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Density functional theory for nearest-neighbor exclusion lattice gases in two and three dimensions
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To speak about fundamental measure theory obliges us to mention dimensional crossover. This feature,
inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first
it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming
the only density functional theory which possesses such a property. It is straightforward that dimensional
crossover connects, for instance, the parallel hard cube sy$iteee dimensionalwith that of squaresgtwo
dimensiongl and rods(one dimensional We show here that there are many more connections which can be
established in this way. Through them we deduce from the functional for parallel(lygpépcubes in the
simple(hypencubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the
square, triangular, simple cubic, face-centered-cubic, and body-centered-cubic lattices. As an application, the
bulk phase diagram for all these systems is obtained.
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I. INTRODUCTION But by far the most genuine property of FM theory is
dimensional crossover, something that this theory shares
Rosenfeld’s fundamental measuifeM) theory[1] is pe-  with the exact functionals and with no other known density
culiar among the weighted density approximati¢néDAs),  functional theory. In its first formulation this property was
and it is so for many reasons. To begin with, classical WDAgntroduced as the ability of a modification of Rosenfeld’s
are constructed upon the knowledge of the thermodynamicgriginal functional for hard spheres to recover the exact func-
and structure of the uniform fluid, while FM theory is con- tional for “zero-dimensional” cavitiescavities which cannot
structed on a geometrical basis. Originally it needed scalediold more than one spherg8], but it was immediately ex-
particle theory to produce a functional, but in its latest for-tended to describe the property of the exdatimensional
mulations this is not a requirement anymadr2,3], and functional to reproduce the exactl{ 1)-dimensional one
geometry stands as its unique ingredient. Another importarivhen evaluated at a density profile which is delta-like on a
difference is that, while the extension to mixtures of classicahyperplang9]. Needless to say, functionals that have dimen-
WDAs is far from being straightforward, the natural formu- sional crossover are particularly suitable for studying fluids
lation of FM theory is for a mixturéalthough it has recently under strong confinement.
been shown that a FM theory for hard spheres does not ac- The first modified FM functional for hard spheres pro-
commodate a description for mixtures as well as it was preduced accurate functionals for=2 andd=1, apart from
viously thought[4]). One further remarkable feature is that yielding the exact one fod=0 (cavities [9]. When applied
FM theory performs best where classical theories are pootto the system of parallel hard cubes, whose FM functional
est: in the high density region. It has been shown, for incan be obtained for arbitrary dimensidbeing exact ind
stance, that the description FM theory provides for a solid is=1) [10], it was shown that dimensional crossover consis-
extraordinarily accurate in all its detail8,5]. This is prob- tently transforms thed-dimensional functional into thed(
ably the reason why the belief has spread that FM theory is- 1)-dimensional one, down td=0. The acknowledgment
the best density functional theory for the system of harcthat this property lies at the heart of the formal theory sug-
spheres. But there is no free lunch. Such a peculiar structurgested the last step in this direction: transforming this prop-
makes the theory extremely rigid, so much that it is veryerty into the constructive principle of FM thedf®,3]. Under
difficult (sometimes impossibléo improve a particular de- this new formulation FM theory has been generalized to sys-
tail without spoiling another. This shows up very clearly if tems with soft interaction potentiald1], anisotropic hard-
one tries to improve the equation of state for the liquidparticle models[12,13, nonadditive mixtureg14], lattice
phase. FM theory yields the scaled particle equation of stateggased15-17, and even fluids in porous media8,19.
The large difference in accuracy between the liquid and the So we see that dimensional crossover was first looked at
solid gives rise to a not very good prediction of freezf8¢§  as a very stringent constraint on density functionals and later
If one tries to replace the equation of state by, e.g.as a way of rising fromd=0 andd=1 tod>1 in the con-
Carnahan-Starling, the internal structure of the theorystruction of FM functionals. But dimensional crossover has
squeakd6] and loses some of its nice featur@dthough for  another use which has hardly been exploited: one can get
some purposes the defects may be mostly irrelelait new systems out of known ones. The fi@@hd to our knowl-
edge the only example of such a use was already provided
by Rosenfeldet al.[9]. By forcing hard spheres to have their
*Electronic address: llafuent@math.uc3m.es centers of mass on one out of two parallel planes separated a
"Electronic address: cuesta@math.uc3m.es distance shorter than a sphere diameter, one obtains a binary
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mixture of nonadditive hard spheres with negative nonaddi{fcc), and body-centered-cubibco). All these systems have
tivity (2 01,<011+ 02,, With oj; the center-to-center contact been already considered in the literature as simple models for
distance between spheres of typandj). The amount of the hard-sphere systef22]. As explained in the Introduc-
nonadditivity depends on the distance between planes.  tion, the derivation of the first four will make use of the
Physically, dimensional crossover amounts to applyingdimensional crossover property of FM functionals, so all the
an infinite-strength external potential all over afour will be obtained from the known functional ford(
(d+1)-dimensional lattice, except in a certaitimensional  + 1)-dimensional parallel hard cubes in a simfigpencu-
set of sites which defines the effective system. But this is nobic lattice [16,17] (d being the dimensionality of the final
the only way to construct functionals for new systems out ofsystemg For the last one, we will start from the functional
known ones. One can also apply an appropriate external pder the three-dimensional parallel hard cubes in the simple
tential at selected sites and modify the interaction accordeubic lattice, and we will apply an infinite-strength external
ingly, thus obtaining a new system without reducing dimen-potential to the appropriate set of lattice sites of the original
sion. This trick has already been applied to obtain the exadattice, so that the effective lattice becomes a bcc one. The
functional for a nonadditive mixture of hard rods in a one-fact that all the models considered exclude only nearest
dimensional lattice from that of the additive mixtrk6].t neighbors forces the edge length of the cubes torbe
One can consider all systems which are related throughattice spacings.
the kind of transformations we have just described above. Of the different ways in which the FM functional for this
Then, because of the internal consistency the FM theory haparticular model ofhypencubes can be writtefil6,17), the
the functional for a given model “contains” the functional simplest expression for the excess free energy is probably
for any other model to which it is related. Our goal in this
paper is to show how this works for a set of well-known _
lattice gases. The methods we will use are very general, so BFolpr]= zd > ) (=D D(nM(s), (D)
their application to other families of models should not be sel’ kefod
difficult. This is ir_]teresting if we tal_<e ir_1to account the im- _Wheren(k)(s) are the weighted densities
portance that lattice gases are getting in the study of certain
inhomogeneous problems, such as the behavior of fluids in
porous medig19-21]. n®(s)= > p(s+r) )
The paper is organized as follows. Section Il describes the reB(k)
eneral procedure to obtain the excess free-energy functional .
?or neargst-neighbor exclusion lattice gases in dgi%erent Iatf‘}ikJeleOI by the vector indeik= (ki ... ka), k=={_ 1k, B(K)
tices, either starting from a higher dimensional functional ford€notes the set
cubes and using dimensional reduction to a plane or a hyper-
plane (this procedure is subsequently applied to the square,
triangular, simple cubic, and face-centered-cubic lat}joms .
starting from the functional of cubes and applying an@nd ®o(7)=7+(1-7)In(1—7) is the excess free energy
infinite-strength external potential in the appropriate set ofOr & zero-dimensional cavity with mean occupansyz<1
lattice sites without reducing the effective dimensionality of (8 iS the reciprocal temperature in Boltzmann's constant
the systemthis procedure is the one applied for the body-Units).
centered-cubic lattige The final(simple expressions for the
functionals are explicitly obtained in closed form. In Sec. llI A. Square lattice
these functionals are applied to obtain the bulk phase dia-

grzlatm for all the S)éste.rtrr]]stﬁons?ered.t:]'herel, FM tlhtehory "order to obtain the hard-square lattice gas out of cubes in a
Sulls are compared with those trom other classical INeoresy ;e |attice s illustrated in Fig. 1. It amounts to forcing the
showing that the former is at least at the same level of accu:

) X centers of mass of the cubes to lie in the plane
racy than the latter. Finally, we conclude in Sec. IV. P

B(k)={re{0,13%:0=<r;<k;, i=1,...d} 3

The kind of dimensional reduction we have to perform in

Poq={(S1,52,53) € Z3:51+ 5,4 253,=0}. (4)

Il. THEORY (Notice that we might have chosen several equivalent planes,

In this section we will derive the FM functional for lattice 9iven the symmetry of the systenfigure 1 shows that the
gases with nearest-neighbor exclusion in five different lat£ffective underlying lattice is a square lattice defined, for
tices: square(hard-square lattice gpstriangular (hard- ~ instance, by the pair of orthogonal vectdes=b,—b,, €,
hexagon lattice gassimple cubic(so), faced-centered-cubic =bs—b1—b,} of the planePgy, {b;,b,,bs} being the ca-

nonical vector basis ifi®. Furthermore, the effective inter-
action potential between the cubes within this lattice is
1A similar trick can be employed to recover the exact functionalN€arest-neighbor exclusion. o _ _
for the one-dimensional system of hard rods in a lattame Ref. In terms of the one-particle distribution function, the di-
[16]) from the exact functional of its continuum counterp@atg], mensional reduction can be imposed by setting
by inserting in the latter a density profile formed by a chain of delta
spikes[43]. p(S)=p(Sy+53,53) 8(S1+S,+2S3), (5)
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y, W4 TABLE |. Coefficients of the linear combinations,a,(k)p(t
’ +q) appearing in Eq(6), which define the weighted densities for
the hard-square lattice gas model.

u ao(Kk) ay(k) ax(k)
0 1 0 0
1 Ky Ko 0
/ 2 kyko 0 Ks
3 kyks koks 0
% 4 Kykoks 0 0

4
FIG. 1. Hard cubes with edge length=2 in a simple cubic 52 o ((,gk) P(SpHT2HT5,S5H ) |.

lattice. Their centers of mass are constrained to lie on the plane
115, +2s3=0. Filled circles mark the sites excluded by the cubesThe last step concerns the identification of the argument of
which lie on this plane. Notice that on the plane, cubes behave 3&)0 (the new measures for the eﬁ:ectlve Sys):emS'ng the

the hard-square lattice gas with nearest-neighbor exclusion. Thganslational invariant int the above expression can always
diagram at the lower right corner helps us to visualize the relativg,q \yritten

position of the cubes in the figure.

4 2
D a,(K)p(t+ , 6
where 50)=1 and §(x#0)=0 (a Kronecker symbgl The tgz z'o O( |=20 (Kip(t+e) ©
dependence of the two-dimensional density profile reflects .
the choice of basis vectors. where g=(0,0), ,=(1,0), ande,=(0,1), and the coeffi-

To obtain the FM functional for the hard-square lattice gascientsa;(k) are listed in Table [notice thatd®,(0)=0, so
it only remains to introduce the density profilg) in the  for someu andk there will be no contributioh
functional (1) through the weighted densitie®) and to It is now time to reinsert Eq6) back into Eq.(1), group
eliminate the unnecessary degrees of freedom. In what fokerms, and write the final form for the functional,
lows, we will carry out this task in detail.

The contribution of one weighted density, sa¥’(s), to BFApl= > [Do[p(s)+p(ste)]
the excess free-energy functional will hap to the sign se72
-1 d—k
(=17 + ol p(9)+ p(s+ep)]-3Do(p(9)].  (7)

The above expression can be more easily visualized by using

> CDO( > | p(SpHTo+T3,834T3)8(S1+U) |, the diagrammatic notation introduced[ih7],

se73 re B(k

whereu=r,+r,+2r; and we have made use of the trans- BFLpl= 22 [@o(0-0)+®Bo(§)-30o(e)].  (®)

. . . . . - eZ
lational invariance irs. A better way of expressing this is to )

split the sum inr according to the values af, as Its meaning should be clear by comparing E@3.and(8).

B. Triangular lattice

As in the preceding section, we will start with the FM
functional for the parallel hard cubes with=2 in the simple
cubic lattice. As the procedure we will follow is the same as
the one used before, we will omit most details. Again, we

where ¢|u,k) denotes those vectors=B(k) which verify iy restrict the position of the centers of mass of the cubes to
ri+rp+2rz=u. Now, one and only one of thé functions  is in this case. in the plane

within the sum inr is 1; the others are 0, so the above
expression admits the following rewriting: Pu=1(51,55,53) € Z3:5,+5,+53=0}. 9

4
> CDO(UZO S(sy+u) p(Sy+r+r3,53+r3)

se 73 (rlu,k)

4 A sketch of the effect of this confinement is shown in Fig. 2.
2 2 S(S14+U)D E (Sp-HToH 2,53 12) It_can be app_reC|ated that the re_sultlng _effectlve lattice is a
s 0 1 o (fFho P2 l2mle,53 s/ |- triangular lattice, and that the interaction becomes again
nearest-neighbor exclusion. The effective system thus corre-
sponds to the hard-hexagon lattice gas.
The sum overs; is now trivial, so denoting=(s,,S3), the The one-particle distribution function for this confined
expression simplifies to system can be written
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BFLIp]= 2 | ®o(n*)(9)+Do(n ()
se’
P4 ' ‘21 Do(n(8)+Do(p(9) |, (13

where we have defined the new set of weighted densities

E% n=)(s)=p(9)+p(stey)+p(s*ey),

n(s)=p(s)+p(stq), 1=1,2,3. (14)

FIG. 2. Hard cubes with edge length=2 in a simple cubic
lattice. Their centers of mass are constrained to lie on the plantn diagrammatic notation,
s;+s,+53=0. Filled circles mark the sites excluded by the cubes
which lie on this plane. Notice that on the plane, cubes behave as _
the hard-hexagon lattice gas with nearest-neighbor exclusion. The ’B‘F;‘[p]_sezzz [Po( L)+ Po( %)~ Polo-0)
diagram at the lower right corner helps us to visualize the relative
position of the cubes in the figure. —Dy(L)=DPo(} )+ Do(0)]. (15)

p(S1,S2,53) = p(S2,S3) 6(S1+ S+ S3), (10
C. Simple cubic lattice

where the arguments of the two-dimensional density profile As in the two preceding systems, we will write down a
correspond to the choicge,=b,—b,, e,=bs—b,} for a  closed-form free-energy density functional for this model,
vector basis. but now we have to start from a four-dimensional system of

After eliminating the unnecessary degrees of freedom, the=2 parallel hypercubes in a simple hypercubic lattice and
resulting contribution o™ (s) to the excess free-energy constrain the centers of mass of the hypercubes to be in the
functional is three-dimensional hyperplane

Po={(51,5,,53,54) € Z*:5;+ S,+ 253+ 45,=0}. (16)

: (11)

> > q’o((z p(ty+ry,ta+rg)

riu,k)

As this cannot be graphically sketched we should clarify why
we chose this particular hyperplane. A hypercube with2
centered at the origin contains all lattice sitewith coordi-
natess; =0, =1, I=1,...,4. Now, the intersection of such a
hypercube withPg, can be split into two sets: one wity
=0 ands; +s,+25;=0, and the other one witfy= =1 and
S +S,+2s;=F4. These two sets define three parallel
) (12 (three-dimensionalplanes. The first one coincides with,
Eqg. (4) (hence the choice of the coefficients of these three
coordinates ifPs) and thus includes the five poinfsclud-
where the coefficients (k) appear in Table I(a third vec- ing the origin of the two-dimensional square lattice of Sec.
tor, es=6,— ¢y, is involved this time. IIA. The last two planes contain only one site edslym-
Inserting this in Eq(1) and regrouping terms, the excess metrically placed with respect to the origirExcluding the
free-energy functional for the hard-hexagon model turns oubrigin, these sites complete the six vertices of the octahedron
to be defining the “shape” of the particle.
The effective underlying lattice is expanded, e.g., by the
TABLE II. The same as Table | for the linear combinations in Vector basis of the hyperplange,=b,—b;, e,=bz—b;
Eq. (12) defining the weighted densities for the hard-hexagon lattice— by, es=bs—b;—b,—bs}, with {b;,b,,bs,b,} the ca-
gas model. nonical vector basis df*. Thus, the one-particle distribution
function for this system can be written as

using the same notation as in the previous case. Mow
=r,+r,+r5. This can again be written

3 3
> > <I>o<2 a(k)p(t+8a)

{ey2 U=0 =0

u ag(k) ay (k) ap(k) ag(k)

0 1 0 0 0 p(S)=p(Sp+S3+254,S3+S4,54) 6(S1+ S+ 283+ 4sy),

1 Ky K, ks 0 (17)

2 0 kiky Kikg koks

3 kikoks 0 0 0 where, again, the three-dimensional density profile corre-

sponds to that of the effective system.
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TABLE lll. The same as Table | for the linear combinations in

Eqg. (18) defining the weighted densities for the nearest-neighbor D. Face-centered-cubic lattice

exclusion lattice gas in the sc lattice. The nearest-neighbor exclusion lattice gas in the fcc lat-
tice can be obtained from the same four-dimensional system

u ay(k) ay(k) a,(k) a(k) we have used above, but now the centers of mass of the
0 1 0 0 0 hypercubes are confined to the three-dimensional hyperplane
1 kl k2 0 0 PfCCE{(Sl,Sz,Sg,S4)EZ4:S]_+52+33+ 23420}. (21)
2 koK, 0 ks 0
3 kK3 KoKs 0 0 A vector basis expanding the effective underlying three-
4 kqkoKs 0 0 Ky, dimensional fcc lattice i§e;=b,—b,, e,=b,—bs, e3=b,
5 kK, koK, 0 0 —b;—Dbs}. When aoc=2 hypercube is placed at the origin
6 kykoK, 0 kK, 0 (0,0,0,0 the excluded sites i correspond to the set of 12
7 kyksks koksks 0 0 nearest neighbors of the fcc lattice, whose coordinates in the
8 kykoksky 0 0 0 chosen basis arge;=(1,0,0),e,=(0,1,0),e;=(0,0,1), &,

=(1,-1,0), es=(1,0~1), &=(0,1,—1)} and the opposite

ones. Under this external potential the one-patrticle distribu-
Repeating the procedure described in the previous extion function takes the form

amples we arrive at this expression for the contribution of

n®(s) to the excess free-energy functional, P(9)=p(SpFS3F 54, =537 54,54) 5(Sl+32+53+234)(’22)

8

)y

tez3 u=0

where the density profile in the right-hand si@hs) is ex-
pressed in the chosen basis.
Proceeding as in the previous cases, the contribution of

, the weighted densitp(®)(s) to the excess free-energy func-
where nowu=r;+r,+2rz+4r, andv is a shorthand for  4ional reads

r,+rs+2r,. As in the preceding cases, this becomes

z p(t1+v,t2+r3+l’4,t3+l’4) y

(rlu,k)

2“2 ‘Do( 2 p(tytv,to—rg—rg,tz+ry) |,
(18) tez3 U=

where nowu=r,+r,+r3+2r, andv is a shorthand for
r,+rs+r,. This is more conveniently rewritten

3
> E cbo(E a(k)p(t+8) |,

tez3 U=0

with  e=(0,0,0), €=(1,0,0), &=(0,1,0), and e;

=(0,0,1), and the coefficientg(k) given in Table IIl. 5
The final expression for the excess free-energy density 2 2 @O(E a(K)p(t+e) |, (23)
functional of this model is teyd U= =0

with the coefficients, (k) given in Table IV.

(19) Gathering together the contributions of all weighted den-
sities, as prescribed in E€L), the excess free-energy density
functional of this model turns out to be

BFelpl= 2 {Z ®o(n")(s))~5Po(p(9)) |,
se 73
wheren(s)=p(s)+ p(s+g), or diagrammatically,

BFpl= 2 | ®@o(n)(9)+Do(n)(9))

seZ
6

—gl Do(nV(8)+5Po(p(s))|, (24

BFLp]= 2 [®of T )+ Po(0-0)+Po(°)

seZ

=5®(0)]. (20

TABLE IV. The same as Table | for the linear combinations in &3) defining the weighted densities for
the nearest-neighbor exclusion lattice gas in the fcc lattice.

u 3o(k) ay(k) ax(k) az(k) as(k) as(k)
0 1 0 0 0 0 0
1 Ky ko 0 0 Ks 0
2 kyks Koks kqko K, 0 0
3 kiks koK, 0 0 Ksk, kykoks
4 kyksk, Koksk, kykok, 0 0 0
5 kykokak, 0 0 0 0 0
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52+ S3 51+S3 Sl+82
P(S) =p 2 ’ 2 ’ 2 5£(S)! (27)

where §,(s)=1 if se £ and O otherwise, and the coordi-
nates in the density profile of the rhs are referred to the basis
{e1=by+b3—by, &=b;+bs—by, e3=b;+b,—bs}, {by,
b,, bs} being the canonical vector basis7A.

In order to calculate the contribution of each weighted
densityn®(s) we will take into account that

3
FIG. 3. Body-centered-cubic lattidlack point$ obtained by z = E ,
applying an infinite-strength external potential at the white points of se73 U=0 stbyel

a simple cubic lattice. Hard cubes with=2 can only be placed at .
black points, thus the interaction potential becomes a neares¥nerebo=(0,0,0). Then, after making use of the transla-

neighbor exclusion in the bec lattice. tional invariance ins, we have for the contribution of
n®(s),
where 3
N > 2 <I>o( > p<s+r—bu>),
n=)(8)=p(s)+p(stey) +p(st ) +p(stey), se£u=0 A (lu

where condition |u,k) selects those € B(k) such thatr

n(s)=p(s)+p(stq), I=1,...,6. (25  —Db,e L. In a more convenient way, the previous expression
can be written
The diagrammatic notation is of little help in this case, so we 3 4
it it.
omt ! > <I>o( > ak)p(sta) |, (28)
se73 U=0 =0

E. Body-centered-cubic lattice where e,=e,+6,+¢;, the coefficientsa;(k) are given in

It is impossible to reduce a hypercubic four-dimensionalTable V, and all the spatial vectors appearing are referred to
lattice to a three-dimensional bcc lattice by projecting on ahe vector basis of.
hyperplane. Therefore, the method used in the previous cases Taking into account the contribution of all the involved
is not suitable for this one. But there exists a different pro-weighted densities, the total excess free-energy results
cedure to obtain the functional for this system. Again, we
will begin with a system of parallel hard cubes, but now of .
the same dimensionality of the target system. Also, the key ﬁfngPF E
ingredient of the method is to apply an infinite-strength ex- seZ
ternal potential to the appropriate set of lattice sites. with n)(s) = p(s) + p(s+q). Again, the diagrammatic nota-
Let us consider a three-dimensional system of parallefion is not much help in this case either.
hard cubes witho=2 in a simple cubic lattice. If we now
restrict the centers of mass of the cubes to the set

., (29

4
.Zl Do(n"(8))—7Do(p(9)

3

IIl. THERMODYNAMICS

L={(s1.52,85) 7% all's; odd oralleveh, (26 In the preceding section, we have obtained the density
functional for all systems in closed form. From them it is

then £ forms a bcc lattice and the exclusion of the cubes inpossible to derive all the equilibrium properties of the system

the original lattice corresponds to nearest-neighbor exclusiom the presence of an arbitrary external potential. In this sec-
in the effective lattice. This transformation is sketched in Fig.tion we will restrict ourselves to the bulk phase diagram. The
3. The effect of this external potential in the density profiledescription of bulk behavior that lattice FM functionals pro-
of the original system amounts to vide turns out to be equivalent to that obtained from other

TABLE V. The same as Table | for the linear combinations in 8) defining the weighted densities for
the nearest-neighbor exclusion lattice gas in the bcc lattice.

u ap(k) ay (k) az(k) ag(k) ay(k)
0 1 0 0 0 kiKoks
1 K, K, ks 0 0
2 k2 0 k1k3 0 0
3 ks 0 0 k., 0
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TABLE VI. Transitions of nearest-neighbor exclusion lattice gases, as predicted by FM functionals.

Lattice Order n Bp z -®
Square second 1/2 0.523 1.687 0.392
triangular first 0.684-0.754 0.737 7.70 —
sc second 1/3 0.305 0.763 0.350
fcc first 0.579-0.837 0.461 5.29 —
bcc second 1/4 0.216 0.490 0.305
classical theories. Thus in this particular application it pro- p1(1—p)3=(—p))(1— n+py)S. (31

vides nothing new, and we include it both for completeness
and to show the remarkable fact that FM theory subsumeBor low values of this state corresponds to the uniform or
many other theories in a unified framework. Anyhow, wedisordered one, witlp;=p,=p. For higher values, one ex-
want to stress that what FM theory provides are functionalspects the system to undergo a phase transition to an ordered
and functionals perform best when applied to inhomogephase, where one of the sublattices is preferentially occupied.
neous problems. The phase transitions obtained for eachhis situation is exactly the one described by the solutions of
model are collected in Table VI. Eq. (31). For 0< »=< 7% 1/2 the minimum is given by,

=p. The equation of state and fugacity of the disordered

A. Square lattice phase can be easily obtained from E80),

As the interaction is only between nearest neighbors, we (1—7p/2)3 7(1—7l2)3
will distinguish two sublattices in such a way that the nearest BPidia= |an Zﬁﬂidzw- (32
neighbors of every site of one sublattice belong to the other
sublattice. Let the density of each sublatticedyeand p,. For 1/2< <1, we have
Given a total density it holds 20=p;+ p,. When we con-
sider such a density profile in E) the free-energy densit 1 2n—1
becomes yP ¥ Y g pri=5|nt (2= ) 32277 : (33

_ _3 _
D=+ 2P0(7) — [ Po(p) + Po(7—p1)], B0 Tpig gives the ordered state. The equation of state and fugac-
) ) ) ity in this phase are given by
where Os7n=2p=<1 is the packing fraction, ®;

=(1/2)2;pi(In p—1) is the ideal contributiorecall that we . w 3 3-27 o PT(1-ptH®
are considering two lattice sites, hence the factoy, 1d2d BPia= BPiidia— zmm, nglid:W-
we have writtenp,= n—p;. (34)
The equilibrium state of the system at constant packing
fraction # is given by the global minimum of E430) with The equation of state of both phases is plotted in Fig. 4.
respect tgp, . This is a solution to the Euler-Lagrange equa-Also, the occupancy of each sublattice is plotted in Fig. 5.
tion The transition is second order, and the critical point values
are listed in Table VI. These are the same as those obtained
15— , . by Burley[23] and Temperley24] with a Bethe approxima-
1 T T T T T T
1_ -
o o
==X
0.51 il & 0.5F .
0 f 1 . 1 L | L | L Fluid
0 0.2 04 0.6 0.8 1
n P,
FIG. 4. Phase diagranpressure vs packing fractiprof the O 1 I = .

hard-square lattice gas in the lattice FM approximat®wolid line). 0 0.2 04 n 0.6 0.8 1
The system undergoes a second-order phase transition from a dis-
ordered state to an ordered onesgf=1/2. Dotted line: results of FIG. 5. Densities of the two sublattices; and p,, for the
the “ring” approximation obtained by Burlej23]. hard-square lattice gas, as a function of the packing fracfion
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tion. The next correction to the Bethe approximatioalled

the “ring” approximation in the scheme proposed by Rush-
brooke and Scoing25,26 has also been considered by Bur-
ley [23]. The results are plotted in Fig. 4 for comparison. The
gualitative phase behavior is the same, but the critical values
improve those of the Bethe approximation. A further correc-
tion (“necklace” approximation within the same scheme has
been implemented by Temperl¢27], who claims that the
transition becomes first order.

B. Triangular lattice
As a triangular lattice has three sublattices such that a

PHYSICAL REVIEW E68, 066120 (2003
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nearest neighbor of a site in one sublattice belongs to another
sublattice, we will characterize the density profile with the

o . . FIG. 6. Th Fig. 4 for the hard-h GusArest-
densities of each sublattice;i, p,, andps, the total density G. 6. The same as Fig. 4 for the hard-hexagon m res

. neighbor exclusion in a triangular latticeSolid line represents the

of the system being related to them through=3;+p, equation of state from the FM approximation. Dashed line repre-
*ps3. ) ) ) sents the exact solution by Bax{@8]. In our approach the system

~ The free-energy density for a three sublattice configurayngergoes a first-order phase transition from a disordered phase to
tion can be obtained from E@13) an ordered one. Coexisting packing fractions ajg4=0.684 and
Nsoig=0.754. It is worth mentioning the good agreement of FM
approximation with the exact solution at low and high densities,
despite its failure in the critical region.

Q=P g+ 2Po(7) — Po(p1+p2) — Polp1+p3)

—®o(patp3)+3[Polp1) + Po(p2) +Polps)],
39 o P17+ p)%(1-2p,)°

o (1) (1-py) 40

where 0< 7=3p=<1 and® 4= (1/3)Z;p;(In pj—1). As in the
previous case, the phase diagram can be obtained by mini- o ) )
mizing this free-energy density at constant packing fractionWherep, is given by Eq.(36). The phase diagram is plotted
For low values of the density the stable phase is uniform, sé? Fig. 6. Sublattice densities are shown in Fig. 7.
p1=p,=ps=p. In contrast, for high values of the density This result coincides with that obtained by Burl&g] by

one sublattice is preferentially occupied. In this orderedUSing the ring approximatiofsee Sec. Il , and was also
phase the configuration that results from E3p) is p,=p, ©Ptained by Temperley through a combinatorial finite matrix

= ps. Thus, in what follows we will consider the latter two Method[24].

sublattices as equivalent. The Euler-Lagrange equation ob- TNiS System has been exactly solved by Ba&8,30.
tained from Eq.(35) is This fact allows us to compare not only the equation of state

(Fig. 6) and sublattice occupandiig. 7), but also the com-
pressibility (Fig. 8). The system exhibits eontinuousphase
transition (the critical point in the pressure vs density dia-
gram is a horizontal inflection pointat packing fraction
exact

7% (3/10) (5~ /5)~0.829 and critical pressurgp?

pa(1=2p2)3%(1—5+2p,)

A=p) (- 200 (A—7+p)° -

(36)

The solutions to this equation as a function»pfndicate a
first-order transition. The coexisting packing fractions as ]

well as the pressure and fugacity at coexistence appear in : : : :
Table VI. The equation of state for the disordered phase is o
0.8 7
(1—27/3)°3 /
tr _ !
BPiuia= N (1— 713)(1— )%’ (37) 0.6 :" 7
& |
and the fugacity 0.4- 4
6 I b
. n(1—27/3) . -
Zay iy = . 38 0.2r Fluid - -
fluid 3(1_ 7]/3)(1_ 77)6 ( ) ul l“ 0,
For the ordered phase 00 ' o'.2 ' 0|.4 n 0|.6 ' 0|.8 : 1
_ 6/1_ 3
Bp" =Eln (1= 7+ p2)°(1~2p5) (39) FIG. 7. The same as Fig. 5 for the triangular lattice. Full circles
solid™ 37 (1—7)%(1— n+2p,)(1—py)?’ represent the configuration of coexisting phases. Dashed lines are

sublattice densities in the exact solution. The empty circle is the

and exact critical point.
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2 T T T T 15 v T T T
1 i
18
-1 ==X
0.5+ .
. 0 L 1 L 1 L | L | L
00 0.0 0.4 1 0 0.2 0.4 n 0.6 0.8 1

o . FIG. 9. The same as Fig. 4 for the nearest-neighbor exclusion
FIG. 8. Reduced compressibilitpkr//) vs the packing frac lattice gas in the simple cubic lattice. A second-order transition is

tion (#) for the triangular lattice. Full circles denote the coexisting redicted atn®= 1/3
points. Dotted lines extrapolate the compressibility in the meta Te ‘

stable region(The extrapolation for the fluid line actually breaks U . . the d itv th t .
down at aroundn~0.88, because the entropy becomes negative pon Increasing the density the sysiem experences a

P i c_
beyond that poin}. Baxter’s exact solution is represented with second-order dlsorder-order transition a;ﬁ ._1/3' For
dashed lines. 1/3= %=1, the density of the preferred sublattice can be cal-

culated from Eq(42) to be
=(1/2)In(27/250)(25+ 11/5)]~0.839. To the best of our 2[5—47n(2—5)]2-5(1-7)
knowledge, this is the first time that FM theory can be com- p{%=={ 7+ (2—17) \/ ]

1
h . ) . . 2 5-37
pared with an exact result in a dimension higher than one. (44)

Although the theory fails in predicting correctly the order of
the transition, the agreement in the whole range of density, thjs phase, the equation of state is given by

except the critical region is rather accurate.
5 [2(5—4n)—\5-4n(2—17)
BPsoiia= BPfiia+ E'n[ 53, ,

C. Simple cubic lattice 45
In the close-packed state the particles of this system oc-

cupy one sublattice with fcc symmetry, while the sublatticeand the fugacity by
formed by nearest neighbors of that one remains empty.
Thus, we will only consider these two sublattices, with den- o PR L-pTH®
sities p; and p,, respectively. Again, the total densigyis Zsolid:W' (46)
related to these numbers by 2 p;+p5.
When we insert such a density profile in the functional  The equation of state is plotted in Fig. 9. Sublattice den-
(19 we get for the free-energy density sities are shown in Fig. 10. The critical point values are listed
sc_ 5 in Table VI. As for the square lattice, for this model the result
PF=Digt Do(20) =2[Polpy) T Po(2p=p)], 4D g Ey theory coincidqes with a Bethe approximati@8].

where we have eliminated the dependencyenFor a fixed L B — .
value of the density, the global minimum of E@ll) is a
solution to the Euler-Lagrange equation 0
1
1— 5
p1(1—p1) c=1, 42) _
(7=p)(1=7n+p1) a0.5- 1
0<7n=2p=<1 being the packing fraction. When<Op= 7" L
=1/3, the minimum is given by the uniform phag§’= 7. Fluid
For the equation of state and fugacity we have P,
L | L | T " | L
% 02 04 06 08 1
(1-9/2° . n(1-9/2)° n

¢ —ln——, . =————— (43
BPiig (1—7)° fluid™ 2(1— 2)°® (43 FIG. 10. The same as Fig. 5 for the simple cubic lattice.
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1 — T T T T T T T —T—T—T T
| x10° p/_
1 T T T
0.8 osf ] .
0.6 b
0.6 4 o 1 -
2 0.5+ . a b %N ]
0.4+ 85 085 09 095 1 -
2 Fuid ]
Ul
P, ]
0 1 1 L 1 L | L | ' 0 T 1 L 1 L | L | L
002 04 06 08 1 0 02 04 06 08 1
n

FIG. 11. The same as Fig. 4 for the nearest-neighbor exclusion FIG. 12. The same as Fig. 5 for the fcc lattice. Solid circles
in the face-centered-cubic lattice. A first-order phase transition takegepresent configurations of coexisting phases. The inset shows a
place at pressur8p=0.461 with coexisting states a}ffﬁﬁd=0.579 detail of sublattice densitg,.
and 7%= 0.837.

1-7/2)°
As far as we know, the only available simulation data are BPiig=1n 1 ( a Z 1) 2 (48)
the critical exponent$which we cannot compare with since (1=5/4)>(1=7)
a Bethe approximation is mean figknd the critical fugacity
z.=1.0559[31,32. The agreement with the predicted value
(shown in Table V) is poor, butz; is certainly not the best . 7(1—7p/2)*?
output one should expect from a Bethe approximation. Un- Zfﬁﬁd=4(1_ 12)5(1— )8 (49
fortunately, no other magnitudes have been simulated to K K
make a more fair comparison. For the ordered phase
D. Face-centered-cubic lattice e 1I (1— p+2py) H1—2p,)* 50
..=—1n
Afcc lattice contains four equivalent sublattices each with PPsaia=7 (1= 7+3p2)°(1—p)™(1—7)°
a sc symmetry. As in the previous cases sublattice densities
are denotedps, p, ps, pa, and p=4p=py+p,+pstp, aNd
holds for the total density or packing fractions. B 4rq 8
The free-energy density for such a density profile in the Sfee _ p2(1=n+2p;)"(1—-2p,) 51

FM approximation is obtained from E¢4) as sold™ (1-pp)°(1—-n)°

54 with p, the minimum of the free energt7).
D=+ 2D 77)—2 Do(pi+pj)+ —2 Dy(pp), It is worth mentioning that a metastable phase transition
i< 4= . .
47 from the disordered state to a smectic ordered stdterna-
tive square-lattice layers are uniformly occupied, with densi-

where ®4=(1/4)S,p(In p—1). The global minimum of ties p; andp,) is also obtained from the function&d?).
dy.. at fixed density with respect to the sublattice densities
yields the thermodynamically stable phase. But now there is E. Body-centered-cubic

a subtle point we have to take into account: the close packing a; g close-packing state this system has one sublattice

is degenerated. If we consider the fcc lattice as a stacking Qfompjetely filled while the nearest-neighbor sublattice is

square lattices each having its sites on the centers of thgynr Therefore, we will consider the density profile as in
squares of the previous one, then we can fill alternative layg, o previous similar casdsquare or sc lattices

ers independently. Thus, we will consider different densities o free-energy densifiEq. (29)] becomes
for the four sublattices and the minimum of the free energy

will determine the structure of the most stable ph&Beevi- PPC= D3+ 4D (1) — 5[Polp1) + Po(n—p1)]. (52
ous studieg33] impose the equivalence of three sublattices
from the beginning, i.ep;# po=p3=p4.) The Euler-Lagrange equation is

Solving numerically the Euler-Lagrange equations ob-
tained from Eq(47) at fixed packing fraction, we obtain the p1(1—py)’ B 53
equation of state plotted in Fig. 11. Sublattice densities at (n—p)(1—n+p)’

equilibrium phases are shown in Fig. 12. The system under-

goes a first-order phase transition to an ordered phase withhe phase behavior obtained from this equation is similar to
p1# po=p3=p4. (See Table VI for the critical point valugs. that of the square or the sc lattices: The system undergoes a
For the uniform phase second-order phase transition ﬁﬁccz 1/4; below this den-
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— As for the sc lattice, the only available simulation data to
compare with is the critical fugacitg.=0.7223[34]. Again
0.8- i and for a similar reason, it compares poorly with the value
| listed in Table VI.
0.6 P, |
e 1 IV. DISCUSSIONS AND CONCLUSIONS
0.4r i Dimensional crossover is a property that connects differ-
ent models. A system of parallel hard culgbsth on and off
02r Fuid 7 a lattice constrained to lie on a plane parallel to their sides
- 2 1 becomes a system of parallel hard squares. A system of par-
05— 012 =5 0|6 : 0|8 — allel hard squares constrained to lie on a straight line parallel
' T : to their edges becomes a system of hard rods. These are
obvious dimensional crossovers, but in this paper we have
FIG. 13. The same as Fig. 5 for the bcc lattice. introduced a few more: parallel hard cubes constrained to lie

on more general planes produce nearest-neighbor exclusion
sity the stable phase is a fluid, while above the particlesattice gases in the square and triangular lattices; four-
occupy preferentially one sublattice. The ordered solution otlimensional parallel hard hypercubes constrained to lie on
Eq. (53) can be obtained analytically, but the expression iscertain hyperplanes become nearest-neighbor exclusion lat-
rather cumbersome, so we just plot it in Fig. 13. For the fluidtice gases in the sc or fcc lattices. If this dimensional con-
phase, the equation of state and fugacity are given by straint is regarded as the application of an infinite-strength
external field, then more general patterns of such an external
(1—nl2)’ e (1= 712)7 field produce new models out of the parallel hard cube one
nW' Zﬂuid:w- (54) (the nearest-neighbor exclusion lattice gas in the bcc lattice,
for instance.
The message we want to transmit with this work is that
FM functionals for all these models have the remarkable
property of being connected with each other through the

bce _ [
fluid —

For the ordered phase, we have

1 (1-p)'(1—7n+py)’ : _ : .
boc _ | P1 7T P1 same transformations. More than that: further dimensional
BPsolia= 7 In — 4 ) (55 .
2 (1—mn) crossovers of these models are also consistently captured by
FM functionals. For instance, all functionals obtained in this
and paper produce thexactfunctional for hard rods when re-

duced to one dimension; also, the functional for the nearest-
pi(1=py)7 neighbor lattice gas ir_] th_e square Iatti(_:e, EG)., can be
o = (56)  obtained from the one in either the sc lattice, E), the fcc
(1=7) lattice, Eq.(24), or the bcc lattice, Eq(29), through the
application of an appropriate external potential. Similarly,
with p; the ordered solution of Eq53). the functional for the nearest-neighbor lattice gas in the tri-

These results are again equivalent to those obtained with gngular lattice, Eq(13), can be recovered from that in the
Bethe approximatiofi23]. The equation of state is plotted in fcc lattice, Eq.(24). Such a degree of internal consistency is
Fig. 14 (see Table VI for the critical point valugs not shared by any other known density functional theory, and

it puts FM theory at a different level. As a byproduct, as

15— - - pointed out in the Introduction, it warrants a good behavior

of FM functionals when dealing with highly inhomogeneous
situations.

When applied to study the bulk phase behavior of these
1 T nearest-neighbor lattice gases, FM functionals produce rea-
sonable results, sometimes with important discrepancies in
the critical region, sometimes more accurate, and always
very accurate at low and high densities. There are, no doubt,
better methods to fit the equation of state and obtain a better
description of this phase behavior, such as, for instance,
finite-size  analysis [35—-38 or series expansions
o7/ . . . 1 [33,37,39,40 They are particularly useful in predicting the

0 02 04 06 08 1 critical behavior. The FM approach has an important advan-
n tage on these methods, whatever the sacrifice in accuracy: it

FIG. 14. The same as Fig. 4 for the nearest-neighbor exclusioftads to simple, closed-form functionals. Thus it permits us
lattice gas in the bcc lattice. The system undergoes a second-ordt® study inhomogeneous problems, which are absolutely out
phase ordering transition at’®= 1/4. of the scope of these other more accurate methods. A particu-

BP

0.5
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larly interesting example of such inhomogeneous problemslefinitely worth exploring, because one drawback of the lat-
can be found in recent studies of fluids in porous mediaer is that there is not aa priori criterion to choose the
[19-21], for which lattice models seem to capture enoughclusters, other than “the larger the better;” as a matter of
physical information to describe many interesting phenomf{act, some cluster¢depending on the modeproduce an
ena not yet described by other models. optimal result and some othefsven larger ongsspoil the

An interesting observation to make from the results of theaccuracy, and the reason for that is unknown. FM theory, on
application of the FM theory to describe bulk phase behaviothe contrary, leaves no freedom to choose the clusters, but
is the close connection it has with other classical approachethose it prescribes seem to be optimal in the above sense.
For those lattices with only two sublatticé®ose-packed Burley’s treatment of the nearest-neighbor exclusion lattice
lattice9 FM theory reduces to a Bethe approximationgas in the fcc lattice is very illustratiie3]: the inappropri-
(square, sc, and bcc lattige$or lattices with more than one ate election of the clustefenly part of those prescribed by
sublattice(close-packed latticest becomes equivalent to an- the FM functional(24)] leads to a spurious divergence of the
other clusterlike approximation. In fact, when closely lookedfree energy at a density lower than the close packing. This is
at, all these approximation are but particular cases of Kikua line of investigation we are currently following.
chi's cluster variation theory41]. This theory proposes a
h|e_ra_rch|(_:al scheme of approximations unde_r the ba_3|s of_de- ACKNOWLEDGMENTS
scribing in an exact manner clusters of increasing size.
Roughly speaking, the larger the cluster the more accurate This work was supported by Project No. BFM2000-0004
the results—and the more involved the theory. The conneosf the Direccio General de InvestigagidDGI) of the Span-
tion between FM theory and the cluster variation method igsh Ministerio de Ciencia y Tecnolaa
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