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Let us analyze the following evolution equations
E[x(t), f(t)] = 0 for the variables x(t) (position) and u(t)
(velocity) of a relativistic particle of mass M > 0

M
du

dt
= −f(t)(1− u2)3/2 − γu(1− u2),

dx

dt
= u(t), u(0) = u0, x(0) = x0,

(1)

where x0 and u0 are the initial conditions, γ > 0 rep-
resents the damping coefficient and f(t) is a T -periodic
driving force [1]. Notice that defining the momentum

P (t) =
Mu(t)√
1− u2(t)

, (2)

we can transform Eq. (1) into the linear equation

dP

dt
= −βP − f(t), (3)

where β = γ/M , whose solution is given by

P (t) = P (0)e−βt −
∫ t

0

dzf(z)e−β(t−z). (4)

Equation (1) is invariant under time shift (S : t 7→ t +
T/2) along with the change x 7→ −x, provided (Sf)(t) =
f(t+ T/2) = −f(t). The bi-harmonic force

f(t) = ε1 cos(qωt+ φ1) + ε2 cos(pωt+ φ2), (5)

preserves this symmetry if, both, p and q are odd integer
numbers, so in this case the average velocity

v = lim
t→+∞

1
t

∫ t

0

u(τ) dτ, (6)

is zero. In contrast, if p + q is odd and p and q are
coprimes, a nonzero average current can appear. For the
sake of simplicity we will take p = 2 and q = 1 in Eq. (5)
[2]. Then the solution to (4) for the chosen force (5) will
be

P (t) = P̃0 exp(−βt)− ε1√
β2 + ω2

cos(ωt+ φ1 − χ1)

− ε2√
β2 + 4ω2

cos(2ωt+ φ2 − χ2), (7)

with P̃0 = P (0) + (ε1/
√
β2 + ω2) cos(φ1 − χ1) +

(ε2/
√
β2 + 4ω2) cos(φ2 − χ2), χ1 = arctan (ω/β), and

χ2 = arctan (2ω/β). From (2), one obtains

u(t) =
∞∑
k=0

(−1)k(1/2)k
k!M2k+1

[P (t)]2k+1, (8)

where (1/2)k ≡ (1/2)(1/2 + 1) · · · (1/2 + k − 1). From
(6) and (8) it follows that the time-average velocity, v,
cannot be expressed as a function of the odd moments
of f(t), unless P (t) is proportional to f(t). Indeed, it is
only in the overdamped case [in which the inertial term
in (1) is neglected] that the evolution equation is given
by P (t) = −(1/β)f(t) and then v do admit an expansion
in odd moments of f(t).

Moreover, for small amplitudes ε1 and ε2, the leading
term of the time-average velocity (8) reads

v = Bε21ε2 cos(2φ1 − φ2 + θ0), (9)

where B = 3/(8M3(β2 + ω2)
√
β2 + 4ω2) and θ0 =

−2χ1 +χ2. This expression is in agreement with the pre-
diction of our theory. Furthermore, in the limit β → 0
we have −2χ1 + χ2 → π/2, and in the combined limit
M → 0 and β → ∞, with γ = const., −2χ1 + χ2 → 0.
One can check that in the former case Eq. (1) is in-
variant under time reversal (R : t 7→ −t) provided
(Rf)(t) = f(−t) = f(t), and therefore θ0 = π/2 is the
prediction of our theory. In the latter case, however, it
is (Rf)(t) = f(−t) = −f(t) that leaves Eq. (1) invariant
and then our theory predicts θ0 = 0.
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