!

If we now take into account that, for any functionf (r ),
f * vS

(a)5ea f 1O(ea12), for a53 or any vector componen
of a52,1, and f * vS

(0)5 f 1(e2/8)¹2f 1O(e4), then j(r )
5z@12n̄3(r )#1ej1(r )1e2j2(r )1O(e3) is thee expansion
of j in terms of then̄a andz ~for the sake of brevity we omit
the expressions ofj1 andj2). By overline we are denoting
weighted densities of only the large component.

We can now insert the expansion ofj into the definition
of Y @Eq. ~1!# and expand the whole functional in powers
e. This leads to

Y~mS ,@rL# !52P0~e!V1m0~e!N1FPAHC1O~e!,
~10!

bFPAHC5E dr $F̄ id1F̄ex1Fad%. ~11!

The term2P0V1m0N diverges withe→0; nevertheless it
is irrelevant for the phase behavior because it simply a
P0 to the pressure andm0 to the chemical potential of the
large particles. These are two divergent constants that

cancel out in the equilibrium equations. The functionsF̄ id

andF̄ex are given by Eqs.~7! and ~8! but only for the large
component, andFad is given by

Fad5
z

8

u¹n̄3u224n̄2•n̄2

12n̄3
. ~12!

A few things are worth noticing here. First of all we ca
see that out of this procedure a new weighted density
come up, namely,¹n̄3 , which was missing at the beginning
Second, the second functional derivative of the interact
part of FPAHC yields the DCF~3!, and this provides a con
sistency test. Finally,Fad is a negative contribution, it arise
from an attractive interaction, as it can be easily realiz
particularizing for the uniform fluid~it can also be checked
that this term is negative forany density profile!.

The equation of state of the PAHC uniform fluid, in term
of y5h/(12h), turns out to be

bP5y13~12z/2!y212y3. ~13!

As in the case of the adhesive hard spheres~AHS! fluid @19#
this equation has a van der Waals loop, and hence yiel
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gas-liquid phase transition~see Fig. 1! with a critical point at
zc52(11A2/3)'3.63, hc5(11A6)21'0.29.

Allowing for inhomogeneous phases, however dram
cally changes the phase behavior. As usual in density fu
tional theories we determine the solid free energy by writ
rL(r ) as a sum of Gaussians centered at the nodes
~simple cubic! lattice, leaving their width as a variationa
parameter. We also account for vacancies by multiplying
an occupancy probabilityn, which acts as a second varia
tional parameter. This occupancy can be expressed in te
of the lattice parameter,d, as n5hd3; hence d can be
treated as an alternative variational parameter, subject to
constraintd>1. The first thing we can see is that the flui
solid transition is continuous; therefore, we actually obtain
directly from the DCF~3! by a standard bifurcation analysi
and that it crosses the fluid-fluid coexistence at a pack
fraction h,hc . Hence, the fluid-fluid transition is pre
empted by freezing.

But havingd as a variational parameter reveals that a
of these phases is metastable. The reason is thatat any value
of z, Fad→2` asd→1. Thus, the only thermodynamicall
stable phases this system possesses are a closed-packe
coexisting with a zero-density fluid. This is not surprising
one compares it with the phase behavior of adhesive h
spheres~AHS!. Computer simulations of a square-well flu
with well-range going to zero@10# reveal that the AHS fluid
also has the same phase behavior. This singularity was
ready noticed by Stell@20#, who proved that the partition
function of the AHS fluid diverges for a system of 12
more particles~12 is the coordination number of a fcc la
tice!. It simply expresses the fact that at any density a
adhesiveness~solvent fugacity in our case! the system col-
lapses into a close-packed solid lattice.

Nevertheless, a more detailed exploration of the ph
diagram shows that the fluid or the normal solid are som
times local minima of the free-energy functional, and th

FIG. 1. Solvent fugacityz vs solute packing fractionh of the
infinitely asymmetric binary mixture of PHC, both without~a! and
with ~b! polydispersity (Ds/s54.5%). ~a! The thick solid line
separates the unstable region (U) from the metastable one; the thi
one marks the~continuous! transition from a metastable fluid~MF!
to a metastable solid~MS!; the dashed one is the fluid-fluid spin
odal. ~b! The thick solid line marks the fluid-solid or solid-soli
coexistence; the thin one marks again the~continuous! fluid-solid
transition below the coexistence region; the dotted line is the m
stable fluid-fluid coexistence.
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they are metastable phases, mostly separated from the c
packed solid by large free-energy barriers. The limit of m
chanical stability of these metastable phases is shown in
1~a!. It can be seen that the largerz, the larger the density
range of metastability.

Thus, the situation one will typically find in the PAHC
fluid is the following. At large values ofz the fluid will
quickly collapse into the close-packed configuration.
small values ofz, however, the fluid will be trapped in meta
stable phases for very long times; upon increasingh the fluid
will be seen to undergo a continuous fluid-solid transition
h'0.3, and it can remain solid for a very long period
time; if we move at still higherh the system will eventually
collapse, but as it may take long for the whole system to
it there may be an apparent expanded solid-collapsed s
coexistence. This picture is a caricature of the typical ph
diagram of a fluid exhibiting an isostructural solid-solid tra
sition @10,11#.

A similar behavior has been observed for the AHS flu
@21#: the phase diagram reveals a freezing transition in s
that the free energy becomes concave beyond a certain p
ing fraction~depending on the adhesiveness!. The latter was
interpreted in@21# as a percolation transition; however, it
simply a sign of the collapse singularity, which did not sho
up because the density of vacancies was fixed to 0~and
hence the lattice parameter is forced to bed5h21/3.1; we
observe the same behavior in our system when we fin
51). The reported phase diagram is thus metastable@com-
pare the qualitative agreement with the one shown in F
1~a! for the PAHC fluid#.

The collapse of the adhesive potential can be removed
adding a small amount of polydispersity@20,22#. To see what
the phase diagram looks like we have introduced a sm
amount of size polydispersity in the large cubes. In the fu
damental measure formalism this simply amounts to rep
ing the weightsvL

(a) by their averagesṽL
(a) over the chosen

size distribution. We have made the simplest computatio
choice for the latter: we have replaced the large cubes
parallelepipeds, where each of their edge-lengths is cho
random and independently from a Gaussian distribution
mean 1 and deviationDs. It turns out that this choice trans
forms the former weights into ‘‘smoothed’’ versions of them
and that this removes the divergence ofFad no matter how
small Ds be. Besides, this choice leaves the free energy
the uniform fluid unchanged.

The results are plotted in Fig. 1~b!. It can be seen that now
we really have the typical phase diagram of a fluid exhibiti
an isostructural solid-solid transition, except that for this s
tem the fluid-solid transition is continuous. For large valu
of z we have a very diluted fluid and a very dense so
separated by a large coexistence region. As we decreasez the
coexisting fluid eventually becomes denser until it reac
the density at which freezing occurs. From then on and do
to a critical value,zs , coexistence is between an expand
and a dense solid with the same crystal structure.

The results we have obtained can be reinterpreted in te
of the original very asymmetric binary mixture. The flu
phase would correspond to the stable mixture, and the s
phases to the solid of large particles permeated by a fluid
small particles. According to the PAHC phase diagram,
ther mono- or polydisperse, no fluid-fluid phase separat

a-
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will ever occur for very asymmetric binary mixtures of PHC
instead, at large solvent fugacity~large solvent density! there
will be fluid-solid phase separation, and at smaller solv
fugacity the phase separation will take placeafter the large
particles have crystallized.

Notice that the existence of this fluid-solid phase sepa
tion largely increases the region of the phase diagram wh
the mixture is unstable. This explains why recent simulatio
on very asymmetric binary mixtures of PHC@3# report the
mixture to be unstable at packing fractions of the large co
ponent much smaller than those predicted by fluid-fl
phase separation@16# ~notice that, according to Buhot an
Krauth @3#, the nature of the coexisting phases cannot
discerned in their simulation!.

The same kind of phase behavior has been very rece
reported to occur in simulations of binary mixtures of HS
finite ~but small! diameter ratios using the depletion potent
@8,9# ~they also show a solid-solid transition in a certa
v
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l

range of solvent fugacities!. We can see then that this pha
behavior can be inferred from that of the AHS fluid@21#.
This result is of great importance because it establishe
connection between the phase behavior of mixtures and
of the solvent fluid interacting via an adhesivelike potent
@10,11#, thus opening a new route to study demixing in ha
particle fluids. This remarkable enhancement of the slow
vergence of the pair correlation function of two large bod
at contact, induced by depletion@12#, is probably due to the
fact that the confinement of the solvent in between the so
particles induces strong inhomogeneities in the former@see
Eq. ~9!# and hence largely increase depletion.
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Enseñanza Superior~Spain!.
.

.

@1# T. Biben and J.-P. Hansen, Phys. Rev. Lett.66, 2215~1991!.
@2# H. N. W. Lekkerkerker and A. Stroobants, Physica A195, 387

~1993!; Y. Rosenfeld, Phys. Rev. Lett.72, 3831 ~1994!. T.
Coussaert and M. Baus,ibid. 79, 1881 ~1997!; 80, 4832~E!
~1998!.

@3# A. Buhot and W. Krauth, Phys. Rev. Lett.80, 3787~1998!.
@4# A. D. Dinsmore, A. G. Yodh, and D. J. Pine, Phys. Rev. E52,

4045~1995!; U. Steiner, A. Meller, and J. Stavans, Phys. Re
Lett. 74, 4750~1995!; A. Imhof and J. K. G. Dhont,ibid. 75,
1662 ~1995!.

@5# W. C. K. Poon and P. B. Warren, Europhys. Lett.28, 513
~1994!; C. Caccamo and G. Pellicane, Physica A235, 149
~1997!.

@6# Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker, Physica
222, 10 ~1995!.

@7# T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Ma
8, 10 799~1996!.

@8# N. Garcı́a-Almarza and E. Enciso, inProceedings of the VIII
Spanish Meeting on Statistical Physics FISES ’97, edited by J.
A. Cuesta and A. Sa´nchez ~Editorial del CIEMAT, Madrid,
1998!, p. 159.

@9# M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett.~to be
published!.
.

r

@10# P. Bolhuis and D. Frenkel, Phys. Rev. Lett.72, 2211~1994!; P.
Bolhuis, M. Haagen, and D. Frenkel, Phys. Rev. E50, 4880
~1994!.

@11# C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker, and M
Baus, Phys. Rev. Lett.73, 752 ~1994!; Phys. Rev. E51, 558
~1995!.

@12# T. Biben and J.-P. Hansen, Europhys. Lett.12, 347 ~1990!.
@13# Y. Heno and C. Regnaut, J. Chem. Phys.95, 9204~1991!.
@14# Y. Rosenfeld, Phys. Rev. Lett.63, 980 ~1989!; see also Y.

Rosenfeld, J. Phys.: Condens. Matter8, 9289~1996!, and ref-
erences therein.

@15# Y. Rosenfeld, M. Schmidt, H. Lo¨wen, and P. Tarazona, J
Phys.: Condens. Matter8, L577 ~1996!; Phys. Rev. E55, 4245
~1997!; P. Tarazona and Y. Rosenfeld,ibid. 55, R4873~1997!.

@16# J. A. Cuesta, Phys. Rev. Lett.76, 3742~1996!.
@17# J. A. Cuesta and Y. Martı´nez-Rato´n, Phys. Rev. Lett.78, 3681

~1997!; J. Chem. Phys.107, 6379~1997!.
@18# M. Dijkstra and D. Frenkel, Phys. Rev. Lett.72, 298 ~1994!.
@19# R. J. Baxter, J. Chem. Phys.49, 2770~1968!.
@20# G. Stell, J. Stat. Phys.63, 1203~1991!.
@21# C. F. Tejero and M. Baus, Phys. Rev. E48, 3793~1993!.
@22# D. Frenkel~private communication!.


