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Smectic and columnar ordering in length-polydisperse fluids of parallel hard cylinders

Yuri Martı́nez-Ratón and José A. Cuesta*
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Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

(Received 21 December 2008; final version received 12 February 2009)

We apply a recently proposed density functional for mixtures of parallel hard cylinders, based on Rosenfeld’s
fundamental measure theory, to study the effect of length-polydispersity on the relative stability between the
smectic and columnar liquid crystal phases. To this purpose we derive from this functional an expression for the
direct correlation function and use it to perform a bifurcation analysis. We compare the results with those
obtained with a second and a third virial approximation of this function. All three approximations lead to the
same conclusion: there is a terminal polydispersity beyond which the smectic phase is less stable than the
columnar phase. This result is in agreement with previous Monte Carlo simulations conducted on a freely
rotating length-polydisperse hard spherocylinder fluid, although the theories always overestimate the terminal
polydispersity because the nematic–columnar phase transition is first order and exhibits a wide coexistence gap.
Both, the fundamental-measure functional and the third virial approximation, predict a metastable nematic–
nematic demixing. Conversely, according to second virial approximation this demixing might be stable at high
values of the polydispersity, something that is observed neither in simulations nor in experiments. The results of
the fundamental-measure functional are quantitatively superior to those obtained from the other two
approximations. Thus this functional provides a promising route to map out the full phase diagram of this
system.

Keywords: polydispersity; parallel hard cylinders; smectic phase; columnar phase; fundamental measure theory;
bifurcation analysis

1. Introduction

Simple fluids are made of atomic particles. These are
identical, spherically symmetric particles which interact
via a well defined interaction potential – of which the
Lennard-Jones formula provides a very good approx-
imation. The classic states of matter are a consequence
of this nature: interaction decays fast at long distance,
hence we have a gas when the density is low; the
potential has an attractive well at short distances, and
this causes the liquid when the density is high enough;
and finally, the interaction becomes strongly repulsive
at very short distances and this makes the fluid freeze
into a crystalline structure when it becomes very dense,
due to entropic considerations (see e.g. [1] for further
details).

In contrast to the ‘simple fluid’ paradigm provided
by atomic fluids we have colloids. These are suspen-
sions of big – around one micron – particles, which are
actually aggregates of smaller particles, in a solvent
which may also contain other elements (like ions,
polymers, etc.). Because of this, particles are all dif-
ferent in shape, size, charge, etc., and the interactions

are the result of adding up the separate contribution

of each of the elements of the aggregate that we call

a colloidal particle, as well as the entropic forces that

the solvent and its constituents exert on them [2].

Because of this, colloidal science has become the

laboratory of liquid theory: almost anything in

a colloid can be tuned so as to fit experimentally

theoretical models that would otherwise be considered

highly academic (like hard spheres, to name the most

famous one). In particular, by varying the composition

of the solvent one can modify entropic forces and gauge

in this way the effective interactions between the

colloidal particles [3].
One of the most interesting aspects of a colloid is

its inherent polydispersity, i.e. the fact that colloidal

particles have different shape, charge, size, etc.

The impact of this on the phase behaviour of the

colloidal suspension is still a matter of active research.

The study of polydispersity is not new: Onsager himself

paid attention to it in his famous 1949 article on the

isotropic–nematic transition of infinitely thin hard

cylinders [4]. However, it is only in the last decade
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that the issue has regained the attention of liquid
theorists, probably due to the fundamental problems
of formulating a statistical mechanics of polydisperse
systems [5].

Most theoretical studies of polydisperse systems
have focused on demixing and transitions between
homogeneous phases [6–16]. The reason is two-fold: on
the one hand, specific techniques have been developed
for those very common cases in which the free energy
depends on the polydispersity distribution through
a finite set of its moments [5,17–20], or when
polydispersity is small [21,22]; on the other hand,
experimental data are available for colloidal liquid
crystals and their transitions between the isotropic,
nematic and non-uniform phases [23,24]. However,
when it comes to finding theoretical approaches to
spatial ordering transitions, results are more scarce
due to the inherent difficulty of discerning how the
ordering occurs in the continuum of species that form
a polydisperse mixture. In spite of this, several of these
transitions have been tackled with different techniques.
Interfaces and wetting have been successfully
addressed with density functional theory [25–30], and
so has been freezing of polydisperse hard spheres,
despite its higher difficulty [31–33].

Liquid-crystalline spatially ordered phases (smectic
and columnar) in polydisperse colloidal mixtures have
received considerably less attention from the theore-
tical point of view. Monodisperse fluids of hard rods
are known to have a nematic–smectic transition [34].
This is a continuous transition for parallel rods [35]
which becomes first order when rods are allowed to
freely rotate [36]. In spite of some initial results
that seemed to show a window of stability of the
columnar phase [35], it turned out that it was a finite-
size effect, so that the smectic is more stable than the
columnar for any aspect ratio of the rods [37]. It is
also known that the addition of a second species of
rods can destabilise the smectic phase in favour of
a columnar phase [38,39]. The same effect has been
shown to occur in grand-canonical simulations of
freely rotating, length-polydisperse, infinitely long
rods [40] when polydispersity is larger than �18%.
There is also recent experimental confirmation of the
enhancement of the stability of columnar ordering by
polydispersity [41].

The terminal polydispersity for the smectic phase
had been predicted from a density-functional theory
[42] for a system of parallel hard cylinders. Despite
the orientational constraint, infinitely long rods are
expected to be strongly aligned and thus behave very
much as perfectly aligned rods – although not quite
because the order of the nematic–smectic transition
changes to first order for freely rotating rods,

no matter their infinite length. The density functional

used in [42] was a very simple version of a weighted-

density approximation (see e.g. [43] for a recent

review), in which the weighting function is just

proportional to the Mayer function. Simple as it

might be, at the time there was no alternative density

functional theory for carrying out this kind of analysis.

But very recently a new functional for mixtures

of parallel hard cylinders based on Rosenfeld’s

fundamental-measure theory [44] has been proposed

[45]. The functional has been shown to provide an

excellent estimate of the phase diagram of the mono-

disperse system [37]. It is thus our aim in this paper to

perform a bifurcation analysis of the smectic and

columnar instabilities in this more accurate functional.

2. Density functional theory of polydisperse mixtures

Suppose that we have an inhomogeneous polydisperse

mixture characterised by density profiles �(r, l ), where l
is a parameter (or set of parameters) which char-

acterises the species (the length in our case). Then there

is a Helmholtz free-energy functional F[�] which can be

split into an ideal bit,

�Fid½�� ¼

Z
dl

Z
dr �ðr, l Þ

�
ln½VðlÞ�ðr, l Þ� � 1

�
, ð1Þ

plus an excess Fex[�]¼F[�]�Fid[�]. Here �¼ 1/kT,

with T the temperature and k the Boltzmann constant,

and V(l) stands for the thermal volume of species l.

The equilibrium density for a given chemical potential

�(l) is obtained from the Euler–Lagrange equation

�ðr, l Þ ¼
exp½��ðlÞ�

VðlÞ
exp cð1Þðr, l Þ

� �
,

cð1Þðr, l Þ ¼ ��
�Fex½��

��ðr, l Þ
: ð2Þ

If we specialise this equation for the uniform phase, of

density profile �h(l), corresponding to the same

chemical potential �(l), then

�hðlÞ ¼
exp½��ðlÞ�

VðlÞ
exp cð1ÞðlÞ

� �
: ð3Þ

Here, h(l) stands for the normalised probability density

of particles of species l. From these two equations

we obtain

�ðr, l Þ ¼ �hðlÞ exp cð1Þðr, l Þ � cð1ÞðlÞ
� �

, ð4Þ

which will be the starting point of the bifurcation

analysis.
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3. Bifurcation analysis

Let us assume that we have a length-polydisperse

mixture of aligned hard cylinders in a nematic phase.

A convenient choice for l is l¼L/hLi, where L is the

length of the cylinders and hLi its average over the

whole mixture. Let �h(l) be the density distribution of

lengths in the nematic phase. Suppose that we reach

a value of � at which the nematic fluid is no longer

stable. Then the inhomogeneous profile that emerges at

the onset of the instability can be expressed as

�(r, l)¼ �h(l)þ �(r, l), where �(r, l) is a small perturba-

tion. Using this expression in Equation (4) we obtain

that, near the bifurcation point,

�ðr, l Þ ¼ �hðlÞ

Z
dl 0
Z

dr0 cðr� r0, l, l 0Þ�ðr0, l 0Þ, ð5Þ

where c(r� r0, l, l0)¼���2Fex/��(r, l)��(r
0, l0) is the

direct correlation function of the nematic phase. In

Fourier space,

�̂ðq, l Þ ¼ �hðlÞ

Z
dl 0 ĉðq, l, l 0Þ�̂ðq, l 0Þ, ð6Þ

where as usual f̂ðqÞ ¼
R
dr expðiq � rÞf ðrÞ. In order to

proceed we need to specify c(r� r0, l, l0) or, equiva-

lently, Fex. We will analyse three choices: (i) Fex taken

from the fundamental-measure density functional

of [45], (ii) a second virial approximation and

(iii) a third virial approximation.

3.1. Fundamental-measure direct correlation function

The expressions for the direct correlation function for

this case appears as Equation (39) in [45]. For the case

of a continuous polydisperse mixture, this is given, in

Fourier space, by

��ĉðq, l, l 0Þ ¼
X

�,�¼0,1

 ��ðq?Þ!̂
ð�Þðqk, l Þ!̂

ð�Þðqk, l
0Þ,
ð7Þ

where q? and qk are, respectively, the lengths of the

perpendicular and parallel components of the wave

vector in units of radius R and mean cylinder

length hLi,

!̂ð0Þðq, l Þ ¼ cosðql=2Þ, !̂ð1Þðq, l Þ ¼
sinðql=2Þ

q=2
ð8Þ

and  00(q)¼ 0, while

 01ðqÞ ¼  10ðqÞ ¼ 4y
J1ð2qÞ

q
þ 2yJ0ðqÞ

J1ðqÞ

q

�

þyð1þ 2yÞ
J1ðqÞ

q

� �2
#
, ð9Þ

 11ðqÞ ¼ 4y2
J1ð2qÞ

q
þ 2ð1þ 2yÞJ0ðqÞ

J1ðqÞ

q

�

þð1þ 6yþ 6y2Þ
J1ðqÞ

q

� �2
#
: ð10Þ

Here y¼ �/(1� �), where �¼ �	R2
hLi is the total

packing fraction, and Jn(x) is the nth order Bessel

functions of the first kind.
The functional proposed in [45] is based on

Tarazona and Rosenfeld’s functional for the fluid of

hard discs [46]. We can use Rosenfeld’s proposal for

such a fluid instead [47]. Then the direct correlation

function will still have the form (7), but the functions

 ��(q) will be defined as [45]  ðRÞ00 ðqÞ ¼ 0 and

 ðRÞ01 ðqÞ ¼  
ðRÞ
10 ðqÞ

¼ 2y J20ðqÞ � J21ðqÞ þ 2ð1þ 2yÞJ0ðqÞ
J1ðqÞ

q

�

þ 2yð1þ 2yÞ
J1ðqÞ

q

� �2
#
, ð11Þ

 ðRÞ11 ðqÞ ¼ 2y2 J20ðqÞ � J21ðqÞ þ 2ð3þ 4yÞJ0ðqÞ
J1ðqÞ

q

�

þ 2ð1þ 6yþ 6y2Þ
J1ðqÞ

q

� �2
#
: ð12Þ

If we now substitute (7) into (6), multiply the result by

!(
)(q, l) and integrate over l, we obtain

�
ðqÞ ¼ �
X
�

X
�

N
�ðqkÞ ��ðq?Þ

 !
��ðqÞ, ð13Þ

where we have introduced the new functions

��ðqÞ ¼

Z
dl !̂ð�Þðqk, l Þ�̂ðq, l Þ, ð14Þ

N
�ðqkÞ ¼

Z
dl hðlÞ!̂ð
Þðqk, l Þ!̂

ð�Þðqk, l Þ: ð15Þ

Equation (13) can be rewritten in matrix form as

HðqÞnðqÞ � IþNðqkÞ �Cðq?Þ
� �

nðqÞ ¼ 0, ð16Þ

where I is the 2�2 identity matrix, N(qk) and �(q?)

are the matrices with elements N
�(qk) and  ��(q?)
respectively and m(q) is the vector with coordinates

��(q). Denoting H(q)¼ det [H(q)], the first non-trivial

solution of (16) for which q 6¼ 0 follows from the couple

of equations

HðqÞ ¼ 0, rHðqÞ ¼ 0: ð17Þ
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The first equation yields the value(s) of q for which

m(q) 6¼ 0, while the second one imposes that H(q) has

a minimum at this value of q. These two equations

determine the values of � and q at the bifurcation

point. From (16), using (9), (10) and (15), we obtain

HðqÞ ¼ 1þ 2N01ðqkÞ 01ðq?Þ þN11ðqkÞ 11ðq?Þ

þ N2
01ðqkÞ �N00ðqkÞN11ðqkÞ

� �
 2
01ðq?Þ: ð18Þ

Finally, the nematic–nematic demixing spinodal

can be obtained as the value of � at which H(0)¼ 0.
Let us now consider three possible scenarios for

a bifurcation: (i) nematic–nematic (N-N) demixing,

(ii) nematic–smectic (N-Sm) bifurcation and (iii)

nematic–columnar (N-C) bifurcation.

3.1.1. N-N demixing

Both versions, (9) and (10), and (11) and (12), yield the

same value for the functions

 01ð0Þ ¼  10ð0Þ ¼ yð4þ 5yþ 2y2Þ,

 11ð0Þ ¼ y2ð9þ 14yþ 6y2Þ: ð19Þ

Also, from Equations (15) and (8) we have

N00ð0Þ ¼ N01ð0Þ ¼ 1, N11ð0Þ ¼ 1þ D2, ð20Þ

where D¼ (hl2i� 1)1/2 is the standard deviation which

characterises the degree of polydispersity of the system

(remember that from our choice for l we have hli¼ 1).

We have introduced the short hand notation

hf(l)i ¼
R
dlh(l)f(l) for the mean value of a general

function f(l) with respect to the distribution function

h(l). Thus we find

Hð0Þ ¼ 1þ 2 01ð0Þ þ  11ð0Þ þ  11ð0Þ �  
2
01ð0Þ

� �
D2:

ð21Þ

The equation H(0)¼ 0 leads to an analytic formula for

the N-N demixing spinodal, namely

D¼
1þ2 01ð0Þþ 11ð0Þ

 2
01ð0Þ� 11ð0Þ

� �1=2

¼
1

�
�1

� �
1þ4�þ�2

7�2���2

� �1=2

:

ð22Þ

Demixing appears for any �4 �* where �* is the

solution of (22) for the maximum value of the

polydispersity parameter D* (for the sake of reference,

a Schultz distribution – see below – has D*¼ 1).

3.1.2. N-Sm bifurcation

A smectic instability is to be found by setting

q?¼ 0 and qk¼ q4 0. Then introducing (8) in (15)

we obtain

N00ðqÞ ¼
1
2 1þ hcosðqlÞi½ �, ð23Þ

N01ðqÞ ¼ N10ðqÞ ¼
1

q
hsinðqlÞi, ð24Þ

N11ðqÞ ¼
2

q2
1� hcosðqlÞi½ �: ð25Þ

Thus, we obtain from (18), (19) and (23–25),

HðqÞ ¼ 1þ 2yð4þ 5yþ 2y2Þ
hsinðqlÞi

q

þ 2y2ð9þ 14yþ 6y2Þ
1� hcosðqlÞi½ �

q2

þ y2ð4þ 5yþ 2y2Þ2
hsinðqlÞi2 þ hcosðqlÞi2 � 1
� �

q2
:

ð26Þ

As a length-polydispersity model we make the
standard choice of a Schultz distribution function

hðlÞ ¼
ð�þ 1Þ�þ1

Gð�þ 1Þ
l� exp �ð�þ 1Þl½ �, � � 0, ð27Þ

whose mean is set to unity, i.e. hli�
R
dllh(l)¼ 1. For

this choice D¼ (�þ1)�1/2	 1. It is easy to show that for
this particular distribution function we obtain

hsinðqlÞi ¼
sin D�2 arctanðqD2Þ
� �
1þ q2D4
� �1=ð2D2Þ

,

hcosðqlÞi ¼
cos D�2 arctanðqD2Þ
� �
1þ q2D4
� �1=ð2D2Þ

: ð28Þ

3.1.3. N-C bifurcation

A columnar instability is to be found by setting
q?¼ q4 0 and qk¼ 0. Then using (20) in (18) we find

HðqÞ ¼ 1þ 2 01ðqÞ þ  11ðqÞ þ D2  11ðqÞ �  
2
01ðqÞ

� �
:

ð29Þ

Interestingly, (29) implies that the bifurcation to the
columnar phase is independent of the particular
functional form of h(l), it only depends on D, as it
happens for the N-N demixing.

3.2. Third and second virial approximations

The third virial approximation of the direct correlation
function for the system we are analysing has the
expression

�cðr, l, l 0Þ ¼ f ðr, l, l 0Þ 1þ

Z
dl00�ðl00ÞVðr, l, l 0, l00Þ

� 	
,

ð30Þ
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where

f ðr, l, l 0Þ ¼ Y 2R� r?ð ÞY ðlþ l 0Þ=2� jzjð Þ, ð31Þ

with z expressed in units of hLi, is the overlap function
(minus the Mayer function) of two cylinders of the
same radius R and reduced lengths l and l0. �(x) is the
Heaviside step function (¼ 0 if x5 0 and¼ 1 if x4 1).
V(r, l, l0, l00), the overlap volume between two cylinders
of radius 2R and lengths lþ l00 and l0 þ l00, r being the
vector joining their centres of mass, is given by

Vðr, l, l 0, l00Þ ¼ 8R2hLi arccos x� xð1� x2Þ1=2

 �

�Yð1� xÞðz, l, l 0, l00Þ, ð32Þ

where x¼ r?/4R and

ðz, l, l 0, l00Þ ¼ ðlþ l 0Þ=2þ l00 � jzj � ðjl� l 0j=2� jzjÞ½

�Y jl� l 0j=2� jzjð Þ�Y ðlþ l 0Þ=2þ l00 � jzjð Þ:

ð33Þ

The Fourier transform of ��c(r, l, l0) can be written in
the same form (7), where now

 01ðqÞ ¼  10ðqÞ ¼ 4�
J1ð2qÞ

q
þ

4

p
Uð2qÞ�

� 	
,

 11ðqÞ ¼
32

p
�2Uð2qÞ, ð34Þ

UðqÞ ¼ 16

Z 1=2

0

dxxJ0ð2qxÞ arccos x� xð1� x2Þ1=2

 �

,

ð35Þ

and the functions !(i)(q, l) are given by Equation (8).
Thus, Equation (18) becomes

HðqÞ ¼ 1þ 2 01ðq?Þ
hsinðqklÞi

qk
þ 11ðq?Þ

1� hcosðqklÞi

 �

q2k

þ 2
01ðq?Þ

hsinðqklÞi
2þ hcosðqklÞi

2� 1

 �

q2k
: ð36Þ

We should point out that the second virial approxima-
tion can be obtained from (34) just replacing U(2q) by
zero (thus  11(q)¼ 0).

The N-Sm (q?¼ 0) and N-C (qk¼ 0) bifurcations
can be obtained from (34–36) taking into account that
U(0) in Equation (35) can be calculated analytically as
U(0)¼	� 3(31/2)/4.

The uniform limit of (36) yields

Hð0Þ ¼ 1þ 8�þ 12c�2� 4�2 4ð1þ c�Þ2� c
� �

D2, ð37Þ

where c¼ 4� 3(31/2)/	. Thus the spinodal of the N-N
demixing is

D ¼
1

2�

1þ 8�þ 12c�2

4ð1þ c�Þ2 � c

� �1=2

: ð38Þ

The second virial approximation is obtained by setting
c¼ 0 in (37), which transforms the spinodal into

DB2 ¼
ð1þ 8�Þ1=2

4�
: ð39Þ

4. Results

The spinodals obtained from the second virial approx-
imation of the direct correlation function are plotted
in Figure 1. As already mentioned, both the N-N
demixing spinodal and the N-C spinodal are indepen-
dent of the details of h(l), so they are valid for any
polydisperse mixture. Conversely, the N-Sm spinodal
does depend on h(l). The curve of Figure 1 has been
obtained using the Schultz distribution (27), but in
order to check what the effect of this choice is on this
line we have also plotted the N-Sm spinodal for the
distribution function

hðlÞ ¼
2G½ð�þ 2Þ=2��þ1

G½ð�þ 1Þ=2��þ2
l� exp �

G½ð�þ 2Þ=2�

G½ð�þ 1Þ=2�
l

� �2
( )

,

ð40Þ

0 0.2 0.4 0.6 0.8 1
 Δ

0.4

0.6

0.8

1

1.2

η

C

Sm

Figure 1. N-Sm and N-C spinodals obtained with the second
virial approximation of the direct correlation function.
The solid line always show the first phase (labelled in the
figure) which bifurcates from the uniform nematic phase N.
Length-polydispersity is taken as a Schultz distribution
function, although only the N-Sm bifurcation line depends
on this choice. The dot-dashed line shows the N-Sm spinodal
obtained with the choice (40) for the polydispersity dis-
tribution. The filled circle and square show, respectively,
the crossover polydispersity values D� arising from this two
distribution functions. Finally, the dotted line shows the
location of the N-N demixing spinodal.
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which decays as a Gaussian and not as an exponential
for long rods. For this choice

D ¼
G½ð�þ 1Þ=2�G½ð�þ 3Þ=2�

G½ð�þ 2Þ=2�2
� 1

� �1=2

ð41Þ

(and therefore D*¼ 0.755). The comparison of the
N-Sm spinodal obtained with this distribution function
with that obtained with the Schultz one reveals a weak
dependence on h(l). For this reason we have stuck to
the Schultz for the rest of the paper.

The plot shows a crossover polydispersity,
D�¼ 0.394, below which the nematic bifurcates into
a smectic and above which it does so into a columnar
(from the h(l) given by (40) we obtain D�¼ 0.428
instead). On the other hand, the N-N spinodal line
reveals that N-N demixing can occur for very
polydisperse mixtures (with D4 0.838). This is
a defect of this approximation, as N-N demixing has
never been observed in polydisperse systems of hard
rods with a unimodal length distribution. And this is
not the only one, since an even more obvious drawback
is the unphysical, high values of the packing fraction �
at which the spinodals appear.

In striking contrast, the results provided by the
fundamental-measure density functional proposed in
[45] (cf. Equations (9), (10) and (17), (18)), depicted in
Figure 2(a), show a very different scenario. We also
find a crossover polydispersity, at a slightly higher
value D�¼ 0.401. However, the N-N demixing is
always metastable, as is consistent with simulations

and experiments, and the values of the packing fraction
at which the bifurcations occur are not far from the

transition lines found in simulations.
The same figure also shows the N-C spinodal

resulting from the fundamental-measure density func-

tional based on Rosenfeld’s approximation for hard

discs. It is most remarkable that for this functional no
crossover is found. Thus this result either leads to the

wrong conclusion that the smectic phase is more stable
than the columnar phase for any polydisperse mixture,

or it seems to suggest that the crossover polydispersity
might be shifted to higher values. However, a definitive

conclusion can only be achieved through a coexistence
calculation.

Finally, Figure 2(b) shows the results obtained

from the third virial approximation of the direct
correlation function (cf. Equations (17) and (36)).

We can see a dramatic improvement with respect to
the second virial approximation in all details. N-N

demixing becomes metastable and the values of the

packing fraction at which the bifurcations occur are
much more reasonable. In fact, the scenario this

approximation shows is rather close to the one
obtained from the fundamental-measure density func-

tional, the differences being only quantitative.

5. Discussion

The phase behaviour of polydisperse mixtures of hard

rods had received little theoretical attention mainly

0 0.2 0.4 0.6 0.8 1
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0.6
η
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C

0 0.2 0.4 0.6 0.8 1
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η

Sm

C

(a) (b)

Figure 2. N-Sm and N-C spinodals obtained with the fundamental-measure density functional proposed in [45] (a) and with the
third virial approximation (b). Lines and dot mean the same as in Figure 2. The dot dashed line in (a) shows the N-C spinodal
arising from the fundamental-measure density functional arising from Rosenfeld’s approximation for the hard disc uid. Notice
that it never meets the N-Sm bifurcation line.
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because no good density functional theory was
available for such a system, not even for the simplest
model of aligned hard rods. Only very simple
approximations, based on the Parsons–Lee rescaling,
had been used. Despite the merit of these studies in
finding a terminal polydispersity at which the N-Sm
transition is pre-empted by a N-C one, this approx-
imation is contingent on the accuracy of the second
virial one – which we have seen not to be reliable for
large polydispersity.

Recently, a functional based on Rosenfeld’s funda-
mental measure theory has been put forward for
mixtures of parallel hard cylinders. In the present
paper, we have analysed its reliability in predicting the
phase behaviour of polydisperse mixtures. With this
functional we also find a terminal polydispersity
for the N-Sm transition and we confirm that N-N
demixing can at best be metastable with respect to
spatial ordering. We have also compared with the
results obtained with second and third virial approx-
imations. Although we find the former to have
serious defects – like predicting N-N demixing at
high polydispersity – the latter yields very reasonable
results, close to those obtained with the fundamental-
measure functional.

Interestingly, a variant of the fundamental-measure
functional constructed on Rosenfeld’s proposal for the
system of hard disc is not even able to predict the
terminal polydispersity of the N-Sm transition. This
calls for some caution in the use of Rosenfeld’s
functional to study the hard disc fluid.

As for the validity of a bifurcation analysis, it
obviously provides the location of the phase transition
if this is continuous, but it can be far from the
coexistence line of the disordered phase for first order
phase transitions. In the polydisperse system of hard
rods, both the N-Sm and the N-C transitions are first
order [40]. In the N-Sm transition, this seems to be
caused by the presence of particles aligned parallel to
the smectic layers [48]. For this reason, in systems of
perfectly aligned rods this transition becomes contin-
uous, so the N-Sm bifurcation line is the location of the
transition predicted by the corresponding theories.
The N-C is always found to exhibit a wide coexistence
region both in simulations and in theory and
therefore the terminal polydispersity found through
a bifurcation analysis is but an upper bound of the
true one. Polydispersity widens this coexistence region
hence worsening the estimate provided by this bound.
Locating this N-C coexistence is, thus, a necessary
step to determine the N-Sm to N-C crossover. In the
present state of the art, this is a non-trivial task
because the parallel hard cylinders functional contains
a two-particle kernel which hinders the inclusion of

polydispersity in inhomogeneous phases. How to
circumvent this problem is a matter of current
research.

Acknowledgements

This work has been supported by the Ministerio de
Educación y Ciencia under project MOSAICO and by
the Comunidad Autónoma de Madrid under project
MOSSNOHO.

References

[1] J.P. Hansen and I.R. McDonald, Theory of Simple

Liquids, 3rd ed (Academic Press, London, 2006).

[2] P.N. Pusey, in Liquids, Freezing and Glass Transition,

edited by J.P. Hansen, D. Levesque, and J. Zinn-Justin

(North-Holland, Amsterdam, 1989), pp. 763–942.

[3] C.N. Likos, Phys. Rep. 348, 267 (2001).
[4] L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).
[5] P.B. Warren, Phys. Rev. Lett. 80, 1369 (1998).

[6] Z.Y. Chen, Phys. Rev. E 50, 2849 (1994).
[7] N. Clarke, J.A. Cuesta, R. Sear, P. Sollich, and

A. Speranza, J. Chem. Phys. 113, 5817 (2000).

[8] A. Speranza and P. Sollich, Phys. Rev. E 67, 061702

(2003).
[9] A. Speranza and P. Sollich, J. Chem. Phys. 118, 5213

(2003).
[10] H.H. Wensink and G.J. Vroege, J. Chem. Phys. 119,

6868 (2003).
[11] P. Sollich, J. Chem. Phys. 122, 214911 (2005).

[12] Y. Martı́nez-Ratón and J.A. Cuesta, Phys. Rev. Lett.

89, 185701 (2002).
[13] Y. Martı́nez-Ratón and J.A. Cuesta, J. Chem. Phys.

118, 10164 (2003).
[14] J.A. Cuesta, Europhys. Lett. 46, 197 (1999).
[15] P.B. Warren, Europhys. Lett. 46, 295 (1999).

[16] R.P. Sear, Phys. Rev. Lett. 82, 4244 (1999).
[17] P. Sollich and M.E. Cates, Phys. Rev. Lett. 80, 1365

(1998).

[18] P. Sollich, P.B. Warren, and M.E. Cates, in Advances in

Chemical Physics, edited by I. Prigogine and S.A. Rice

(John Wiley & Sons, New York, 2002), Vol. 116,

pp. 265–336.
[19] P. Sollich, J. Phys.: Condens. Matter 14, R79 (2002).
[20] C. Rascón and M.E. Cates, J. Chem. Phys. 118, 4312

(2003).
[21] R.M.L. Evans, Phys. Rev. E 59, 3192 (1999).
[22] R.M.L. Evans, J. Chem. Phys. 114, 1915 (2001).
[23] F.M. van der Kooij, K. Kassapidou, and

H.N.W. Lekkerkerker, Nature 406, 868 (2000).
[24] F.M. van der Kooij and H.N.W. Lekkerkerker,

Phys. Rev. Lett. 84, 781 (2000).

[25] I. Pagonabarraga, M.E. Cates, and G.J. Ackland,

Phys. Rev. Lett. 84, 911 (2000).
[26] O. Pizio, A. Patrykiejew, and S. Sokolowski, Molec.

Phys. 99, 57 (2001).

Molecular Physics 421

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
.
 
C
u
e
s
t
a
,
 
J
o
s
é
]
 
A
t
:
 
2
1
:
2
8
 
2
0
 
M
a
y
 
2
0
0
9



[27] M. Baus, L. Bellier-Castella, and H. Xu, J. Phys.:
Condens. Matter 14, 9255 (2002).

[28] N.B. Wilding, Phys. Rev. E 71, 066126 (2005).
[29] M. Buzzacchi, I. Pagonabarraga, and N.B. Wilding,

J. Chem. Phys. 121, 11362 (2004).
[30] M. Buzzacchi, N.B. Wilding, and P. Sollich, Phys. Rev.

Lett. 97, 136104 (2006).
[31] R.P. Sear, Europhys. Lett. 44, 531 (1998).
[32] P. Bartlett and P.B. Warren, Phys. Rev. Lett. 82, 1979

(1999).
[33] M. Fasolo and P. Sollich, Phys. Rev. Lett. 91, 068301

(2003).

[34] H. Maeda and Y. Maeda, Phys. Rev. Lett. 90, 018303
(2003).

[35] J.A.C. Veerman and D. Frenkel, Phys. Rev. A 43, 4334
(1991).

[36] P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666
(1997).

[37] J.A. Capitán, Y. Martı́nez-Ratón, and J.A. Cuesta,

J. Chem. Phys. 128, 194901 (2008).
[38] A. Stroobants, Phys. Rev. Lett. 69, 2388 (1992).

[39] S.M. Cui and Z.Y. Chen, Phys. Rev. E 72, 031405
(2005).

[40] M.A. Bates and D. Frenkel, J. Chem. Phys. 109, 6193
(1998).

[41] G.J. Vroege, D.M.E. Thies-Weesie, A.V. Petukhov,
B.J. Lemaire, and P. Davidson, Adv. Mater. 18, 2565

(2006).
[42] A.M. Bohle, R.H. yst, and T. Vilgis, J. Chem. Phys. 106,

666 (1996).

[43] P. Tarazona, J.A. Cuesta, and Y. Martı́nez-Ratón,
in Theory and Simulations of Hard-Sphere Fluids and
Related Systems, edited by A. Mulero (Springer, Berlin,

2008), Vol. 753, pp. 247–341.
[44] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[45] Y. Martı́nez-Ratón, J.A. Capitán, and J.A. Cuesta,

Phys. Rev. E 77, 051205 (2008).

[46] P. Tarazona and Y. Rosenfeld, Phys. Rev. E 55, R4873
(1997).

[47] Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990).

[48] R. van Roij, P. Bolhuis, B. Mulder, and D. Frenkel,
Phys. Rev. E 52, R1277 (1995).

422 Y. Martı́nez-Ratón and J.A.Cuesta

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
.
 
C
u
e
s
t
a
,
 
J
o
s
é
]
 
A
t
:
 
2
1
:
2
8
 
2
0
 
M
a
y
 
2
0
0
9


