
s

PHYSICAL REVIEW E 68, 066120 ~2003!
Density functional theory for nearest-neighbor exclusion lattice gases in two and three dimension
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To speak about fundamental measure theory obliges us to mention dimensional crossover. This feature,
inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first
it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming
the only density functional theory which possesses such a property. It is straightforward that dimensional
crossover connects, for instance, the parallel hard cube system~three dimensional! with that of squares~two
dimensional! and rods~one dimensional!. We show here that there are many more connections which can be
established in this way. Through them we deduce from the functional for parallel hard~hyper!cubes in the
simple~hyper!cubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the
square, triangular, simple cubic, face-centered-cubic, and body-centered-cubic lattices. As an application, the
bulk phase diagram for all these systems is obtained.
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I. INTRODUCTION

Rosenfeld’s fundamental measure~FM! theory @1# is pe-
culiar among the weighted density approximations~WDAs!,
and it is so for many reasons. To begin with, classical WD
are constructed upon the knowledge of the thermodynam
and structure of the uniform fluid, while FM theory is co
structed on a geometrical basis. Originally it needed sca
particle theory to produce a functional, but in its latest f
mulations this is not a requirement anymore@2,3#, and
geometry stands as its unique ingredient. Another impor
difference is that, while the extension to mixtures of classi
WDAs is far from being straightforward, the natural form
lation of FM theory is for a mixture~although it has recently
been shown that a FM theory for hard spheres does no
commodate a description for mixtures as well as it was p
viously thought@4#!. One further remarkable feature is th
FM theory performs best where classical theories are p
est: in the high density region. It has been shown, for
stance, that the description FM theory provides for a solid
extraordinarily accurate in all its details@3,5#. This is prob-
ably the reason why the belief has spread that FM theor
the best density functional theory for the system of h
spheres. But there is no free lunch. Such a peculiar struc
makes the theory extremely rigid, so much that it is ve
difficult ~sometimes impossible! to improve a particular de
tail without spoiling another. This shows up very clearly
one tries to improve the equation of state for the liqu
phase. FM theory yields the scaled particle equation of st
The large difference in accuracy between the liquid and
solid gives rise to a not very good prediction of freezing@3#.
If one tries to replace the equation of state by, e
Carnahan-Starling, the internal structure of the the
squeaks@6# and loses some of its nice features~although for
some purposes the defects may be mostly irrelevant@7#!.
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But by far the most genuine property of FM theory
dimensional crossover, something that this theory sha
with the exact functionals and with no other known dens
functional theory. In its first formulation this property wa
introduced as the ability of a modification of Rosenfeld
original functional for hard spheres to recover the exact fu
tional for ‘‘zero-dimensional’’ cavities~cavities which cannot
hold more than one sphere! @8#, but it was immediately ex-
tended to describe the property of the exactd-dimensional
functional to reproduce the exact (d21)-dimensional one
when evaluated at a density profile which is delta-like on
hyperplane@9#. Needless to say, functionals that have dime
sional crossover are particularly suitable for studying flu
under strong confinement.

The first modified FM functional for hard spheres pr
duced accurate functionals ford52 and d51, apart from
yielding the exact one ford50 ~cavities! @9#. When applied
to the system of parallel hard cubes, whose FM functio
can be obtained for arbitrary dimension~being exact ind
51) @10#, it was shown that dimensional crossover cons
tently transforms thed-dimensional functional into the (d
21)-dimensional one, down tod50. The acknowledgmen
that this property lies at the heart of the formal theory su
gested the last step in this direction: transforming this pr
erty into the constructive principle of FM theory@2,3#. Under
this new formulation FM theory has been generalized to s
tems with soft interaction potentials@11#, anisotropic hard-
particle models@12,13#, nonadditive mixtures@14#, lattice
gases@15–17#, and even fluids in porous media@18,19#.

So we see that dimensional crossover was first looke
as a very stringent constraint on density functionals and l
as a way of rising fromd50 andd51 to d.1 in the con-
struction of FM functionals. But dimensional crossover h
another use which has hardly been exploited: one can
new systems out of known ones. The first~and to our knowl-
edge the only! example of such a use was already provid
by Rosenfeldet al. @9#. By forcing hard spheres to have the
centers of mass on one out of two parallel planes separat
distance shorter than a sphere diameter, one obtains a b
©2003 The American Physical Society20-1
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mixture of nonadditive hard spheres with negative nonad
tivity (2s12,s111s22, with s i j the center-to-center contac
distance between spheres of typei and j!. The amount of
nonadditivity depends on the distance between planes.

Physically, dimensional crossover amounts to apply
an infinite-strength external potential all over
(d11)-dimensional lattice, except in a certaind-dimensional
set of sites which defines the effective system. But this is
the only way to construct functionals for new systems out
known ones. One can also apply an appropriate externa
tential at selected sites and modify the interaction acco
ingly, thus obtaining a new system without reducing dime
sion. This trick has already been applied to obtain the ex
functional for a nonadditive mixture of hard rods in a on
dimensional lattice from that of the additive mixture@16#.1

One can consider all systems which are related thro
the kind of transformations we have just described abo
Then, because of the internal consistency the FM theory
the functional for a given model ‘‘contains’’ the functiona
for any other model to which it is related. Our goal in th
paper is to show how this works for a set of well-know
lattice gases. The methods we will use are very genera
their application to other families of models should not
difficult. This is interesting if we take into account the im
portance that lattice gases are getting in the study of cer
inhomogeneous problems, such as the behavior of fluid
porous media@19–21#.

The paper is organized as follows. Section II describes
general procedure to obtain the excess free-energy functi
for nearest-neighbor exclusion lattice gases in different
tices, either starting from a higher dimensional functional
cubes and using dimensional reduction to a plane or a hy
plane~this procedure is subsequently applied to the squ
triangular, simple cubic, and face-centered-cubic lattices!, or
starting from the functional of cubes and applying
infinite-strength external potential in the appropriate set
lattice sites without reducing the effective dimensionality
the system~this procedure is the one applied for the bod
centered-cubic lattice!. The final~simple! expressions for the
functionals are explicitly obtained in closed form. In Sec.
these functionals are applied to obtain the bulk phase
gram for all the systems considered. There, FM theory
sults are compared with those from other classical theor
showing that the former is at least at the same level of ac
racy than the latter. Finally, we conclude in Sec. IV.

II. THEORY

In this section we will derive the FM functional for lattic
gases with nearest-neighbor exclusion in five different
tices: square~hard-square lattice gas!, triangular ~hard-
hexagon lattice gas!, simple cubic~sc!, faced-centered-cubic

1A similar trick can be employed to recover the exact functio
for the one-dimensional system of hard rods in a lattice~see Ref.
@16#! from the exact functional of its continuum counterpart@42#,
by inserting in the latter a density profile formed by a chain of de
spikes@43#.
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~fcc!, and body-centered-cubic~bcc!. All these systems have
been already considered in the literature as simple models
the hard-sphere system@22#. As explained in the Introduc-
tion, the derivation of the first four will make use of th
dimensional crossover property of FM functionals, so all t
four will be obtained from the known functional for (d
11)-dimensional parallel hard cubes in a simple~hyper!cu-
bic lattice @16,17# ~d being the dimensionality of the fina
systems!. For the last one, we will start from the function
for the three-dimensional parallel hard cubes in the sim
cubic lattice, and we will apply an infinite-strength extern
potential to the appropriate set of lattice sites of the origi
lattice, so that the effective lattice becomes a bcc one.
fact that all the models considered exclude only nea
neighbors forces the edge length of the cubes to bes52
lattice spacings.

Of the different ways in which the FM functional for thi
particular model of~hyper!cubes can be written@16,17#, the
simplest expression for the excess free energy is probab

bFex@r#5 (
sPZd

(
kP$0,1%d

~21!d2kF0„n
~k!~s!…, ~1!

wheren(k)(s) are the weighted densities

n~k!~s!5 (
rPB~k!

r~s1r ! ~2!

labeled by the vector indexk5(k1 ,...,kd), k5( l 51
d kl , B~k!

denotes the set

B~k!5$rP$0,1%d:0<r i<ki , i 51, . . . ,d% ~3!

and F0(h)5h1(12h)ln(12h) is the excess free energ
for a zero-dimensional cavity with mean occupancy 0<h<1
~b is the reciprocal temperature in Boltzmann’s const
units!.

A. Square lattice

The kind of dimensional reduction we have to perform
order to obtain the hard-square lattice gas out of cubes
cubic lattice is illustrated in Fig. 1. It amounts to forcing th
centers of mass of the cubes to lie in the plane

Psq5$~s1 ,s2 ,s3!PZ3:s11s212s350%. ~4!

~Notice that we might have chosen several equivalent pla
given the symmetry of the system.! Figure 1 shows that the
effective underlying lattice is a square lattice defined,
instance, by the pair of orthogonal vectors$e15b22b1 , e2
5b32b12b2% of the planePsq, $b1 ,b2 ,b3% being the ca-
nonical vector basis inZ3. Furthermore, the effective inter
action potential between the cubes within this lattice
nearest-neighbor exclusion.

In terms of the one-particle distribution function, the d
mensional reduction can be imposed by setting

r~s!5r~s21s3 ,s3!d~s11s212s3!, ~5!
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DENSITY FUNCTIONAL THEORY FOR NEAREST- . . . PHYSICAL REVIEW E 68, 066120 ~2003!
whered~0!51 andd(xÞ0)50 ~a Kronecker symbol!. The
dependence of the two-dimensional density profile refle
the choice of basis vectors.

To obtain the FM functional for the hard-square lattice g
it only remains to introduce the density profile~5! in the
functional ~1! through the weighted densities~2! and to
eliminate the unnecessary degrees of freedom. In what
lows, we will carry out this task in detail.

The contribution of one weighted density, sayn(k)(s), to
the excess free-energy functional will be@up to the sign
(21)d2k]

(
sPZ3

F0S (
rPB~k!

r~s21r 21r 3 ,s31r 3!d~s11u! D ,

whereu[r 11r 212r 3 and we have made use of the tran
lational invariance ins. A better way of expressing this is t
split the sum inr according to the values ofu, as

(
sPZ3

F0S (
u50

4

d~s11u! (
~r uu,k!

r~s21r 21r 3 ,s31r 3!D ,

where (r uu,k) denotes those vectorsrPB~k! which verify
r 11r 212r 35u. Now, one and only one of thed functions
within the sum inr is 1; the others are 0, so the abo
expression admits the following rewriting:

(
sPZ3

(
u50

4

d~s11u!F0S (
~r uu,k!

r~s21r 21r 3 ,s31r 3! D .

The sum overs1 is now trivial, so denotingt[(s2 ,s3), the
expression simplifies to

FIG. 1. Hard cubes with edge lengths52 in a simple cubic
lattice. Their centers of mass are constrained to lie on the p
s11s212s350. Filled circles mark the sites excluded by the cub
which lie on this plane. Notice that on the plane, cubes behav
the hard-square lattice gas with nearest-neighbor exclusion.
diagram at the lower right corner helps us to visualize the rela
position of the cubes in the figure.
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tPZ2

(
u50

4

F0S (
~r uu,k!

r~s21r 21r 3 ,s31r 3! D .

The last step concerns the identification of the argumen
F0 ~the new measures for the effective system!. Using the
translational invariant int the above expression can alwa
be written

(
tPZ2

(
u50

4

F0S (
l 50

2

al~k!r~ t1el !D , ~6!

wheree05(0,0), e15(1,0), ande25(0,1), and the coeffi-
cientsal(k) are listed in Table I@notice thatF0(0)50, so
for someu andk there will be no contribution#.

It is now time to reinsert Eq.~6! back into Eq.~1!, group
terms, and write the final form for the functional,

bFex
sq@r#5 (

sPZ2
@F0@r~s!1r~s1e1!#

1F0@r~s!1r~s1e2!#23F0„r~s!…#. ~7!

The above expression can be more easily visualized by u
the diagrammatic notation introduced in@17#,

~8!

Its meaning should be clear by comparing Eqs.~7! and ~8!.

B. Triangular lattice

As in the preceding section, we will start with the FM
functional for the parallel hard cubes withs52 in the simple
cubic lattice. As the procedure we will follow is the same
the one used before, we will omit most details. Again, w
will restrict the position of the centers of mass of the cubes
lie, in this case, in the plane

Ptr5$~s1 ,s2 ,s3!PZ3:s11s21s350%. ~9!

A sketch of the effect of this confinement is shown in Fig.
It can be appreciated that the resulting effective lattice i
triangular lattice, and that the interaction becomes ag
nearest-neighbor exclusion. The effective system thus co
sponds to the hard-hexagon lattice gas.

The one-particle distribution function for this confine
system can be written

e
s
as
he
e

TABLE I. Coefficients of the linear combinations( lal(k)r(t
1el) appearing in Eq.~6!, which define the weighted densities fo
the hard-square lattice gas model.

u a0(k) a1(k) a2(k)

0 1 0 0
1 k1 k2 0
2 k1k2 0 k3

3 k1k3 k2k3 0
4 k1k2k3 0 0
0-3



fil

th
y

ss
ou

s

a
el,
of
nd
the

hy

a

lel

ree

c.

ron

the

n

rre-

lan
e
e
T
tiv

in
tic
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r~s1 ,s2 ,s3!5r~s2 ,s3!d~s11s21s3!, ~10!

where the arguments of the two-dimensional density pro
correspond to the choice$e15b22b1 , e25b32b1% for a
vector basis.

After eliminating the unnecessary degrees of freedom,
resulting contribution ofn(k)(s) to the excess free-energ
functional is

(
tPZ2

(
u50

3

F0S (
~r uu,k!

r~ t11r 2 ,t21r 3! D , ~11!

using the same notation as in the previous case. Nowu
[r 11r 21r 3 . This can again be written

(
tPZ2

(
u50

3

F0S (
l 50

3

al~k!r~ t1el !D , ~12!

where the coefficientsal(k) appear in Table II~a third vec-
tor, e35e22e1 , is involved this time!.

Inserting this in Eq.~1! and regrouping terms, the exce
free-energy functional for the hard-hexagon model turns
to be

FIG. 2. Hard cubes with edge lengths52 in a simple cubic
lattice. Their centers of mass are constrained to lie on the p
s11s21s350. Filled circles mark the sites excluded by the cub
which lie on this plane. Notice that on the plane, cubes behav
the hard-hexagon lattice gas with nearest-neighbor exclusion.
diagram at the lower right corner helps us to visualize the rela
position of the cubes in the figure.

TABLE II. The same as Table I for the linear combinations
Eq. ~12! defining the weighted densities for the hard-hexagon lat
gas model.

u a0(k) a1(k) a2(k) a3(k)

0 1 0 0 0
1 k1 k2 k3 0
2 0 k1k2 k1k3 k2k3

3 k1k2k3 0 0 0
06612
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t

bFex
tr @r#5 (

sPZ2
FF0„n

~1 !~s!…1F0„n
~2 !~s!…

2(
l 51

3

F0„n
~ l !~s!…1F0„r~s!…G , ~13!

where we have defined the new set of weighted densitie

n~6 !~s!5r~s!1r~s6e1!1r~s6e2!,

n~ l !~s!5r~s!1r~s1el !, l 51,2,3. ~14!

In diagrammatic notation,

~15!

C. Simple cubic lattice

As in the two preceding systems, we will write down
closed-form free-energy density functional for this mod
but now we have to start from a four-dimensional system
s52 parallel hypercubes in a simple hypercubic lattice a
constrain the centers of mass of the hypercubes to be in
three-dimensional hyperplane

Psc[$~s1 ,s2 ,s3 ,s4!PZ4:s11s212s314s450%. ~16!

As this cannot be graphically sketched we should clarify w
we chose this particular hyperplane. A hypercube withs52
centered at the origin contains all lattice sitess with coordi-
natessl50, 61, l 51,...,4. Now, the intersection of such
hypercube withPsc can be split into two sets: one withs4
50 ands11s212s350, and the other one withs4561 and
s11s212s3574. These two sets define three paral
~three-dimensional! planes. The first one coincides withPsq,
Eq. ~4! ~hence the choice of the coefficients of these th
coordinates inPsc) and thus includes the five points~includ-
ing the origin! of the two-dimensional square lattice of Se
II A. The last two planes contain only one site each~sym-
metrically placed with respect to the origin!. Excluding the
origin, these sites complete the six vertices of the octahed
defining the ‘‘shape’’ of the particle.

The effective underlying lattice is expanded, e.g., by
vector basis of the hyperplane$e15b22b1 , e25b32b1
2b2 , e35b42b12b22b3%, with $b1 ,b2 ,b3 ,b4% the ca-
nonical vector basis ofZ4. Thus, the one-particle distributio
function for this system can be written as

r~s!5r~s21s312s4 ,s31s4 ,s4!d~s11s212s314s4!,
~17!

where, again, the three-dimensional density profile co
sponds to that of the effective system.
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Repeating the procedure described in the previous
amples we arrive at this expression for the contribution
n(k)(s) to the excess free-energy functional,

(
tPZ3

(
u50

8

F0S (
~r uu,k!

r~ t11v,t21r 31r 4 ,t31r 4! D ,

where nowu[r 11r 212r 314r 4 and v is a shorthand for
r 21r 312r 4 . As in the preceding cases, this becomes

(
tPZ3

(
u50

8

F0S (
l 50

3

al~k!r~ t1el !D , ~18!

with e05(0,0,0), e15(1,0,0), e25(0,1,0), and e3
5(0,0,1), and the coefficientsal(k) given in Table III.

The final expression for the excess free-energy den
functional of this model is

bFex
sc@r#5 (

sPZ3
F(

l 51

3

F0„n
~ l !~s!…25F0„r~s!…G , ~19!

wheren( l )(s)5r(s)1r(s1el), or diagrammatically,

~20!

TABLE III. The same as Table I for the linear combinations
Eq. ~18! defining the weighted densities for the nearest-neigh
exclusion lattice gas in the sc lattice.

u a0(k) a1(k) a2(k) a3(k)

0 1 0 0 0
1 k1 k2 0 0
2 k1k2 0 k3 0
3 k1k3 k2k3 0 0
4 k1k2k3 0 0 k4

5 k1k4 k2k4 0 0
6 k1k2k4 0 k3k4 0
7 k1k3k4 k2k3k4 0 0
8 k1k2k3k4 0 0 0
06612
x-
f
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D. Face-centered-cubic lattice

The nearest-neighbor exclusion lattice gas in the fcc
tice can be obtained from the same four-dimensional sys
we have used above, but now the centers of mass of
hypercubes are confined to the three-dimensional hyperp

Pfcc[$~s1 ,s2 ,s3 ,s4!PZ4:s11s21s312s450%. ~21!

A vector basis expanding the effective underlying thre
dimensional fcc lattice is$e15b22b1 , e25b22b3 , e35b4
2b12b3%. When as52 hypercube is placed at the origi
~0,0,0,0! the excluded sites inPfcc correspond to the set of 1
nearest neighbors of the fcc lattice, whose coordinates in
chosen basis are$e15(1,0,0), e25(0,1,0), e35(0,0,1), e4
5(1,21,0), e55(1,0,21), e65(0,1,21)% and the opposite
ones. Under this external potential the one-particle distri
tion function takes the form

r~s!5r~s21s31s4 ,2s32s4 ,s4!d~s11s21s312s4!,
~22!

where the density profile in the right-hand side~rhs! is ex-
pressed in the chosen basis.

Proceeding as in the previous cases, the contribution
the weighted densityn(k)(s) to the excess free-energy func
tional reads

(
tPZ3

(
u50

5

F0S (
~r uu,k!

r~ t11v,t22r 32r 4 ,t31r 4! D ,

where nowu[r 11r 21r 312r 4 and v is a shorthand for
r 21r 31r 4 . This is more conveniently rewritten

(
tPZ3

(
u50

5

F0S (
l 50

5

al~k!r~ t1el !D , ~23!

with the coefficientsal(k) given in Table IV.
Gathering together the contributions of all weighted de

sities, as prescribed in Eq.~1!, the excess free-energy densi
functional of this model turns out to be

bFex
fcc@r#5 (

sPZ3
FF0„n

~1 !~s!…1F0„n
~2 !~s!…

2(
l 51

6

F0„n
~ l !~s!…15F0„r~s!…G , ~24!

r

r
TABLE IV. The same as Table I for the linear combinations in Eq.~23! defining the weighted densities fo
the nearest-neighbor exclusion lattice gas in the fcc lattice.

u a0(k) a1(k) a2(k) a3(k) a4(k) a5(k)

0 1 0 0 0 0 0
1 k1 k2 0 0 k3 0
2 k1k3 k2k3 k1k2 k4 0 0
3 k1k4 k2k4 0 0 k3k4 k1k2k3

4 k1k3k4 k2k3k4 k1k2k4 0 0 0
5 k1k2k3k4 0 0 0 0 0
0-5
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where

n~6 !~s!5r~s!1r~s6e1!1r~s6e2!1r~s6e3!,

n~ l !~s!5r~s!1r~s1el !, l 51, . . . ,6. ~25!

The diagrammatic notation is of little help in this case, so
omit it.

E. Body-centered-cubic lattice

It is impossible to reduce a hypercubic four-dimensio
lattice to a three-dimensional bcc lattice by projecting on
hyperplane. Therefore, the method used in the previous c
is not suitable for this one. But there exists a different p
cedure to obtain the functional for this system. Again,
will begin with a system of parallel hard cubes, but now
the same dimensionality of the target system. Also, the
ingredient of the method is to apply an infinite-strength e
ternal potential to the appropriate set of lattice sites.

Let us consider a three-dimensional system of para
hard cubes withs52 in a simple cubic lattice. If we now
restrict the centers of mass of the cubes to the set

L5$~s1 ,s2 ,s3!PZ3: all si odd or all even%, ~26!

thenL forms a bcc lattice and the exclusion of the cubes
the original lattice corresponds to nearest-neighbor exclu
in the effective lattice. This transformation is sketched in F
3. The effect of this external potential in the density profi
of the original system amounts to

FIG. 3. Body-centered-cubic lattice~black points! obtained by
applying an infinite-strength external potential at the white points
a simple cubic lattice. Hard cubes withs52 can only be placed a
black points, thus the interaction potential becomes a nea
neighbor exclusion in the bcc lattice.
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r~s!5rS s21s3

2
,
s11s3

2
,
s11s2

2 D dL~s!, ~27!

where dL(s)51 if sPL and 0 otherwise, and the coord
nates in the density profile of the rhs are referred to the b
$e15b21b32b1 , e25b11b32b2 , e35b11b22b3%, $b1 ,
b2 , b3% being the canonical vector basis inZ3.

In order to calculate the contribution of each weight
densityn(k)(s) we will take into account that

(
sPZ3

5 (
u50

3

(
s1buPL

,

where b05(0,0,0). Then, after making use of the trans
tional invariance ins, we have for the contribution o
n(k)(s),

(
sPL (

u50

3

F0S (
~r uu,k!

r~s1r2bu! D ,

where condition (r uu,k) selects thoserPB(k) such thatr
2buPL. In a more convenient way, the previous express
can be written

(
sPZ3

(
u50

3

F0S (
l 50

4

al~k!r~s1el !D , ~28!

where e45e11e21e3 , the coefficientsal(k) are given in
Table V, and all the spatial vectors appearing are referre
the vector basis ofL.

Taking into account the contribution of all the involve
weighted densities, the total excess free-energy results

bFex
bcc@r#5 (

sPZ3
F(

l 51

4

F0„n
~ l !~s!…27F0„r~s!…G , ~29!

with n( l )(s)5r(s)1r(s1el). Again, the diagrammatic nota
tion is not much help in this case either.

III. THERMODYNAMICS

In the preceding section, we have obtained the den
functional for all systems in closed form. From them it
possible to derive all the equilibrium properties of the syst
in the presence of an arbitrary external potential. In this s
tion we will restrict ourselves to the bulk phase diagram. T
description of bulk behavior that lattice FM functionals pr

f

st-
r
TABLE V. The same as Table I for the linear combinations in Eq.~28! defining the weighted densities fo
the nearest-neighbor exclusion lattice gas in the bcc lattice.

u a0(k) a1(k) a2(k) a3(k) a4(k)

0 1 0 0 0 k1k2k3

1 k1 k2 k3 0 0
2 k2 0 k1k3 0 0
3 k3 0 0 k1k2 0
0-6
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TABLE VI. Transitions of nearest-neighbor exclusion lattice gases, as predicted by FM functional

Lattice Order h bp z 2F

Square second 1/2 0.523 1.687 0.392
triangular first 0.684-0.754 0.737 7.70 —

sc second 1/3 0.305 0.763 0.350
fcc first 0.579-0.837 0.461 5.29 —
bcc second 1/4 0.216 0.490 0.305
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classical theories. Thus in this particular application it p
vides nothing new, and we include it both for completen
and to show the remarkable fact that FM theory subsum
many other theories in a unified framework. Anyhow, w
want to stress that what FM theory provides are function
and functionals perform best when applied to inhomo
neous problems. The phase transitions obtained for e
model are collected in Table VI.

A. Square lattice

As the interaction is only between nearest neighbors,
will distinguish two sublattices in such a way that the near
neighbors of every site of one sublattice belong to the ot
sublattice. Let the density of each sublattice ber1 and r2 .
Given a total densityr it holds 2r5r11r2 . When we con-
sider such a density profile in Eq.~7! the free-energy density
becomes

Fsq5F id12F0~h!2 3
2 @F0~r1!1F0~h2r1!#, ~30!

where 0<h52r<1 is the packing fraction, F id
5(1/2)( ir i(ln ri21) is the ideal contribution~recall that we
are considering two lattice sites, hence the factor 1/2!, and
we have writtenr25h2r1 .

The equilibrium state of the system at constant pack
fraction h is given by the global minimum of Eq.~30! with
respect tor1 . This is a solution to the Euler-Lagrange equ
tion

FIG. 4. Phase diagram~pressure vs packing fraction! of the
hard-square lattice gas in the lattice FM approximation~solid line!.
The system undergoes a second-order phase transition from a
ordered state to an ordered one athc

sq51/2. Dotted line: results of
the ‘‘ring’’ approximation obtained by Burley@23#.
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r1~12r1!35~h2r1!~12h1r1!3. ~31!

For low values ofh this state corresponds to the uniform
disordered one, withr15r25r. For higher values, one ex
pects the system to undergo a phase transition to an ord
phase, where one of the sublattices is preferentially occup
This situation is exactly the one described by the solutions
Eq. ~31!. For 0<h<hc

sq51/2 the minimum is given byr1

5r. The equation of state and fugacity of the disorder
phase can be easily obtained from Eq.~30!,

bpfluid
sq 5 ln

~12h/2!3

~12h!2 , zfluid
sq 5

h~12h/2!3

2~12h!4 . ~32!

For 1/2<h<1, we have

r1
eq5

1

2 Fh1~22h!A2h21

322hG . ~33!

This gives the ordered state. The equation of state and fu
ity in this phase are given by

bpsolid
sq 5bpfluid

sq 2
3

2
ln

322h

4~12h!
, zsolid

sq 5
r1

eq~12r1
eq!3

~12h!4 .

~34!

The equation of state of both phases is plotted in Fig
Also, the occupancy of each sublattice is plotted in Fig.
The transition is second order, and the critical point valu
are listed in Table VI. These are the same as those obta
by Burley @23# and Temperley@24# with a Bethe approxima-

is-
FIG. 5. Densities of the two sublattices,r1 and r2 , for the

hard-square lattice gas, as a function of the packing fractionh.
0-7
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L. LAFUENTE AND J. A. CUESTA PHYSICAL REVIEW E68, 066120 ~2003!
tion. The next correction to the Bethe approximation~called
the ‘‘ring’’ approximation! in the scheme proposed by Rus
brooke and Scoins@25,26# has also been considered by Bu
ley @23#. The results are plotted in Fig. 4 for comparison. T
qualitative phase behavior is the same, but the critical va
improve those of the Bethe approximation. A further corre
tion ~‘‘necklace’’ approximation! within the same scheme ha
been implemented by Temperley@27#, who claims that the
transition becomes first order.

B. Triangular lattice

As a triangular lattice has three sublattices such tha
nearest neighbor of a site in one sublattice belongs to ano
sublattice, we will characterize the density profile with t
densities of each sublattice:r1 , r2 , andr3 , the total density
of the system being related to them through 3r5r11r2
1r3 .

The free-energy density for a three sublattice configu
tion can be obtained from Eq.~13!

F tr5F id12F0~h!2F0~r11r2!2F0~r11r3!

2F0~r21r3!1 1
3 @F0~r1!1F0~r2!1F0~r3!#,

~35!

where 0<h53r<1 andF id5(1/3)( ir i(ln ri21). As in the
previous case, the phase diagram can be obtained by m
mizing this free-energy density at constant packing fracti
For low values of the density the stable phase is uniform
r15r25r35r. In contrast, for high values of the densi
one sublattice is preferentially occupied. In this order
phase the configuration that results from Eq.~35! is r1>r2
5r3 . Thus, in what follows we will consider the latter tw
sublattices as equivalent. The Euler-Lagrange equation
tained from Eq.~35! is

r2~122r2!3~12h12r2!

~12r2!~h22r2!~12h1r2!3 51. ~36!

The solutions to this equation as a function ofh indicate a
first-order transition. The coexisting packing fractions
well as the pressure and fugacity at coexistence appea
Table VI. The equation of state for the disordered phase

bpfluid
tr 5 ln

~122h/3!3

~12h/3!~12h!2 , ~37!

and the fugacity

zfluid
tr 5

h~122h/3!6

3~12h/3!~12h!6 . ~38!

For the ordered phase

bpsolid
tr 5

1

3
ln

~12h1r2!6~122r2!3

~12h!6~12h12r2!~12r2!2 , ~39!

and
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zsolid
tr 5

r2~12h1r2!3~122r2!3

~12h!6~12r2!
, ~40!

wherer2 is given by Eq.~36!. The phase diagram is plotte
in Fig. 6. Sublattice densities are shown in Fig. 7.

This result coincides with that obtained by Burley@29# by
using the ring approximation~see Sec. III A!, and was also
obtained by Temperley through a combinatorial finite mat
method@24#.

This system has been exactly solved by Baxter@28,30#.
This fact allows us to compare not only the equation of st
~Fig. 6! and sublattice occupancy~Fig. 7!, but also the com-
pressibility~Fig. 8!. The system exhibits acontinuousphase
transition ~the critical point in the pressure vs density di
gram is a horizontal inflection point! at packing fraction
hc

exact5(3/10)(52A5)'0.829 and critical pressurebpc
exact

FIG. 6. The same as Fig. 4 for the hard-hexagon model~nearest-
neighbor exclusion in a triangular lattice!. Solid line represents the
equation of state from the FM approximation. Dashed line rep
sents the exact solution by Baxter@28#. In our approach the system
undergoes a first-order phase transition from a disordered pha
an ordered one. Coexisting packing fractions arehfluid50.684 and
hsolid50.754. It is worth mentioning the good agreement of F
approximation with the exact solution at low and high densiti
despite its failure in the critical region.

FIG. 7. The same as Fig. 5 for the triangular lattice. Full circ
represent the configuration of coexisting phases. Dashed lines
sublattice densities in the exact solution. The empty circle is
exact critical point.
0-8



r
m
n
of
si

o
ice
pt
n

a

s a

al-

n-
ted
ult

ng
ta
s

tiv
th

ion
is

DENSITY FUNCTIONAL THEORY FOR NEAREST- . . . PHYSICAL REVIEW E 68, 066120 ~2003!
5(1/2)ln@(27/250)(25111A5)#'0.839. To the best of ou
knowledge, this is the first time that FM theory can be co
pared with an exact result in a dimension higher than o
Although the theory fails in predicting correctly the order
the transition, the agreement in the whole range of den
except the critical region is rather accurate.

C. Simple cubic lattice

In the close-packed state the particles of this system
cupy one sublattice with fcc symmetry, while the sublatt
formed by nearest neighbors of that one remains em
Thus, we will only consider these two sublattices, with de
sities r1 and r2 , respectively. Again, the total densityr is
related to these numbers by 2r5r11r2 .

When we insert such a density profile in the function
~19! we get for the free-energy density

Fsc5F id1F0~2r!2 5
2 @F0~r1!1F0~2r2r1!#, ~41!

where we have eliminated the dependency onr2 . For a fixed
value of the density, the global minimum of Eq.~41! is a
solution to the Euler-Lagrange equation

r1~12r1!5

~h2r1!~12h1r1!5 51, ~42!

0<h52r<1 being the packing fraction. When 0<h<hc
sc

51/3, the minimum is given by the uniform phaser1
eq5h.

For the equation of state and fugacity we have

bpfluid
sc 5 ln

~12h/2!5

~12h!3 , zfluid
sc 5

h~12h/2!5

2~12h!6 . ~43!

FIG. 8. Reduced compressibility (rkT /b) vs the packing frac-
tion ~h! for the triangular lattice. Full circles denote the coexisti
points. Dotted lines extrapolate the compressibility in the me
stable region.~The extrapolation for the fluid line actually break
down at aroundh'0.88, because the entropy becomes nega
beyond that point.! Baxter’s exact solution is represented wi
dashed lines.
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Upon increasing the density the system experience
second-order disorder-order transition athc

sc51/3. For
1/3<h<1, the density of the preferred sublattice can be c
culated from Eq.~42! to be

r1
eq5

1

2 H h1~22h!A2@524h~22h!#1/225~12h!

523h J .

~44!

In this phase, the equation of state is given by

bpsolid
sc 5bpfluid

sc 1
5

2
lnF2~524h!2A524h~22h!

523h G ,
~45!

and the fugacity by

zsolid
sc 5

r1
eq~12r1

eq!5

~12h!6 . ~46!

The equation of state is plotted in Fig. 9. Sublattice de
sities are shown in Fig. 10. The critical point values are lis
in Table VI. As for the square lattice, for this model the res
from FM theory coincides with a Bethe approximation@23#.

-

e

FIG. 9. The same as Fig. 4 for the nearest-neighbor exclus
lattice gas in the simple cubic lattice. A second-order transition
predicted athc

sc51/3.

FIG. 10. The same as Fig. 5 for the simple cubic lattice.
0-9



r
e

e
t

n

ith
iti

th

ie
e
kin
g
t

la
ie
rg

e

b
e

a
de
w
.

ion

si-

tice
is
in

r to
es a

sio
k

les
s a
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As far as we know, the only available simulation data a
the critical exponents~which we cannot compare with sinc
a Bethe approximation is mean field! and the critical fugacity
zc51.0559@31,32#. The agreement with the predicted valu
~shown in Table VI! is poor, butzc is certainly not the bes
output one should expect from a Bethe approximation. U
fortunately, no other magnitudes have been simulated
make a more fair comparison.

D. Face-centered-cubic lattice

A fcc lattice contains four equivalent sublattices each w
a sc symmetry. As in the previous cases sublattice dens
are denoted,r1 , r2 , r3 , r4 , andh54r5r11r21r31r4
holds for the total densityr or packing fractionh.

The free-energy density for such a density profile in
FM approximation is obtained from Eq.~24! as

F fcc5F id12F0~h!2(
i , j

F0~r i1r j !1
5

4 (
i 51

4

F0~r i !,

~47!

where F id5(1/4)( ir i(ln ri21). The global minimum of
F fcc at fixed density with respect to the sublattice densit
yields the thermodynamically stable phase. But now ther
a subtle point we have to take into account: the close pac
is degenerated. If we consider the fcc lattice as a stackin
square lattices each having its sites on the centers of
squares of the previous one, then we can fill alternative
ers independently. Thus, we will consider different densit
for the four sublattices and the minimum of the free ene
will determine the structure of the most stable phase.~Previ-
ous studies@33# impose the equivalence of three sublattic
from the beginning, i.e.,r1Þr25r35r4 .)

Solving numerically the Euler-Lagrange equations o
tained from Eq.~47! at fixed packing fraction, we obtain th
equation of state plotted in Fig. 11. Sublattice densities
equilibrium phases are shown in Fig. 12. The system un
goes a first-order phase transition to an ordered phase
r1Þr25r35r4 . ~See Table VI for the critical point values!
For the uniform phase

FIG. 11. The same as Fig. 4 for the nearest-neighbor exclu
in the face-centered-cubic lattice. A first-order phase transition ta
place at pressurebp50.461 with coexisting states athfluid

fcc 50.579
andhsolid

fcc 50.837.
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bpfluid
fcc 5 ln

~12h/2!6

~12h/4!5~12h!2 ~48!

and

zfluid
fcc 5

h~12h/2!12

4~12h/4!5~12h!8 . ~49!

For the ordered phase

bpsolid
fcc 5

1

4
ln

~12h12r2!12~122r2!12

~12h13r2!5~12r2!15~12h!8 ~50!

and

zsolid
fcc 5

r2~12h12r2!4~122r2!8

~12r2!5~12h!8 , ~51!

with r2 the minimum of the free energy~47!.
It is worth mentioning that a metastable phase transit

from the disordered state to a smectic ordered state~alterna-
tive square-lattice layers are uniformly occupied, with den
ties r1 andr2) is also obtained from the functional~47!.

E. Body-centered-cubic

At a close-packing state this system has one sublat
completely filled while the nearest-neighbor sublattice
empty. Therefore, we will consider the density profile as
the previous similar cases~square or sc lattices!.

The free-energy density@Eq. ~29!# becomes

Fbcc5F id14F0~h!2 7
2 @F0~r1!1F0~h2r1!#. ~52!

The Euler-Lagrange equation is

r1~12r1!7

~h2r1!~12h1r1!7 51. ~53!

The phase behavior obtained from this equation is simila
that of the square or the sc lattices: The system undergo
second-order phase transition athc

bcc51/4; below this den-

n
es

FIG. 12. The same as Fig. 5 for the fcc lattice. Solid circ
represent configurations of coexisting phases. The inset show
detail of sublattice densityr2 .
0-10
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DENSITY FUNCTIONAL THEORY FOR NEAREST- . . . PHYSICAL REVIEW E 68, 066120 ~2003!
sity the stable phase is a fluid, while above the partic
occupy preferentially one sublattice. The ordered solution
Eq. ~53! can be obtained analytically, but the expression
rather cumbersome, so we just plot it in Fig. 13. For the fl
phase, the equation of state and fugacity are given by

bpfluid
bcc 5 ln

~12h/2!7

~12h!4 , zfluid
bcc 5

h~12h/2!7

2~12h!8 . ~54!

For the ordered phase, we have

bpsolid
bcc 5

1

2
ln

~12r1!7~12h1r1!7

~12h!4 , ~55!

and

zsolid
bcc 5

r1~12r1!7

~12h!8 , ~56!

with r1 the ordered solution of Eq.~53!.
These results are again equivalent to those obtained w

Bethe approximation@23#. The equation of state is plotted i
Fig. 14 ~see Table VI for the critical point values!.

FIG. 13. The same as Fig. 5 for the bcc lattice.

FIG. 14. The same as Fig. 4 for the nearest-neighbor exclu
lattice gas in the bcc lattice. The system undergoes a second-
phase ordering transition athc

bcc51/4.
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As for the sc lattice, the only available simulation data
compare with is the critical fugacityzc50.7223@34#. Again
and for a similar reason, it compares poorly with the va
listed in Table VI.

IV. DISCUSSIONS AND CONCLUSIONS

Dimensional crossover is a property that connects diff
ent models. A system of parallel hard cubes~both on and off
a lattice! constrained to lie on a plane parallel to their sid
becomes a system of parallel hard squares. A system of
allel hard squares constrained to lie on a straight line para
to their edges becomes a system of hard rods. These
obvious dimensional crossovers, but in this paper we h
introduced a few more: parallel hard cubes constrained to
on more general planes produce nearest-neighbor exclu
lattice gases in the square and triangular lattices; fo
dimensional parallel hard hypercubes constrained to lie
certain hyperplanes become nearest-neighbor exclusion
tice gases in the sc or fcc lattices. If this dimensional co
straint is regarded as the application of an infinite-stren
external field, then more general patterns of such an exte
field produce new models out of the parallel hard cube o
~the nearest-neighbor exclusion lattice gas in the bcc latt
for instance!.

The message we want to transmit with this work is th
FM functionals for all these models have the remarka
property of being connected with each other through
same transformations. More than that: further dimensio
crossovers of these models are also consistently capture
FM functionals. For instance, all functionals obtained in th
paper produce theexact functional for hard rods when re
duced to one dimension; also, the functional for the near
neighbor lattice gas in the square lattice, Eq.~7!, can be
obtained from the one in either the sc lattice, Eq.~19!, the fcc
lattice, Eq. ~24!, or the bcc lattice, Eq.~29!, through the
application of an appropriate external potential. Similar
the functional for the nearest-neighbor lattice gas in the
angular lattice, Eq.~13!, can be recovered from that in th
fcc lattice, Eq.~24!. Such a degree of internal consistency
not shared by any other known density functional theory, a
it puts FM theory at a different level. As a byproduct,
pointed out in the Introduction, it warrants a good behav
of FM functionals when dealing with highly inhomogeneo
situations.

When applied to study the bulk phase behavior of th
nearest-neighbor lattice gases, FM functionals produce
sonable results, sometimes with important discrepancie
the critical region, sometimes more accurate, and alw
very accurate at low and high densities. There are, no do
better methods to fit the equation of state and obtain a be
description of this phase behavior, such as, for instan
finite-size analysis @35–38# or series expansion
@33,37,39,40#. They are particularly useful in predicting th
critical behavior. The FM approach has an important adv
tage on these methods, whatever the sacrifice in accurac
leads to simple, closed-form functionals. Thus it permits
to study inhomogeneous problems, which are absolutely
of the scope of these other more accurate methods. A par

n
der
0-11
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larly interesting example of such inhomogeneous proble
can be found in recent studies of fluids in porous me
@19–21#, for which lattice models seem to capture enou
physical information to describe many interesting pheno
ena not yet described by other models.

An interesting observation to make from the results of
application of the FM theory to describe bulk phase behav
is the close connection it has with other classical approac
For those lattices with only two sublattices~loose-packed
lattices! FM theory reduces to a Bethe approximati
~square, sc, and bcc lattices!; for lattices with more than one
sublattice~close-packed lattices! it becomes equivalent to an
other clusterlike approximation. In fact, when closely look
at, all these approximation are but particular cases of Ki
chi’s cluster variation theory@41#. This theory proposes a
hierarchical scheme of approximations under the basis of
scribing in an exact manner clusters of increasing s
Roughly speaking, the larger the cluster the more accu
the results—and the more involved the theory. The conn
tion between FM theory and the cluster variation method
.:

n

.

s.

. E

n
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definitely worth exploring, because one drawback of the
ter is that there is not ana priori criterion to choose the
clusters, other than ‘‘the larger the better;’’ as a matter
fact, some clusters~depending on the model! produce an
optimal result and some others~even larger ones! spoil the
accuracy, and the reason for that is unknown. FM theory,
the contrary, leaves no freedom to choose the clusters,
those it prescribes seem to be optimal in the above se
Burley’s treatment of the nearest-neighbor exclusion latt
gas in the fcc lattice is very illustrative@23#: the inappropri-
ate election of the clusters@only part of those prescribed b
the FM functional~24!# leads to a spurious divergence of th
free energy at a density lower than the close packing. Thi
a line of investigation we are currently following.
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