# Symmetries shape the current in ratchets induced by a bi-harmonic force. Supplementary Material 

Niurka R. Quintero, José A. Cuesta, and Renato Alvarez-Nodarse

Let us analyze the following evolution equations $E[x(t), f(t)]=0$ for the variables $x(t)$ (position) and $u(t)$ (velocity) of a relativistic particle of mass $M>0$

$$
\begin{align*}
M \frac{d u}{d t} & =-f(t)\left(1-u^{2}\right)^{3 / 2}-\gamma u\left(1-u^{2}\right)  \tag{1}\\
\frac{d x}{d t} & =u(t), \quad u(0)=u_{0}, \quad x(0)=x_{0}
\end{align*}
$$

where $x_{0}$ and $u_{0}$ are the initial conditions, $\gamma>0$ represents the damping coefficient and $f(t)$ is a $T$-periodic driving force [1]. Notice that defining the momentum

$$
\begin{equation*}
P(t)=\frac{M u(t)}{\sqrt{1-u^{2}(t)}} \tag{2}
\end{equation*}
$$

we can transform Eq. (1) into the linear equation

$$
\begin{equation*}
\frac{d P}{d t}=-\beta P-f(t) \tag{3}
\end{equation*}
$$

where $\beta=\gamma / M$, whose solution is given by

$$
\begin{equation*}
P(t)=P(0) e^{-\beta t}-\int_{0}^{t} d z f(z) e^{-\beta(t-z)} \tag{4}
\end{equation*}
$$

Equation (1) is invariant under time shift ( $\mathcal{S}: t \mapsto t+$ $T / 2)$ along with the change $x \mapsto-x$, provided $(\mathcal{S} f)(t)=$ $f(t+T / 2)=-f(t)$. The bi-harmonic force

$$
\begin{equation*}
f(t)=\epsilon_{1} \cos \left(q \omega t+\phi_{1}\right)+\epsilon_{2} \cos \left(p \omega t+\phi_{2}\right), \tag{5}
\end{equation*}
$$

preserves this symmetry if, both, $p$ and $q$ are odd integer numbers, so in this case the average velocity

$$
\begin{equation*}
v=\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} u(\tau) d \tau \tag{6}
\end{equation*}
$$

is zero. In contrast, if $p+q$ is odd and $p$ and $q$ are coprimes, a nonzero average current can appear. For the sake of simplicity we will take $p=2$ and $q=1$ in Eq. (5) [2]. Then the solution to (4) for the chosen force (5) will be

$$
\begin{align*}
P(t) & =\tilde{P}_{0} \exp (-\beta t)-\frac{\epsilon_{1}}{\sqrt{\beta^{2}+\omega^{2}}} \cos \left(\omega t+\phi_{1}-\chi_{1}\right) \\
& -\frac{\epsilon_{2}}{\sqrt{\beta^{2}+4 \omega^{2}}} \cos \left(2 \omega t+\phi_{2}-\chi_{2}\right) \tag{7}
\end{align*}
$$

with $\tilde{P}_{0}=P(0)+\left(\epsilon_{1} / \sqrt{\beta^{2}+\omega^{2}}\right) \cos \left(\phi_{1}-\chi_{1}\right)+$ $\left(\epsilon_{2} / \sqrt{\beta^{2}+4 \omega^{2}}\right) \cos \left(\phi_{2}-\chi_{2}\right), \chi_{1}=\arctan (\omega / \beta)$, and $\chi_{2}=\arctan (2 \omega / \beta)$. From (2), one obtains

$$
\begin{equation*}
u(t)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(1 / 2)_{k}}{k!M^{2 k+1}}[P(t)]^{2 k+1} \tag{8}
\end{equation*}
$$

where $(1 / 2)_{k} \equiv(1 / 2)(1 / 2+1) \cdots(1 / 2+k-1)$. From (6) and (8) it follows that the time-average velocity, $v$, cannot be expressed as a function of the odd moments of $f(t)$, unless $P(t)$ is proportional to $f(t)$. Indeed, it is only in the overdamped case [in which the inertial term in (1) is neglected] that the evolution equation is given by $P(t)=-(1 / \beta) f(t)$ and then $v$ do admit an expansion in odd moments of $f(t)$.

Moreover, for small amplitudes $\epsilon_{1}$ and $\epsilon_{2}$, the leading term of the time-average velocity (8) reads

$$
\begin{equation*}
v=B \epsilon_{1}^{2} \epsilon_{2} \cos \left(2 \phi_{1}-\phi_{2}+\theta_{0}\right) \tag{9}
\end{equation*}
$$

where $B=3 /\left(8 M^{3}\left(\beta^{2}+\omega^{2}\right) \sqrt{\beta^{2}+4 \omega^{2}}\right)$ and $\theta_{0}=$ $-2 \chi_{1}+\chi_{2}$. This expression is in agreement with the prediction of our theory. Furthermore, in the limit $\beta \rightarrow 0$ we have $-2 \chi_{1}+\chi_{2} \rightarrow \pi / 2$, and in the combined limit $M \rightarrow 0$ and $\beta \rightarrow \infty$, with $\gamma=$ const., $-2 \chi_{1}+\chi_{2} \rightarrow 0$. One can check that in the former case Eq. (1) is invariant under time reversal ( $\mathcal{R}: t \mapsto-t$ ) provided $(\mathcal{R} f)(t)=f(-t)=f(t)$, and therefore $\theta_{0}=\pi / 2$ is the prediction of our theory. In the latter case, however, it is $(\mathcal{R} f)(t)=f(-t)=-f(t)$ that leaves Eq. (1) invariant and then our theory predicts $\theta_{0}=0$.
[1] O. H. Olsen and M. R. Samuelsen, Phys. Rev. B 28, 210 (1983).
[2] M. Salerno and Y. Zolotaryuk, Phys. Rev. E 65, 056603 (2002).

