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Monte Carlo simulation of two-dimensional hard ellipses
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We report constant-pressure Monte Carlo simulations of a system of hard ellipses with aspect ra-
tios k =2, 4, and 6. The results show three different phases: isotropic, nematic, and solid, except
for k =2, where no nematic phase is formed. In all cases the Quid-solid transition appears to be first
order. However, the isotropic-nematic transition looks first order for k =4 and continuous, via dis-
clination unbinding, for k =6. Thus a tricritical point for some k between these two values is pre-
dicted. The simulation results are also compared with a previous theoretical calculation. Satisfac-
tory agreement is found for the equation of state, but the theoretical prediction for the location of
the isotropic-nematic transition disagrees with the simulation results. Finally, we observed that the
solid phase near melting exhibits anomalously large Auctuations.

I. INTRODUCTION

Since the discovery of liquid crystals' at the end of the
nineteenth century, a great deal of work has been devoted
to understanding the curious properties of these phases,
which have structural order intermediate between that of
liquids and solids. From the very beginning, the ex-
istence of these mesophases was known to be associated
with the anisotropic character of the interactions between
the molecules. ' Historically, two rather different theoret-
ical approaches have been followed to explain the stabili-
ty of liquid crystals. One, due to Maier and Saupe,
stressed the importance of the anisotropic attractive in-
teractions while the other, due to Onsager, ascribed the
existence of mesophases to an excluded volume effect re-
sulting from the purely repulsive anistropic forces. Re-
cent evidence, both from computer simulations and from
density-functional theory indicates that systems of hard
convex bodies may form a wide variety of liquid-
crystalline phases. The nature of the mesophase depends
sensitively on the shape of the molecule. One may take
the point of view that these hard-core models capture the
essence of liquid crystals and can be used as reference sys-
tems in perturbative treatments of more realistic sys-
tems.

The reason for studying two-dimensional (2D) liquid-
crystalline systems is twofold: first, for many practical
purposes we are interested in the behavior of a thin film
(of one or a few layers) of a liquid-crystalline substance
(e.g. , monolayers of adsorbed molecules, layers of a smec-
tic phase, etc. ), and second, from a purely theoretical
point of view it is interesting to know how liquid-
crystalline transitions depend on the dimensionality.

One of the main properties of most 2D systems is the
lack of true long-range order {LRO). It is a general result
of statistical mechanics that D=2 is the lower critical
dimension for which the amplitude of the fluctuations
diverges logarithmically as the system size increases. As
a consequence, the order parameter depends algebraically
on the system size and vanishes in the thermodynamic
limit. This kind of order is usually referred to as quasi-

9(r) being the local molecular orientation with respect to
a fixed axis and E the renormalized Frank's constant. '

From this equation we can derive the logarithmic diver-
gence of the molecular orientation fluctuations:

k~T(9 ) — lnN,
4m.E (2)

with kz the Boltzmann's constant, T the absolute temper-
ature, and N the number of particles. As a consequence
of this formula both the order parameter q—= (cos(29))
and the angular correlation functions
gzt(r) = (cosI 2l [9(0)—9(r ) j I ) (l = 1,2, . . . ) decay alge-
braically as

(4)

with qzt 21 k~ TlttK. O——ne possible mechanism for the
2D I-N transition is through disclination unbinding. "
This transition is predicted to occur at a critical value of
the renormalized Frank's constant given by

Although the I-X transition may occur through different
mechanisms (for instance, a first-order phase transition) it
is important to notice that no stable nematic phase is pos-
sible for E (K, .

Among the 2D nonspherical hard-body models the
simplest one is the hard-ellipse system. This system is
characterized by the aspect ratio k defined by k —=a/b, a

LRO. This property of 2D systems has been observed for
the isotropic-nematic (I N) tran-sition both in computer
simulations and laboratory experiments. In general,
quasi-LRO is to be expected in 2D nematics if the free
energy associated with collective fluctuations in the
molecular orientation can be written as'

F= ,
' fK(V—9)dr,
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and b being the major and the minor axis of the ellipse re-
spectively, which is a measure for the eccentricity of the
ellipses. In spite of its simplicity this system has received
little attention. To our knowledge, the only theoretical
results obtained thus far are those of Boublik' using
scaled particle theory, the numerical solution of the
Percus-Yevick equation by Ward and Lado, ' and the
density fu-nctional theory approach for the I Ntr-ansition
by Cuesta et al. ' Pioneering Monte Carlo (MC) simula-
tions of hard ellipses were reported nearly 20 years ago
by Vieillard-Baron" (see also Ref. 8). In the present pa-
per we report more extensive MC simulations for the
hard-ellipse system.

This paper is organized as follows: In Sec. II we de-
scribe the technical details of the MC method used in the
simulation. In Sec. III we report the main results of our
work which are compared in Sec. IV to the existing
theoretical studies concerning the I-N transition. Section
V contains the main conclusions of this work.

ties, or one of the box sides L„(y) randomly chosen with
probability —,, at high densities. g is a random number
uniformly distributed in the interval —

—,
' &g& —,

' and a
was fixed in such a way that the acceptance ratio of
volume changes was -20—25 %. With this procedure we
are not sampling the volume V itself but 1nV. This is a
more convenient procedure because the reversibility of
the generated Markov chain ' is guaranteed, since the
domain of the random walk in lnV coincides with the
range of acceptable (positive) values of V. The move is
rejected if after changing the volume there is any overlap
between particles and accepted with probability

r:—min[ l, exp[(N+1)ln(1+6V/V) PPb V—]]
otherwise, where f3:1/k—~T (T, temperature and ks
Boltzmann's constant), P denotes the pressure, N is the
number of particles, and b V—= [exp(ag) —1]V.

B. Order parameter and correlations decay

II. COMPUTATIONAL TECHNIQUE

A. General aspects

In this section, we describe those aspects of our simula-
tion technique that are nonstandard. For a general dis-
cussion of Monte Carlo simulations, the reader is referred
to the existing literature on this subject (see, e.g., Ref. 16).

In order to facilitate comparison with existing theoreti-
cal calculations' of the equation of state of the hard-
ellipse system, we carried out all simulations using the
constant-pressure MC technique. ' ' Our system con-
tains, in most cases, approximately 200 particles in a
nearly square box with periodic boundary conditions.
However, in simulations of the solid phase, we do not fix
the box shape but allow it to change its shape' ' in or-
der to be compatible with the equilibrium shape of the
unit cell of the solid phase. This is done by performing
the MC sampling on the elements of the symmetrized h

matrix which relates the real coordinates of the particles
r, to the scaled coordinates s, in the following way:
r, =h s„where the index i goes from 1 to X. In fact, we
made the additional simplification of keeping h diagonal.
In this way we can sample the width and length of the
box independently.

Acceptable configurations of our system are those for
which there is no overlap between any of the ellipses. A
MC trial consists in moving simultaneously both the posi-
tion r, and the orientation u, of the ith ellipse. Its x(y)
coordinate is changed by adding a random number A, (y)
uniformly distributed in the interval —

lak Az(y) 6, and
the molecular orientation, characterized by the angle 0, ,
is changed by adding a random amount 60 uniformly dis-
tributed in the interval —5&~50~6&. The move is re-
jected if the changed particle overlaps any other, and ac-
cepted otherwise. Both 6& and 5 were chosen such that
the overall probability of acceptance of a trial move was
-20—25 fo. To test the overlap between two ellipses we
use the Vieillard-Baron criterion. '

A change in volume trial consists in multiplying by a
factor exp(ag) either the system volume V at low densi-

The usual nematic order parameter of a 2D X-particle
system is defined as

q
=—g cos(28; )

N
(6)

where 0; is the angle between the ith molecule and the
nematic director n. As this vector is not known a priori
we have to use a diFerent method to compute the order
parameter. Hence we define the tensor order parameter Q
as

where u (i) is the ath Cartesian coordinate of the unit
vector specifying the orientation of molecule i. By di-
agonalizing the Q tensor it can be easily proven that in
the thermodynamic limit its eigenvalues are q and its
corresponding eigenvectors are the nematic director and
a vector perpendicular to the latter. When the finite size
of the system is taken into account, the eigenvalues of Q
behave as +q+0(1/&N ) when q~0. So, even in the
isotropic phase we should expect a clearly nonzero value
of the computed order parameter since our system has
only about 200 particles. In the nematic phase we may
expect to observe quasi-LRO because we are deali. ng with
a 2D system. ' Hence, also in this phase the order pa-
rameter will exhibit a strong system-size dependence. It
should be noted, that in a simulation of a finite system,
the isotropic phase will resemble a nematic, once the
correlation length of nematic fluctuations exceeds the size
of the periodic box. In contrast, if the box size exceeds
this correlation length, the eigenvalue of the Q matrix
will vary as 1/Qnd, where nd is the number of nematic
domains in the box. ' In order to determine the point
where the nematic phase becomes stable with respect to
disclination unbinding, we must study the exponents gz&

of the algebraic decay of the correlation functions g&&(r )

[see Eq. (4)] and compare them with the critical value
given by (5). An analysis of the system-size dependence
of the order parameter is also helpful since it can be ana-
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1 zed using q.E (3). Such an analysis allows us to esti-
e oint where the I-X transition takes place. It

h h I-X tr sitioshould be stressed,d however, t at t e
ewhat lower densitys stem tends to occur at a somew at owerfinite sys em

constant in a finite system is larger than in t e in ni e-
21system limit.

III. RESULTS

f '1't t comparison with the theoretical
s of Ref. 14, simulations were performed or e

same values of the aspect ratio
Ref. 14. In all cases the initial configuration

confi urationwas obtained by expanding a close-packed c g
The fluid branch was then simulated

d a hi h-density starting configuration. The c oice o
the number of partic es
tate y ed b the requirement that the shape o t e ox

. Subsequent runs were started pfrom the re-most square. u
(hi her) densi-'

us e uilibrated configuration at a lower, hig
y. d f 10 steps (i.e., attemptedty. A typical run consiste o

t I I I I t I I I t tI I t I I I t I I

4k 1
82(k )/v, i

—1+
2

E
z

(8)

where k=a lb and E(x)= (1—x sin r)'~ dt is the

corn lete elliptic function of the second kind. These re-

(8)j and the approximation used in Re .
made in Fig. 4. A discussion of this picture is pos-

~ . 13. l...fth. fi,...,.oned to Sec. IV. In Figs. — a p o
f he e uation of state is also shown. n a

ta onl forcases, it is found that these series fit the MC data on y
nsities. At higher densities the five-term virial

tive. Below, we analyze the three cases separa e y.

r e uilibration and 2 X 10 steps formoves per particle) for equi i ra
'

W fix our reduced units by imposinganalysis. e x
=1. The latter definition of length scale rereduces

to the definition o. =1 in the hard dis case. n
we summarize t e resu sh ults of our simulations for =2, 4,

in Fi s. 1—3 a plot of the equation of state (in
bP/k T d th

ith th theoret-
f the reduced pressure P—:~a

packing fraction rl: era—bp) is compared wi
ical predictions of Re .f. 14.

We also computed the virial coeQcients up to, usin
and the analytical ex-

f B derived from Boublik's formula for t epression or 2 e
average exc u e vo1 d d lume of convex bodies in D =
expression reads

15
I ~~ T I I I I I I W ~ ( T T

I

10

10

0.0 0.2 0.4 0.6
0

0.8 1.0

FIG. 1. Reduced pressure (P*—= m.abP/k& T) as a function oas a function of
the acking fraction (g=mabp) for t..ehe k =6 hard-ellipse sys-

it: trian les;. MC 1 tions compression from low densi y: ri g
idem ex ansion from high density: circles; theory o e .
short-dashed line,'theory with the corrected 2. so i8: solid line; and
fi -t rm virial expansion: long-dashed . '

gline. This fi ure also
contains the Vieillard-Baron's results for the fluid braranch

nd the solid branch (pluses). The insert shows in
more detail the region around the Vieillard-Baron s - ran '-

tion.

sr

0.6
0

0. (& 1.0

FIG. 2. The same as in Fig. 1 for the k =2 hard-ellipse sys-
tem.
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TABLE I. Equation of state data and order parameters obtained by constant-pressure Monte Carlo simulation of a system of hard
ellipses with aspect ratio k =2, 4, and 6 (k —=a/b with a and b the major and minor axis of the ellipses) and number of particles
N= 170, 216, and 186, respectively. The number of trial moves per particle is 2X 10 in all cases and the overall acceptance ratio is
about 20—25%. Here P stands for the pressure (units ksTI4ab), p for the density [units (4ab) '] and q—= (cos(20)) (0 being the
orientation with respect to the nematic director) for the 2D nematic order parameter. The last configuration of every run was taken
to be the initial configuration of the point at a slightly higher (or lower ) pressure. The initial configuration of both the lowest and
the highest points was chosen as a perfect triangular solid configuration. Notice the dift'erence (about 2—3%%uo) between dagged and
nondagged data that indicates the existence of a first-order transition.

P

0.20
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
6.00
7.00
8.00
9.00

10.0
11.0
12.0
13.0
15.0
17.0
19.0
21.0
23.0
26.0
28.0
28.0
26.0
24.0
23.0
21.0
19.0
17.0
15.0

0.151
0.288
0.421
0.503
0.568
0.610
0.645
0.676
0.713
0.730
0.745
0.778
0.812
0.831
0.853
0.871
0.884
0.899
0.907
0.930
0.950
0.960
0.975
0.985
0.998
1.01
1.03
1.01
0.999
0.991
0.976
0.961
0.950
0.935

0.0687
0.0699
0.0721
0.0726
0.0752
0.0765
0.0741
0.0824
0.0839
0.0804
0.0766
0.0819
0.0743
0.0788
0.0884
0.102
0.0908
0.121
0.0939
0.0668
0.124
0.134
0.126
0.159
0.125
0.157
0.878
0.757
0.525
0.305
0.122
0.091
0.074
0.077

P

0.20
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
8.00
9.00

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
22.0
24.0
26.0
28.0
28.0
26.0
24.0
22.0
20.0
20.0
20.0
19.0
18.0
17.0
16.0
16.0

'15.0
15.0
14.0
13.0
12.0
11.0
10.0

0.143
0.263
0.379
0.456
0.522
0.560
0.608
0.638
0.665
0.691
0.702
0.724
0.740
0.766
0.770
0.805
0.820
0.840
0.859
0.874
0.887
0.899
0.907
0.920
0.927
0.939
0.948
0.957
0.972
0.981
0.992
1.00
1.03
1.02
0.998
0.985
0.969
0.968
0.966
0.960
0.954
0.946
0.941
0.941
0.929
0.924
0.909
0.903
0.884
0.865
0.851

0.0636
0.0678
0.0735
0.0824
0.0922
0.0995
0.0896
0.103
0.0985
0.168
0.211
0.149
0.108
0.198
0.183
0.229
0.117
0.229
0.335
0.324
0.344
0.328
0.323
0.268
0.321
0.404
0.503
0.528
0.483
0.514
0.545
0.588
0.977
0.965
0.932
0.906
0.867
0.862
0.860
0.835
0.806
0.802
0.821
0.821
0.823
0.835
0.759
0.748
0.639
0.464
0.470

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
1.00
1.10
1.20
1.30
1.40
1 ~ 50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.50
2.50
3.00
3.00
3.50
3.50
3.50
4.00
4.00
4.50

0.134
0.156
0.175
0.194
0.211
0.228
0.242
0.253
0.268
0.281
0.292
0.302
0.315
0.325
0.335
0.352
0.371
0.386
0.402
0.419
0.429
0.447
0.456
0.469
0.478
0.490
0.499
0.511
0.542
0.545
0.582
0.589
0.614
0.623
0.632
0.656
0.658
0.696

0.0713
0.0730
0.0745
0.0758
0.0782
0.0801
0.0809
0.0832
0.0839
0.0862
0.0874
0.0894
0.0898
0.0923
0.0930
0.101
0.100
0.108
0.102
0.114
0.118
0.120
0.123
0.132
0.133
0.130
0.152
0.153
0.180
0.133
0.222
0.175
0.121
0.280
0.387
0.436
0.442
0.661

k=6
P

4.50
5.00
5.00
5.50
5.50
6.00
6.00
6.50
6.50
7.00
7.00
8.00
8.00
9.00
9.00

10.0
10.0
10.0
11.0
12.0
13.0
13.0
14.0
14.0
15.0
16.0
16.0
18.0
20.0
22.0
24.0
27.0
27.0
24.0
22.0
20.0
18.0
16.0
15.0

0.701
0.715
0.724
0.746
0.748
0.763
0.772
0.781
0.784
0.794
0.780
0.822
0.824
0.841
0.846
0.853
0.853
0.860
0.873
0.888
0.899
0.899
0.914
0.918
0.929
0.933
0.939
0.954
0.971
0.980
0.988
0.998
1.03
1.02
0.989
0.972
0.952
0.934
0.926

0.638
0.675
0.704
0.794
0.789
0.792
0.785
0.748
0.830
0.752
0.832
0.869
0.853
0.862
0.853
0.853
0.853
0.847
0.855
0.855
0.864
0.881
0.879
0.907
0.909
0.915
0.908
0.929
0.941
0.936
0.926
0.937
0.992
0.983
0.971
0.956
0.935
0.936
0.934
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I I I I I I I I I I I II I I I I I I I I I I

I

20

B through B5 for the hard-ABLE II. Virial coefBcients B3 t rougT

r corn leteness, the values for the two imi s,
Ref. 8) are also reported.Ref. 31 and k = ~ (g from e .

k B3/B2 B4/B23 B5/B2

1

2
4
6

0.7820. . .
1.043(5)
0.843(0)
0.726(4)
0.526~

0.5322. . .~

1.051(2)
0.589(6)
0.371(7)
0.0180~

0.3335. . .~

1.004(6)

0.330(3)
0.091(9)

—0.134&

10

0.0 0.2 0.4 0.6
I I 1 I I I 0
0.8 1.0

F' . 1 for the k =4 hard-ellipse sys-FIG. 3. The same as in Fcg. or
tern.

A. k=6case

elr the as ect ratio k =6, i.e., the moWe first consider t e aspe

of R f. 15 lott d
b Vieillard-Baron. e resu

simulation as well as those o e .present simu
this figure, our results andin Fig. 1. As it can be seen in t is gu

-Baron fit the same curve for the equa-H

=0. 1 h Villi d-
I-N t

. In the vicinity of rI =0. , w ere
daw eakl first-or er

es stron fluctuations. so esimulation accuses
th re ionwhereeter lot (Fig. 5) shows that t is is e re

'

tatin . Everything suggests a possibley o g.
rin transition. However, eorientationa orderi g

r, '
the discussion in Sec. , t a

of the system-size behavior see 'g . e
III) oves, according to

an onl become stable against t e is-
in mechanism at ig erchnation unbind g

R0.59). This stability analysis was a rea y'
init of the Vieillard-Baron's transition

Rf 8 h hosee a e( T bl IV of that reference). In e .
matic hase in t eluded that there was no stable nemat' p

d' d I-N phase transition. Inneighborhoo od of the pre icte
ded this stability analysisresent simulation we exten e is s

' ' s. We find no stable nematic phasep g
=0.59. The reason why an apparentbelow g= .

't h already been hinted atd at a lower density as a re
As we found neither any discon-

tinuity of the thermodynamic quantities nor evi en
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k)]of 11 h i 1 d

it:—(k —1)/(, e
h llipses. The eccentricities g o e

cases are y(2}=0.6, y(4) =0.882, and y( 6)=0.946.

ter—:(cos(28) ) as a func-FIG. 5. Plot of the order parameter q-:
e k =6 hard-ellipse system.of the acking fraction g for t etiono ep

h MC suits starting from a low
h 1

re resent t e resu
(high) density, and the solid line represents t e e
suits of Ref. 14 with the corrected B&.
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6 7 8 9

I
FIG. 6. Log log plot of gz(r)—:(cosI2[8(0)—8(r)] ) ) as a function of r for the k =6 hard ellipse system at several densities. Stars

and solid triangles belong to the isotropic phase; solid circles, solid squares, and empty triangles belong to the nematic phase, and
empty diamonds and empty squares belong to the solid phase.

hysteresis near the point where the nematic becomes
stable, we conclude that for k=6 the I-N transition
occurs via a continuous phase transition, in a way qualita-
tively similar to that observed for the hard needle sys-
tem. '

At higher densities (rI~0. 76) the system exhibits a

solid phase, as it can be seen in the strong peaked struc-
ture of the pair-correlation function go(r ) (see Fig. 8) as
well as the snapshot of Fig. 9. The value g=0.76 is only
a rough estimate of the melting point obtained from the
equation of state (Fig. I); it is indeed the point below
which the system is not solid anymore (strictly speaking

1

8

8 9
0.1

3

FIG. 7. The same as in Fig. 6 but for g4(r ):—(cosI 4[0(0)—0(r )]]).
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it is really a lower bound to the exact value of the melting
point). Our results are very similar to those of Vieillard-
Baron. The slight difference is presumably due to the
ditferent MC method used ( V constant in Ref. 15, con-
stant stress in the present work). Vieillard-Baron's esti-

71=0.562 71 =0.586 71 =0.599

1

1

1

4
1

16
1

64

0.675

0.707

0.773

0.847

0.714

0.767

0.820

0.867

0.792

0.814

0.856

0.885

TABLE III. Analysis of the system-size dependence of the
order parameter for the k =6 hard-ellipse system with %= 186
particles. The notation is chosen in such a way that

q,
—= (cos'(28) ) stands for the ith moment of the 2D nematic or-

der parameter averaged over the full system (1/1) and subsys-
terns of area —', —,', and —' of the periodic box; Q, and b, are the

parameters of the least-squares fit of all those subsystem values
for q, to the expression lnq, =Q, —b, lnN, where N is the average
number of particles in the subsystem; r, is the regression
coeScient of this fit; c» and 71» are the coeScients of the least-

squares fit of the orientational correlation functions g2(r) and

g4(r) (g2~(&) = (co sI2l[ 8(r) —8(0)]]) ) to the expression
lng»(r)=c» —71,llnr;r,

'
is the regression coefficient of this fit,

and mK /8k& T is obtained from the expression
(b ) =ka T/2mK, whe. re (b ) is given by (b ) =

—,
' [b,

+(b2/2)+(b~/4)+(g, /4)+(r)4/16)]. Disclination unbinding
exists for K values below the critical value given by
mK, /8k' T= 1.

TABLE IV. Analysis of the system-size dependence of the
order parameter for the k =4 hard-ellipse system with N=216
particles. Notation is the same as in Table III. The state point
at 71=0.761 was generated by expanding the solid from high
densities and is a stable nematic. The point at q =0.785 was ob-

tained by compressing the isotropic fluid. This state point is not
a stable nematic. In particular, the decay of the orientational
correlation functions g&(r) and g4(r) was exponential (as in the

isotropic phase) instead of algebraic. Hence, we did not attempt
to extract 71, and 714 from g2(r) and g4(r). In this case, we es-

timated (b) as (b) =
—,'[b, +(b, /2)+(b, /4)]

71=0.761 71 =0.785

mate for the melting point (g=0.789) is slightly higher
than ours, which is compatible with the fact that our
value is just a lower bound. In agreement with Ref. 15
we observe a erst ord-er melting transition from the solid
to the nematic phase. This conclusion arises from the ob-
servation of hysteresis in the plot of the equation of
state' (see Fig. 1 and Table I): the points obtained by in-
creasing pressure in a Quid configuration and those ob-
tained by expanding a solid configuration do not overlap
each other. On the contrary, there are two branches of
the equation of state at high pressures separated by a
2—3% density gap. We do not observe direct solid-fiuid
coexistence due to hysteresis effects that are typical for
first-order transitions in finite periodic systems. This is
why we cannot locate the melting point directly from our
simulations. An accurate determination of the melting
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phase exhibits strong fluctuations (see Fig. 10), although
less pronounced than those shown in Fig. 9.

C. k=4case

This is the most interesting case of our simulations
since it shows a totally unexpected, qualitatively different
behavior from the two previous cases. We again find

Js
1 0

1.0
0.0

3.0

FIG. 8. Radial distribution function go(r ) as a function of r
[in units (4ab)'~ ] for the k=6 hard-ellipse system, at several
densities. Stars and solid triangles belong to the isotropic phase;
solid circles belong to the nematic phase, and solid squares,
empty triangles, and empty squares belong to the solid phase.
Note the increasing peaked structure as g values above the
freezing.

point (and the corresponding density values of the coex-
isting phases) would require us to compute the absolute
free energy of both phases. The method has already been
applied to 2D hard-core systems (hard disks ) and to
three-dimensional (3D) hard ellipsoids of revolution.

To conclude the analysis of the k=6 case we would
like to point out that the solid phase has peculiar proper-
ties. In the snapshot of the solid phase (Fig. 9) strong an-
isotropic undulations can be observed. These undulations
are more pronounced at long wavelengths and it seems
likely that they would be even more pronounced in a
larger system. In fact, it is not at all obvious that the
phase observed in this figure is indeed a stable crystalline
solid. Conceivably, the system behaves on a suSciently
long length scale as a 2D smectic or even as a 2D nemat-
ic. The present simulations do not permit us to test in
any detail the theoretical predictions of Ostlund and
Halperin concerning dislocation-mediated melting of
anisotropic layers. We note, however, that our observa-
tions could be compatible with the type-I melting
scenario of Ref. 28.

B. k=2case

This is the simplest case because it does not exhibit
nematic phase. The system has a solid phase at densities
above the value corresponding to g =0.78 connected with
an isotropic phase below this value (see Fig. 10) via a
first-order phase transition, as it is proven by the hys-
teresis found in the equation of state (Fig. 2 and Table I).
The order-parameter plot (Fig. 11) does not show any evi-
dence of orientational order anywhere in between. The
order parameter, q, jumps abruptly from values nearly 0
up to a very high value just at g=0.78, therefore there is
no plastic solid phase either. So, only two phases are
present for this aspect ratio, connected via a first-order
phase transition. However, as in the k =6 case, the solid

v) =0.329

~)=0 503

,t't ')f ' ))')f'
tIi, ")tI')
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If
'II) fI fjf,
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FIG. 9. Snapshots of the k=6 hard-ellipse system for the
three observed phases: isotropic (g =0.329), nematic
(g=0.599), and solid (q=0.809). Note that solid phase shows
an anisotropic long-wavelength fluctuation (see text for details).
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g =0.712
FIG. 12. The same as in Fig. 5 for the k =4 hard-ellipse sys-

tem. Notice the noisy region around g=0.75. The filled circles
below g=0.75 correspond to points that proved to be unstable
in very long runs (around 3 X 106 trial moves per particle) since
they fell onto the fluid branch.

6=0.810

FIG. 10. Snapshots of the k =2 hard-ellipse system. The
upper picture shows the isotropic phase (g=0.712) and the
lower one shows the solid phase (g=0.810). No more phases
were found for this case.

nematic phase (i.e., one that is stable with respect to dis-
clination unbinding) (see Fig. 13). When the pressure is
decreased starting from the solid phase, we pass through
a density range where there is a mechanically stable
nematic phase (see Fig. 12 and Table IV). During this ex-
pansion, the system apparently crosses a nematic-solid
(N-S) first-order transition, because recompressing from
the state point at P'=18.8, the solid phase cannot be

three phases: solid, nematic, and isotropic, but unlike the
k =6 case, for this particular aspect ratio the system un-
dergoes two first-order phase transitions (see Figs. 3 and
12 and Table I). When the pressure is increased in the
isotropic phase we find that the system exhibits increas-
ing local orientational order, but fails to form a true

21=0.440 21=0. r 85

1.0

0.8

0.6

0.4

21=0.761 21 =O.SO9

0.0 0.2
I

0.4 0.6 0.8
0.0
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FIG. 11. The same as in Fig. 5 for the k =2 hard-ellipse sys-
tem.

FIG. 13. Snapshots of the k =4 hard-ellipse system showing
the isotropic phase (q =0.440), the unstable nematic
(g=0.785), the stable nematic (g=0.761), and the solid phase
{g=0.809). The two first pictures (isotropic and unstable
nematic) were obtained by compressing the fluid whereas the
two last pictures (stable nematic and solid) were obtained by ex-

panding the solid. Notice the existence of domains in the unsta-

ble nematic.
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recovered. Below this pressure the system is no longer
solid, but, nevertheless, the phase shows a very high value
of the orientational order parameter. Analysis of g2 and

g4 and of the system-size dependence of the nematic or-
der parameter (see Table IV) suggests that this nematic is
stable against spontaneous disclination unbinding. At
densities around q=0. 74 the order-parameter fluctua-
tions become very large and below this density the order
parameter decreases rapidly to values typical for the iso-
tropic fluid branch. In longer runs all overexpanded
nematic points with g &0.74 were found to be unstable.
The existence of hysteresis, the jump in the order-
parameter plot and the stability of the nematic phase
against disclination unbinding lead us to the conclusion
that the I-N transition is first order. This result is
surprising since most theories for the 2D I-N transition
predict a continuous phase transition. ' ' The main
conclusion that can be drawn from our simulations is
that there has to be a tricritical point somewhere in be-
tween the aspect ratios k =4 and 6.

IV. COMPARISON WITH DENSITY-FUNCTIONAL
THEORY

2E(g )
(10)

In this section, we compare our computer simulation
results with density-functional theory. The first density-
functional theory for the I-N transition of hard ellipses
was reported in Ref. 14. One of the approximations
made in Ref. 14 in order to obtain an analytical expres-
sion for the direct correlation function, is the so-called
Gaussian-overlap approximation (GOA) between el-

lipses. This approximation leads to a formula for the
excluded volume of two ellipses of given orientations
which approaches the exact expression as eccentricity de-
creases. To illustrate this point the second virial
coefficient obtained from the GOA is compared to the ex-
act value given by (8) in Fig. 4. Notice the good agree-
ment of both curves for low eccentricities and the
discrepancy for high eccentricities (up to 57%, in the
infinite eccentricity limit).

The fact that the density-functional theory of Ref. 14 is
using an approximate second virial coefficient leads to a
deviation of the theoretical equation of state from the
simulated curve (a reasonable theory should guarantee at
least the exact second virial coeScient). This shortcom-
ing of the theory can easily be corrected, in a rather ad
hoc manner, by rescaling the excluded volume by a factor

B2(k)
2v „H0(y)

with B2(k ) given by (8) and HD(y) being the average ex-
cluded volume in the GOA

volume for both zero and infinite' eccentricity limits and
predict the exact value of the second virial coefficient.
So, we should expect a good agreement between theory
and simulations in those limits and a deviation for inter-
mediate k values.

When comparing MC simulations with the theoretical
results we distinguish two aspects of the theory: first, the
success of the theory in reproducing the MC data for the
equation of state, and second, the quality of its prediction
for the I-N transition.

The theoretical predictions for the equation of state of
hard ellipses with k=2, 4, and 6 are compared with the
MC data in Figs. 1—3, respectively. In these figures both
the prediction of the original theory of Ref. 14 and the
present modification thereof are shown. In accordance
with the discussion above we note that the smaller the ec-
centricity of the ellipses the better the theoretical curves
fit the simulation points. For k =2 (Fig. 2) both versions
of the theory coincide, and the agreement with the MC
results appears to be excellent, even at high densities.
Above the freezing density, the comparison has no mean-
ing because this theory does not apply to the solid
phase. ' For k =4 (Fig. 3) the modified theory fits quite
well both the isotropic phase at low densities and the
whole nematic phase, but underestimates the pressure for
intermediate values of the density in the isotropic branch.
The original version of the theory reproduces the isotro-
pic branch better but overestimates the pressure in the
nematic phase. Finally, for k=6 (Fig. 1) both versions
deviate from the experimental points as density increases,
although the modified theory fits the MC data marginally
better.

Whereas the density-functional theory provides a
reasonable description of the equation of state of hard el-

lipses, it is not very successful in predicting the location
of the I-N transition. First of all, it predicts a continuous
phase transition for all k. There is no evidence of any tri-
critical point in the theory of Ref. 14 and the only eft'ect

of the present rescaling [Eq. (9)j is to shift the transition
line. Moreover, the prediction of the transition points is
very poor as it can be seen from the order-parameter
plots (Figs. 5, 10, and 12). In Table V a comparison is

TABLE V. Location of the I-N transition points of the
hard-ellipse system with k =2, 4, and 6. Column 1: estimate for
transition density {q,"&) based on the present version of the
density-functional theory of Ref. 14, column 2: estimate for the
transition density {g».) based on the present MC simulations,
column 3: relative deviation (5—:(q, "~ —

g~ &)/q~, ~ in %), and
column 4: estimated melting point (gM„t) obtained from the
present simulations. Note that we did not compute the absolute
free energy of all phases involved. Therefore our estimate of the
location of all first-order transitions is not very accurate.

with E(x ) the complete elliptic function of the second
kind (introduced in the previous section) and
g=(1—k )/(1+k ) (k being the aspect ratio of the el-
lipses). In this way we obtain an improved version of the
theory of Ref. 14 in which we use the exact excluded

2
4
6

Th
9J-,&

0.74
0.49
0.38

MC

-0.74
-0.59

4(%)

34
36

MC
gMelt

~ 0.78
+ 0.79
~ 0.76
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made between the I-N transition points predicted by the
present version of the density-functional theory and the
simulations (the original theory' does even worse).

We think the main reason for this failure of the theory
is the mean-field character of the involved approxima-
tions. In Ref. 14 an ejfective density is found to account
for the effect of the nematic ordering on the direct corre-
lation function. With such approximation it is clear that
the strong influence of the fluctuations, which are respon-
sible for the peculiar behavior of ordering in 2D systems,
is not considered at all, and then, only qualitative agree-
ment with simulations is to be expected in this matter.

V. CONCLUSIONS

direct evidence for the existence of a 2D smectic phase in
our simulations. However, we cannot rule out the possi-
bility that for much larger system sizes, our "solid" phase
will, in fact, turn out to be a 2D "smectic" (in the sense
defined by Ostlund and Halperin ).

We have also compared our data with the existing
theoretical results for the I-N transition. ' We find that
the best density-functional theory that is presently avail-
able reproduces the simulated equation of state reason-
ably well, but fails to predict the correct transition densi-
ty. More seriously, the present theory does not repro-
duce the nature of the 2D I-N transition correctly.
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