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In this article we obtain a fundamental measure functional for the model of aligned hard hexagons in the
plane. Our aim is not just to provide a functional for an admittedly academic model, but to investigate the
structure of fundamental measure theory. A model of aligned hard hexagons has similarities with the hard disk
model. Both share “lost cases,” i.e. admit configurations of three particles in which there is pairwise overlap
but not triple overlap. These configurations are known to be problematic for fundamental measure functionals,
which are not able to capture their contribution correctly. This failure lies in the inability of these functionals
to yield a correct low density limit of the third order direct correlation function. Here we derive the functional
by projecting aligned hard cubes on the plane x+y+z=0. The correct dimensional crossover behavior of these
functionals permits us to follow this strategy. The functional of aligned hard cubes, however, does not have lost
cases, so neither had the resulting functional for aligned hard hexagons. The latter exhibits, in fact, a peculiar
structure as compared to the one for hard disks. It depends on a uniparametric family of weighted densities
through an additional term not appearing in the functional for hard disks. Apart from studying the freezing of
this system, we discuss the implications of the functional structure for further developments of fundamental
measure theory.
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I. INTRODUCTION

Fundamental measure �FM� theory �1� is one of the most
successful density functional �DF� theories, yet also one of
the most difficult to adapt to new systems. Unlike classical
DF approximations �2�, which describe a general approxi-
mate recipe in which some knowledge of the fluid is “cooked
up” to produce a functional, FM theory constructs function-
als from geometric principles in a far more involved manner.
As a result of this process, the resulting functionals have got
nicer features; among them, three are striking: their higher
predictive power �they yield structure functions that are
needed as input in classical approximations�, their natural
formulation for multicomponent mixtures, and their good be-
havior under dimensional crossover �when d-dimensional
systems are constrained to d−1 dimensions, d-dimensional
FM functionals become �d−1�-dimensional ones�. However,
the price to pay for having such nice functionals is that their
structure is extremely rigid: almost any reasonable modifica-
tion one makes to “improve” the quality of the results spoils
one of the above features, mainly dimensional crossover
�3–5�. The latter is not only a remarkable property that FM
functionals �and only them� share with exact ones, but also a
desirable property of any functional which is meant to study
fluids under strong confinement �6–8�.

This is the reason why every extension of FM theory be-
yond the hard spheres fluid for which it was originally pro-
posed �1,9,10� has become a “major achievement.” Exten-
sions are nowadays available for parallel hard cubes and
parallelepipeds �11–14� �which provide a restricted orienta-

tion model of liquid crystals �15��; soft spherical potentials
�16�; nonadditive mixtures �17–19�; mixtures of rods, plates,
and spheres �20–24�; lattice fluids �25–31�; and fluids in po-
rous media �32–34�. Even for hard spheres, Rosenfeld’s
original functional �1� has undergone important improve-
ments over the years �35–38�, after realizing that dimen-
sional crossover was a unique feature of this type of func-
tionals very much entangled to its construction procedure.

When Rosenfeld first conceived FM theory �1� it rested
strongly on geometrical properties of spherical overlaps and
on scaled-particle theory �39�. A decade later, the theory had
been reformulated in terms of “zero-dimensional �0D� cavi-
ties” �35,36�. By this must be understood a cavity able to
hold no more than a hard sphere. Under the requirement that
confinement of the FM functional to one such cavity must
lead to the exact result, and introducing one-, two-, and
three-point cavities, by adding and subtracting the necessary
terms so as to maintain the exact 0D limit a functional arises
with the required structure �37,38�. The result is not “per-
fect” in the sense that there are three-point 0D cavities for
which the exact result cannot be recovered: those for which
three spheres placed at the three points of the cavity have
pairwise overlap but not triple overlap. These cavities were
termed “lost cases” �37� because they do not contribute to
the free energy, and their existence reveals the inability of
this construction to reproduce the lowest order in the density
expansion of the three-particle direct correlation function
�DCF� �5� �which is nonzero for those configurations�. As a
matter of fact, the problems arising from the extension of this
functional to mixtures of hard spheres have the same origin,
and corrections trying to palliate these problems are unable
to remedy the defect of the correlations �5�.

On the contrary, the FM functional for aligned hard par-
allelepipeds does not have lost cases because for this kind of
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particle, whenever three particles have pairwise overlap there
is necessarily triple overlap. In fact, the exact 0D limit is
recovered for cavities of any shape �12�, and the low-density
limit of the three-particle DCF is exact. This led to the belief
that FM theory is simply unable to produce a functional for
hard spheres without lost cases �5�.

The extension of FM theory to lattice fluids is based on
this 0D cavity reformulation �25–31�. But because lattice ge-
ometry lacks spherical symmetry, this extension has uncov-
ered an important ingredient in the theory. While the FM
functional for hard spheres is expressed in terms of a set of
weighted densities whose weights are associated to geometri-
cal features of the particles �1,9,10,35–38�, the weights in
lattice FM functionals are associated to geometrical features
of maximal 0D cavities �26,29,30�. These are 0D cavities
such that if they get extended in any way, they are not 0D
cavities anymore �41�. Maximal 0D cavities need not have
the same shape as the particles that define them �in most
cases they will not�; for instance, maximal 0D cavities of a
nearest-neighbor exclusion lattice gas in a triangular lattice,
which is represented by hard hexagons, are equilateral tri-
angles �see Ref. �28� for this and other examples�. At the
same time, by construction these lattice FM functionals re-
cover the exact 0D limit for any 0D cavity �29,30� and as a
consequence of this fact, they can be proven to yield the
correct low-density limit of the three-particle DCF �30�. In-
terestingly, maximal 0D cavities for aligned hard parallelepi-
peds have exactly the same shape as the particles. However,
this is not true for spheres, where apart from spherical cavi-
ties there are other maximal 0D cavities with different shapes
�see Fig. 1 for an example�.

In Ref. �28�, FM functionals for many two- and three-
dimensional hard core lattice gases were obtained from the
known functional of hard �hyper�cubes in a �hyper�cubic lat-
tice by exploiting dimensional crossover. One of these was
the hard hexagons model, which was obtained from the hard
cubes model by constraining the centers of mass of the cubes
to lay on the plane x+y+z=0. In this paper we will apply the
same procedure to the continuum FM functional of parallel
hard cubes in order to obtain the �continuum� two-
dimensional fluid of aligned hard hexagons. The reason to do
this is the following. Three aligned hard hexagons can be

arranged in such a way that there is pairwise overlap but no
triple overlap �see Fig. 2�; hence, according to the cavity
construction of the FM functional for hard spheres �37,38�,
there should be “lost cases.” However, we are going to ob-
tain such a functional by dimensional crossover from the
functional of parallel hard cubes which does not have lost
cases. As explained, this means that the 0D limit is recovered
for any 0D cavity; therefore the same will hold for the re-
sulting functional for aligned hard hexagons.

The FM functional for aligned hard hexagons that we will
obtain provides interesting insights into FM theory. First of
all, the maximal 0D cavities, not the particles, are the rel-
evant constructive geometrical object. Second, it points out
that a FM functional for hard spheres �or disks� will probably
have an infinite number of terms. From a practical point of
view this is good and bad news: good, because we know
what the FM functional for hard spheres �38� is missing in
order to get rid of the lost cases; bad, because a functional
with an infinite number of terms will be useless for real
purposes. At the end of this paper we will discuss these is-
sues in more depth. We think, however, that despite its even-
tual utility, the information that this FM functional for
aligned hard hexagons provides is relevant for a thorough
understanding of FM theory.

The rest of the paper is organized as follows. In Sec. II we
describe the construction of the FM functional for aligned
hard hexagons by dimensional crossover of the FM func-
tional for the fluid of parallel hard cubes. The procedure as
well as the resulting weighted densities and the form of the
functional are explained in this section, but the detailed cal-
culations are deferred to Appendix A. Although the fluid of
aligned hard hexagons has no physical realization that we
know of, in Sec. III we analyze the equation of state derived
from the functional both for the uniform fluid and for the
triangular solid phase. The purpose of this analysis is to as-
sess the validity of the theory compared with future simula-
tions. The functional predicts a first order freezing at coex-
isting packing fractions � f =0.58 for the fluid and �s=0.63
for the solid. Finally, in Sec. IV we discuss the features of
the resulting functional, with special emphasis on those that
cause the functional to be free from lost cases.

II. FROM HARD CUBES TO HARD HEXAGONS

As described in Ref. �28� the way to obtain an effective
system of aligned hard hexagons is to start off from a system

R

2R

FIG. 1. �Color online� Example of a nonspherical maximal 0D
cavity for the system of two-dimensional hard spheres �disks� of
radius R �colored circle in the figure�. Any rotation of this cavity
will produce another maximal 0D cavity. To illustrate that this cav-
ity is not contained in a spherical maximal 0D cavity, the latter is
plotted on top with dashed line.

FIG. 2. �Color online� Configuration of three aligned hexagons
exhibiting pairwise, but not triple overlap �lost cases�.
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of hard cubes aligned parallel to the coordinate axes and
constrain their centers of mass to lay on the plane x+y+z
=0. Figure 3 illustrates this geometrical construction. Mak-
ing use of the good behavior of FM functionals under any
dimensional crossover, we will carry out the same projection
in the FM functional of parallel hard cubes and thus obtain
the one for aligned hexagons.

The FM functional of parallel hard cubes of edge-length
2L can be written as �12,13�

FPHC��̃� = FPHC
id ��̃� + FPHC

ex ��̃� , �1�

where

�FPHC
id ��̃� =� dr�̃�r�„lnV�̃�r� − 1… �2�

is the ideal contribution �V is the thermal volume and �
= �kT�−1, with k the Boltzmann constant and T the tempera-
ture� for a density profile of the hard cube fluid �̃�r�, and

�FPHC
ex ��̃� =� dr�PHC„�p��r��… , �3�

with

�PHC = �PHC
�1� + �PHC

�2� + �PHC
�3� , �4�

�PHC
�1� = −

1

8
p0 ln�1 − p3� , �5�

�PHC
�2� =

p1 · p2

8�1 − p3�
, �6�

�PHC
�3� =

p2,1p2,2p2,3

8�1 − p3�2 , �7�

is the excess, over the ideal, free energy. The functions p��r�
are weighted densities

p��r� =� dr����r − r���̃�r�� , �8�

where the scalar or vectorial weights are given by

�3�r� = ��x���y���z� , �9�

�2�r� = „	�x���y���z�,��x�	�y���z�,��x���y�	�z�… , �10�

�1�r� = „��x�	�y�	�z�,	�x���y�	�z�,	�x�	�y���z�… , �11�

�0�r� = 	�x�	�y�	�z� , �12�

with

��u� = 
�L − �u��, 	�u� = ��L − �u�� , �13�


�x� being Heaviside’s step function �0 if x�0 and 1 if x
0� and ��x� Dirac’s delta. Note that p2,j �j=1,2 ,3� denotes
the jth component of p2.

Now, the projection amounts to taking

�̃�r� = ��x���x + y + z� �14�

in the functional �1�, where ��x�=��x ,y� is the density pro-
file of aligned hard hexagons. The choice of coordinates cor-
responds to a change to the �nonorthogonal� basis �b1 ,b2 ,b3�
given by �b1 ,b2 ,b3�= �e1 ,e2 ,e3�P, with

P = 	 1 0 0

0 1 0

− 1 − 1 1

 �15�

and �e1 ,e2 ,e3� the canonical basis. Vectors b1 and b2 form a
basis on the plane x+y+z=0 �see Fig. 4�. This choice of
vectors amounts to working with the projections of the hexa-
gons on the XY plane, because the projections of b1 and b2
are simply e1 and e2.

The details of introducing the density profile �14� into the
excess part of the free-energy functional are deferred to Ap-
pendix A. Here we simply give the final result. The projec-
tion transforms the original weighted densities for the cubes,
p��r�, into a set of different densities for the hexagons. The
most striking result is that these new weighted densities are
associated to maximal 0D cavities for the hexagons, not to
the hexagons themselves. The complete set of such maximal
0D cavities can be obtained as the sections of one of the
original cubes by the planes x+y+z+u=0, where −L�u
�L �see Fig. 5�. The cases u= ±L correspond to two equi-
lateral triangles �pointing up and down�, while the cases
−L�u�L correspond to hexagons �of which only u=0 is a
regular hexagon identical to the fluid particles�. This comes
as an important difference with respect to the FM functional

FIG. 3. �Color online� Constraining the centers of mass of par-
allel hard cubes to lay on the plane x+y+z=0 yields a system of
aligned hard hexagons.

b1

e2
1e

e3

2b

FIG. 4. �Color online� Choice of an appropriate basis on the
plane x+y+z=0 to represent the coordinates of the hexagons.
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for hard spheres, and in retrospect yields a different interpre-
tation of the weighted densities of the original cubes as as-
sociated to maximal 0D cavities �which in the case of cubes
are indistinguishable from the particles�.

To be precise, the weighted densities that we need to ex-
press the functional are

n0
�±��x� =� dx��0

�±��x − x����x�� , �16�

n1
�±��x,u� =� dx��1

�±��x − x�,u���x�� , �17�

n2�x,u� =� dx��2�x − x�,u���x�� , �18�

and it is convenient to define also the weighted densities

n1
�±��x� = n1

�±��x, ± L� , �19�

n2
�±��x� = n2�x, ± L� . �20�

The weights that define these densities are the following:

�0
�±��x� = ��x � L���y � L� + ��x � L���y ± L�

+ ��x ± L���y � L� , �21�

�1
�±��x,u� = „��x � L���y���u − x − y� ,

��x���y � L���u − x − y� ,

„��x���y���u − x − y � L�… , �22�

�2�x,u� = ��x���y���u − x − y� . �23�

The meaning of these weighted densities is related to av-
erages over different geometric elements of the maximal 0D
cavities to which they are associated. Thus, n2�x ,u� is the
average over the area of the cavity corresponding to that
value of u �the colored regions in Fig. 5�; each component of
n1

�±��x ,u� is the average over one edge of the hexagonal cav-
ity �triangular if u= ±L�; and n0

�±��x� is the average over the
three vertices of the corresponding triangular cavity. The two
latter cases are illustrated in Fig. 6.

With the help of these weighted densities we can write
�FAHH

ex ���=�dx�AHH�x�, where

�AHH = �AHH
�1� + �AHH

�2� + �AHH
�3� , �24�

�AHH
�1� = −

1

6�
±

n0
�±� ln�1 − n2

�±�� , �25�

�AHH
�2� =

1

6�
±

n1,1
�±�n1,2

�±� + n1,2
�±�n1,3

�±� + n1,3
�±�n1,1

�±�

1 − n2
�±� , �26�

�AHH
�3� =

1

2�
±
�

−L

L

du
n1,1

�±��u�n1,2
�±��u�n1,3

�±��u�
�1 − n2�u��2 . �27�

�For the sake of notational simplicity we have omitted the
argument x in all weighted densities, retaining only the ar-
gument u in those that depend on it.�

There are several features worth noting in this FM func-
tional for aligned hard hexagons which we have derived
from the one for parallel hard cubes. First of all, the most
obvious fact: weighted densities are associated to the geom-
etry of maximal 0D cavities, as in lattice FM functionals, and
not to the geometry of particles, as in the FM functional for
hard spheres or disks. Second, as in the system of aligned

0<u<L

u=−L−L<u<0

u=L

FIG. 5. �Color online� Maximal 0D cavities for the system of
aligned hard hexagons are obtained as the sections of the cubes by
planes x+y+z+u=0 with −L�u�L. Triangular cavities corre-
spond to u= ±L while hexagonal ones to −L�u�L �u=0 is the
regular hexagon�.

(a) (b)

(d)(c)

2

1

3

3

1
2

FIG. 6. Weighted densities are associated to geometric elements
of the cavities: n0

�+��x� �a� and n0
�−��x� �b� to the vertices of the

triangular cavities; the components of n1
�+��x ,u� �c� and n1

�−��x ,u�
�d� to the edges of the cavities. In �c� and �d� the numbers 1, 2, 3
label the component which is associated to each edge.
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hard hexagons there is an infinity of maximal 0D cavities,
the third term exhibits a “sum” over them all; hence the
integral in that term. Finally, the typical FM structure for �
as a sum of D terms, D being the dimension of the problem,
breaks down here: we have a two-dimensional system which
is described as a sum of three terms.

All these features will have consequences for the general
structure of FM functionals, which we shall discuss later in
Sec. IV.

III. THERMODYNAMICS OF THE FLUID OF ALIGNED
HARD HEXAGONS

A. Fluid phase

The free energy of the fluid phase is obtained by special-
izing the weighted densities with a uniform particle density.
The only subtle point we have to take into account is that,
because of our choice of coordinates �which actually de-
scribe the projections of hexagons on the XY plane� if �
denotes the particle density of hexagons �measured on the
plane x+y+z=0�, the uniform density profile will reduce to
��x�=3�. �This 3 is the scale factor difference between
actual hexagons and their projections.� With this in mind,
and given that the area of a hexagon is vh=33L2 �recall that
L is half the edge length of the cubes�, hence the weighted
densities reduce in this limit to

n0 = �/L2, �28�

n1
�±��u� =

�

3L
�1 ±

u

L
��1,1,1� , �29�

n1
�±� =

2�

3L
�1,1,1� , �30�

n2�u� = �1 −
u2

3L2�� , �31�

n2
�±� =

2�

3
, �32�

where the packing fraction �=vh�, and therefore the excess
free energy per unit volume �in kT units�, �, becomes

�

�
= − ln�1 −

2�

3
� +

�

3�1 − ��
+ �3 −

8

3
��

� �

3�1 − ��3 tan−1  �

3�1 − ��
. �33�

From this expression we can obtain the equation of state
as

�p

�
= 1 + �

���/��
��

=
1 − �/2

�1 − ��2 + �3

2
− �� �

3�1 − ��5 tan−1  �

3�1 − ��
.

�34�

Perhaps the most striking feature of this equation of state is
its divergence as �1−��−5/2 at close packing. This exponent
2.5 is noticeably higher than the exponent 2 that a straight-
forward scaled particle argument would predict.

B. Solid phase

The standard way to approach the solid phase in DF
theory is to use a parametrization of the density profile as a
sum of Gaussians centered at the nodes of the solid lattice,

�̂�x�� =
��

�
�

r1,r2�Z
exp�− ��x� − r1da1� − r2da2��

2� . �35�

Here �̂�x�� denotes the density profile of hexagons on the
plane x+y+z=0; x�= �x� ,y�� denotes the position referred to
an orthogonal coordinate system on that plane; � is related to
the mean square displacement of the particle with respect to
its lattice node; � is the occupancy of the solid �the mean
number of particles in one unit cell�, which accounts for the
vacancies; and d=dc

� /� is the lattice parameter, with � the
packing fraction and dc the lattice parameter at close pack-
ing, dc=6L �hexagons have edge length 2L�. The unit vec-
tors a1�= �0,1� and a2�= �−3/2 ,1 /2� are a convenient choice
for the basis of the triangular lattice’s unit cell.

Although the implementation of this density profile is
rather straightforward, a few words on the appropriate choice
of variables may be helpful. First of all, as all weighted den-
sities are expressed in terms of projected coordinates on the
plane XY, we should describe the density profile in terms of
these coordinates. Thus we can write x�=Jx, with

J = �2 1/2

0 3/2
� , �36�

and, given that det J=3, the density profile becomes ��x�
=3�̂�x��. In the projected representation, the unit cell is a
rhombus, so it is convenient to introduce in the integrals the
change of variables x→Qx, where

Q =
1
6

�− 1 − 2

2 1
� . �37�

This transforms the global integral as

�
unit cell

dx →
1

2
�

−d/2

d/2

dx�
−d/2

d/2

dy �38�

�notice that det Q=1/2�.
In the projected coordinates, the sum of Gaussians defin-

ing the density profile can be factorized as
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��Qx� = 3� �
r1,r2�Z

g�� xr1

2
+ yr2

�g��3xr1

2
� , �39�

with the definitions xr1
=x−r1d, yr2

=y−r2d and g��x�
=� /�e−�x2

. This permits one to express the weighted den-
sities as products of Gaussian and error functions.

Minimization of the functional is carried out numerically
in the parameters � and �. This determines the free energy of
the solid phase for every packing fraction �. At the point
where this free-energy curve branches off the one of the fluid
phase, the slope discontinuously decreases. This produces a
concavity in the whole free-energy curve and therefore the
transition is first order and the coexisting densities are deter-
mined via a standard Maxwell’s double-tangent construction.
The resulting equation of state, depicting both the fluid and
the solid pressures, is plotted in Fig. 7. Also plotted in Figs.
8 and 9 are the fraction of vacancies, 1−�, and the square
root of the mean square displacement of hexagons with re-
spect to their lattice positions. Interestingly, the solid of hard
hexagons has a low fraction of vacancies all the way up from
the transition �never larger than 5%�, in marked contrast with
what happens for the fluid of hard cubes from which the
functional for this system is derived �14�.

One last remark is in order. The result found here for the
equation of state of the system of aligned hard hexagons is

very similar to that of its lattice counterpart �28�. For the
latter, the exact result is known to have a continuous transi-
tion �40�, although so smooth that a first order discontinuity
is not a bad quantitative approximation. The exact result for
the continuum model is unknown, but certainly the same
caveat on the nature of the transition applies to it.

IV. DISCUSSION

The fluid of aligned hard hexagons has strong similarities
with the fluid of hard disks. The most important for the aims
of this work is that particles may be placed in configurations
such that they have pairwise overlap but not triple overlap
�see Fig. 2�. These configurations have been termed “lost
cases” �37� because FM theory, as currently formulated for
hard spheres or hard disks �37,38�, is unable to capture their
contribution. The basic constructive principle of FM theory
is the recovery of the exact 0D limit of the free energy when
the system is constrained to any 0D cavity. Lost cases arise
in certain 0D cavities �for instance, for hard disks, a circular
cavity of radius larger than R and smaller than 2R /3� and
thus the FM functional does not recover the exact limit for
them. This failure of the theory is associated to an incorrect
low density limit of the third order direct correlation function
�5�; in other words, the density expansion of the FM func-
tional for hard disks or spheres is incorrect already at third
order.

The logic of the construction of FM functional for
d-dimensional hard spheres requires that the excess free en-
ergy density be a sum of d terms �37�

�d-HS = �d-HS
�1� + �d-HS

�2� + ¯ + �d-HS
�d� . �40�

Further terms constructed on the same logic are identically
zero. Each of these terms is incorporated starting from the
first one and trying to compensate for the spurious terms that
arise when two, three, etc., particles are incorporated to a 0D
cavity. When there are lost cases, the last one vanishes and
thus cannot bring about its compensation. The logic of this
construction strongly relies on the fact that weights have the
same shape of the particles, as in Rosenfeld’s original FM
theory �1�, of which this constructive method is just a gen-
eralization.
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FIG. 7. Reduced pressure, �pvh, with vh=33L2 the area of a
hexagon, versus pacing fraction �=�vh for a fluid of aligned hard
hexagons. The packing fractions at coexistence are � f =0.58 for the
fluid and �s=0.63 for the solid.
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FIG. 8. Fraction of vacancies, 1−�, as a function of the packing
fraction � for the solid phase.
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FIG. 9. Mean square displacement of particles around the equi-
librium positions in the solid phase, as a function of the packing
fraction �.
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Applying the same logic to the fluid of aligned hard hexa-
gons would lead to the same result and lost cases would
arise. Yet, there is another method to obtain the FM func-
tional for such a fluid, which is the projection we have car-
ried out in this work of the fluid of parallel hard cubes on a
specific plane. The latter fluid does not have lost cases be-
cause of the particular form of its particles �if there is pair-
wise overlap between three cubes, there is necessarily triple
overlap as well�, and this nice property is inherited by the
functional for the hexagons. As a matter of fact, the resulting
functional has a different structure in several respects. First
of all, there is a weighted density for every one of the maxi-
mal 0D cavities conceivable for this system. These include
two triangles and a continuum of irregular hexagons. Be-
cause of this, weighted densities depend on a parameter that
gauges the shape of the cavity. This feature is not new: it was
revealed in the study of FM functionals for lattice models
�26–30�. But second and more importantly, there appears an
extra term, say a “d+1 term,” thanks to which the compen-
sation to recover the exact 0D limit for any 0D cavity is
guaranteed. As explained above, this term cannot be pre-
dicted by applying the construction logic of the hard disk
functional.

Actually both features are connected: there is an extra
term because there are several 0D maximal cavities that con-
tribute weighted densities to the functional. What this is tell-
ing us is that the functional for hard disks or hard spheres is
simply incomplete. Cavities such as that shown in Fig. 1
�and possibly others� should make their contribution through
additional weighted densities. Note that any rotation of the
cavity of the figure is a different 0D cavity and so there
should also be a continuum of weighted densities, as for the
hexagons. And accordingly, additional terms beyond �d-HS
are to be expected. How many of them? We do not have a
definitive answer to this question, but we will provide con-
vincing arguments that there will be infinitely many.

The projection we have carried out from three-
dimensional cubes to aligned hard hexagons can be general-
ized to obtain a FM functional for 2l-gons in a straightfor-
ward manner. For instance, projections of the fourth-
dimensional system of hard hypercubes on the appropriate
plane generates octagons. In general, projecting
l-dimensional hypercubes on an appropriate plane generates
aligned hard 2l-gons. Because of the structure of the fluid of
parallel hard hypercubes �12� we know that such functionals
will have l terms. Disks are obtained as the limit l→� of
2l-gons, so in this limit, the FM functional will be an infinite
series. It might happen that the series can be summed up and
produce just a single �more complex� term, but this can
hardly be foreseen.

So, should we seek for a FM functional for hard disks or
hard spheres without lost cases? Well, from the arguments
above we believe that it would be a pointless task, for even if
we could overcome the difficulty of its construction, we
would probably end up with an extremely cumbersome func-
tional, useless for practical purposes. This does not mean that
perhaps including some, not all, the missing terms we could
obtain improvements on the current functional. This point
might be worth exploring in the future.
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APPENDIX A: PROJECTION OF THE FM FUNCTIONAL
FOR PARALLEL HARD CUBES ON THE PLANE

x+y+z=0

1. Dimensional crossover

Using the projection on the XY plane defined by r→Pr,
with P given by �15�,

�FPHC
ex ��̃� =� dr�PHC��p��Pr��� , �A1�

where

p��Pr� =� dr����P�r − r����̃�Pr�� , �A2�

with the weights defined in �9�–�12�. According to �14�, in
the projected coordinates

�̃�Pr� = ��x���z� . �A3�

This transformation in the density profile allows us to inte-
grate in z�, so the weighted densities become

p��Pr� =� dx���„P�x − x�,z�…��x�� , �A4�

where we are expressing a three-component vector as r
= �x ,z�. From the previous equation one can define a new set
of weighted densities �n��, which depend on a parameter u
that corresponds to the z coordinate of the above expression,

n��x,u� � � dx����x − x�,u���x�� , �A5�

with �=0,1 ,2 and �� a scalar or vector function given by

�2�x,u� = �3„P�x,u�… , �A6�

�1�x,u� = �2„P�x,u�… , �A7�

�0�x,u� = �1„P�x,u�… , �A8�

�0�x,u� = �0„P�x,u�… . �A9�

The next step is to obtain the resulting excess free energy
after the projection. In order to do that, unnecessary degrees
of freedom must be eliminated, which in this particular case
amounts to integrating the z coordinate in the PHC func-
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tional. Consider the first term �5�. Here the integration is
immediate, because �0 is sum of Dirac’s deltas �42�. Thus
we obtain

�AHH
�1� = −

1

8�
±

n0
�±� ln�1 − n2

�±�� , �A10�

with n0
�±� and n2

�±� defined by �16� and �18�, respectively.
For the second and third terms in �3�, direct substitution

of n� leads to

�AHH
�2� =

1

8
� du

n0�u� · n1�u�
1 − n2�u�

, �A11�

�AHH
�3� =

1

8
� du

n1,1�u�n1,2�u�n1,3�u�
�1 − n2�u��2 . �A12�

Here n��u� is a shorthand for n��x ,u�. Notice that the inte-
gration limits in the above formulas are determined by the
support of the weighted density n2, which is a product of
Heaviside’s step functions. It is easy to check that this sup-
port is �u��3L. Hence, according to the expression for n2�u�,
maximal 0D cavities are recovered �see Fig. 5� when �u�
�L, but when L� �u��3L the corresponding cavities are not
maximal. The appearance of these nonmaximal 0D cavities
is a result of our projection procedure, but the functional
cannot explicitly depend on them because any information
they provided is, by definition, already accounted for by the
maximal 0D cavities. In what follows we will explain how to
get rid of these spurious contributions.

2. Elimination of spurious terms

We will show here how to eliminate nonmaximal 0D cavi-
ties through integration by parts. To this purpose we intro-
duce the following notation: the weight �1 can be decom-
posed as follows �in what follows we will omit the
dependence on �x ,u� for simplicity, introducing only a de-
pendence on u whenever ambiguity might arise�

�1 = �1
�+� + �1

�−�, �A13�

where �1
�±� has the same expression as �1 in terms of func-

tions � y 	, but replacing 	�x� with ��x�L�, respectively.
Two weighted densities n1

�±� can also be introduced associ-
ated to these weights. These densities have the properties that
n1

�+� vanishes when −3L�u�−L, whereas n1
�−� does it when

L�u�3L.
Let us introduce now the differential operator

D � � �

�x
+

�

�u
,

�

�y
+

�

�u
,

�

�u
� . �A14�

Acting on n2 results in

Dn2 = − n1
�+� + n1

�−�. �A15�

As of now, we will only consider the term �AHH
�3� for −3L

�u�−L, which will be denoted �AHH
�3,1� . According to �A15�,

in this interval the integrand of �AHH
�3,1� can be written as

�0��n2�n1,1
�−�n1,2

�−�n1,3
�−� =

1

3 �
���3

+

�D��1��0��n2��n1,��2�
�−� n1,��3�

�−� ,

�A16�

where �3
+ is the set of all the permutations � of �1,2,3� with

positive signature. Using this identity we can integrate by
parts to obtain

�AHH
�3,1� =

n1,1
�−�n1,2

�−� + n1,2
�−�n1,3

�−� + n1,3
�−�n1,1

�−�

24�1 − n2
�−��

−
1

24
�

−3L

−L

du�0��n2� �
���3

+

D��1��n1,��2�
�−� n1,��3�

�−� ��u� .

�A17�

Notice that in the first term, the components of n1
�−� without

explicit dependence on u refer to those of n1
�−��x ,−L�, as in

�19�. The second term in the expression above can be sim-
plified taking into account the identity

D��2�n1,��3�
�−� + D��3�n1,��2�

�−� = 2n0,��1�. �A18�

Recall that n0 is defined through the weight �A8�. Besides,

�
���3

+

D��1��n1,��2�
�±� n1,��3�

�±� � = �
���3

+

n1,��1�
�±� �D��2�n1,��3�

�±�

+ D��3�n1,��2�
�±� � , �A19�

so substitution of �A18� and �A19� into �A17� allows us to
obtain

�AHH
�3,1� =

n1,1
�−�n1,2

�−� + n1,2
�−�n1,3

�−� + n1,3
�−�n1,1

�−�

24�1 − n2
�−��

−
1

12
�

−3L

−L

du�0��n2�n0�u� · n1
�−��u� . �A20�

Moreover, as D ·n0=0 and �0��n2�n1
�−�=D�0��n2�, another in-

tegration by parts in the integral above yields

�AHH
�3,1� =

n1,1
�−�n1,2

�−� + n1,2
�−�n1,3

�−� + n1,3
�−�n1,1

�−�

24�1 − n2
�−��

+
1

12
n0

�−� ln�1 − n2
�−�� .

�A21�

By symmetry, an identical formula can be obtained when
L�u�3L, but with the weighted densities n�

�+� instead of
n�

�−�. Doing exactly the same partial integration in �A11� for
any L� �u��3L and gathering all the contributions, we ar-
rive at the result

�AHH = �AHH
res −

1

6�
±

n0
�±� ln�1 − n2

�±��

+
1

24�
±

n1,1
�±�n1,2

�±� + n1,2
�±�n1,3

�±� + n1,3
�±�n1,1

�±�

1 − n2
�±� , �A22�

where the residual contribution �AHH
res is given by
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�AHH
res =

1

8
�

−L

L

du
n0�u� · n1�u�

1 − n2�u�

+
1

8
�

−L

L

du
n1,1�u�n1,2�u�n1,3�u�

�1 − n2�u��2 . �A23�

Because of the range −L�u�L of these integrals, Eq. �A22�
only contains contributions from maximal 0D cavities, as
required.

A third integration by parts in the residual term will allow
us to write the functional in a more compact way. According
to �A15�, whenever �u��L we can write

n1 = 2n1
�±� ± Dn2. �A24�

Then the last integral in �A23� can be expressed in a sym-
metric form combining n1

�±�,

1

16
�

−L

L

du�0��n2��
±

�
j=1

3

�2n1,j
�±� ± Djn2��u� . �A25�

We now expand the product above and realize three things.
First, that the product containing three derivatives vanishes.
Second, that cross terms containing one or two derivatives
can be integrated with the aid of �A15� and

D��2�n1,��3�
�±� + D��3�n1,��2�

�±� = ± n0,��1�, �A26�

which holds for all �u��L. These terms cancel the first one of
�A23� and generate a boundary term identical to the last one
in �A22�. This operation justifies the numerical coefficient
appearing in �26�. Third, the remaining term, which contains
products of the three components of n1

�±�, produces �27�. In
this way we arrive at the final form of the functional
�24�–�27�.
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