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To the memory of our friend Yasha Rosenfeld,
who discovered the Fundamental Measure Theory,

making this chapter grow into a thick one.

This chapter deals with the applications of the density functional (DF) for-
malism to the study of inhomogeneous systems with hard core interactions.
It includes a brief tutorial on the fundamentals of the method, and the exact
free energy DF for one-dimensional hard rods obtained by Percus. The devel-
opment of DF approximations for the free energy of hard spheres (HS) is pre-
sented through its milestones in the weighted density approximation (WDA)
and the fundamental measure theory (FMT). The extensions of these ap-
proaches to HS mixtures include the FMT treatment of polydisperse systems
and the approximations for mixtures with non-additive core radii. The DF
treatment of non-spherical hard core systems is presented within the generic
context of the study of liquid crystals phases. The chapter is directed to the
potential users of these theoretical techniques, with clear explanations of the
practical implementation details of the most successful approximations.

7.1 Introduction

The density functional (DF) formalism for classical particles [1] was developed
to find out the equilibrium density distribution ρ(r) of inhomogeneous systems
at interfaces or in the presence of an external potential V (r). In most cases, like
the layering of fluids against walls or liquids confined in nano-capillaries, the
sharpest level of structure in ρ(r) comes from the effects of molecular packing,
and hence the development of DF theories for hard-core models has been a
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main objective in the field [2, 3]. The free energy DF for one-dimensional
(1D) hard rods (HR), presented by Percus [4] in 1976, provided both an exact
case to test the internal relations of the DF formalism and a hint on how to
approximate the free energy of three-dimensional (3D) hard spheres (HS) and
two-dimensional (2D) hard disk (HD) systems. Over the last decades, there
has been an impressive improvement in the quality of these approximations,
with milestones in the weighted density approximation (WDA) in the middle
1980s and the fundamental measure theory (FMT) over the 1990s.

After a brief tutorial to the DF formalism, to be skipped by the expert
reader, this chapter will first deal with the most successful DF schemes for
HS, presenting them in an easy-to-use fashion and comparing their relative
advantages and difficulties. We do not intend an exhaustive presentation of
the many approaches and variants, which have been developed to describe the
DF free energy of these systems, but rather to provide the reader with an easy
to follow introduction to the basis and the practical use of some extensively
used approaches.

The second part of the chapter will be dedicated to the free energy DF for
HS mixtures, for which the FMT appears to be the most natural approximate
scheme. Different versions of FMT will be presented and their relative merits
compared, including their use for polydisperse systems and the extensions to
non-additive HS.

The third part of the chapter will deal with non-spherical hard core sys-
tems, describing again the most successful schemes which have been developed
to study rigid cores.

7.2 Brief Tutorial to the Density Functional Formalism

The DF formalism for systems with classical statistics [1] establishes that for
any given temperature (β = 1/kBT ) and form of the pair molecular interac-
tion potential energy, u(ri − rj), there is a unique intrinsic free energy F [ρ],
which is a functional of the density distribution ρ(r) and not of the external
potential. The grand canonical equilibrium density distribution for the system
in presence of any external potential V (r) and in contact with a reservoir of
particles at chemical potential μ is that which minimizes the grand potential
energy DF,

Ω[ρ] ≡ F [ρ] +
∫

drρ(r)(V (r) − μ) , (7.1)

with respect to all possible functions ρ(r). That minimum condition on Ω may
be expressed through the Euler–Lagrange equation

δΩ[ρ]
δρ(r)

≡ δF [ρ]
δρ(r)

+ V (r) − μ = 0 , (7.2)

in terms of the functional derivative of F [ρ].
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The explicit knowledge of the (exact or approximate) free energy DF would
reduce the equilibrium statistical mechanics of inhomogeneous systems to a
problem of functional minimization with respect to the one-particle distribu-
tion ρ(r), and this would represent a huge simplification with respect to the
direct evaluation of the grand partition function,

Ξ = e−βΩ0 =
∑
N

eβμN

N !Λ3N

∫ N∏
i=1

drie−βUN , (7.3)

and its use to get the equilibrium density distribution

ρ(r) =

〈∑
i

δ(r − ri)

〉
=

1
Ξ

∑
N

eβμN

(N − 1)!Λ3N

∫ N∏
i=1

drie−βUN δ(r − ri) ,

(7.4)
where UN (r1, r2, . . . , rN ) =

∑
ij u(rij) +

∑
i V (ri) is the total potential en-

ergy of N particles, including both the molecular interactions u(r) and any
external potential V (r). The thermal wavelength Λ includes in (7.3) and (7.4)
the contribution from the momentum integrals, which for classical particles is
fully factorized from those over the positions. Since changing the value of Λ
(i.e. changing the particle mass) produces only a trivial shift of the chemical
potential and it does not affect any thermodynamic or structural property, we
follow here the usual choice Λ = 1 to waive it out.

7.2.1 The Ideal Gas and the Excess Free Energy Density
Functional

The classical ideal (non-interacting) gas, u(rij) = 0, provides the simplest
pedagogical example of the DF formalism, since the exact sampling of the
atomic configurations in (7.3) may be readily computed to get

Ξid =
∞∑

N=0

(eβμZ1)N

N !
= exp(Z1e

βμ) , (7.5)

in terms of the one-particle partition function

Z1 =
∫

dre−βV (r) . (7.6)

Therefore, the equilibrium grand potential energy is

Ωid[V ] ≡ − 1
β

ln (Ξid) = −eβμ

β

∫
dre−βV (r) , (7.7)

and the equilibrium density distribution follows the simple form

ρid(r) = eβ(μ−V (r)) . (7.8)
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These results may be inverted to get, via equation (7.1), the explicit func-
tional form of the ideal gas intrinsic free energy,

βFid[ρ] =
∫

drρ(r)
[
ln ρ(r) − 1

]
. (7.9)

The functional derivative of Fid[ρ] is

δFid[ρ]
δρ(r)

=
1
β

ln ρ(r) , (7.10)

so that the Euler–Lagrange equation (7.2) leads directly to the equilibrium
density (7.8) and its substitution in (7.9) and (7.1) gives back the equilibrium
grand potential energy (7.7), which reduces to βΩid = −

∫
drρ(r) = −〈N〉.

The free energy DF of hard core systems is purely entropic, and it may
be split in the ideal gas contribution plus an excess free energy, Fex[ρ], to
account for the entropy reduction due to the non-overlap of the molecular
cores. Hence, it is usually written in kBT units as

βF [ρ] = βFid[ρ] + βFex[ρ] ≡
∫

dr
{
Φid

(
ρ(r)

)
+ Φ

(
[ρ]; r

)}
, (7.11)

with the ideal free energy density as a function, Φid(ρ) = ρ(ln ρ−1), evaluated
at the local density, while the excess contribution is expressed as the volume
integral of an excess free energy density Φ

(
[ρ]; r

)
, which is a function of r and

a functional of ρ(r). Notice that there could be multiple choices of Φ
(
[ρ]; r

)
leading to the same Fex[ρ], since there are many ways to separate the total
free energy excess of the system in terms of local contributions, and we will see
that different approaches to Fex[ρ] may give similar results with very different
Φ
(
[ρ]; r

)
.

The development and use of approximations for Φ
(
[ρ]; r

)
is the goal of

the DF formalism [2, 3]. The main ingredients to build DF approximations
are the results for uniform systems of HS and other hard-core fluids pre-
sented in the accompanying chapters of this book. Within the DF formalism,
the properties of bulk uniform fluids, with homogeneous density distributions
ρ(r) = ρ0, are associated to the case of null external potential, V (r) = 0, so
that the spatial symmetry is recovered in (7.4) from the translational invari-
ance of UN . From (7.2), we get that the functional derivative of F [ρ], evaluated
at ρ(r) = ρ0, has to be constant and equal to the equilibrium chemical po-
tential of the system, while Ω[ρ0] and F [ρ0] in (7.1) become the extensive
thermodynamic potentials Ω0 and F0, proportional to the total volume of the
system.

7.2.2 The Correlation Structure of Uniform Systems

A most interesting result of the DF formalism [1] is the relation between Fex[ρ]
and the direct correlation function, c(r, ρ0), of a bulk fluid. This function was
originally defined through the Ornstein–Zernike equation,
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h(r, ρ0) = c(r, ρ0) + ρ0

∫
dr′c(r′, ρ0)h(|r − r′|, ρ0) , (7.12)

in terms of the total correlation function h(r, ρ0) ≡ g(r, ρ0)−1. For any system
with classical statistics, there is an exact DF relation,

δ2βFex[ρ]
δρ(r1)δρ(r2)

∣∣∣∣
ρ0

= −c(r12, ρ0) , (7.13)

with the second functional derivative of Fex[ρ] evaluated at ρ(r) = ρ0.
The functional Taylor expansion of Fex[ρ] in terms of the density difference,

Δρ(r) = ρ(r)−ρ0, with respect to a uniform bulk reference system, takes the
generic form

βFex[ρ] =βFex(ρ0) + βμex(ρ0)
∫

drΔρ(r)−

− 1
2

∫
drdr′c(|r − r′|, ρ0)Δρ(r)Δρ(r′) + O3(Δρ(r)),

(7.14)

where the excess free energy, Fex(ρ0), and chemical potential μex(ρ0), of the
bulk liquid are directly obtained from its equation of state, while c(r, ρ0) may
be obtained from the bulk correlation structure. The excellent approxima-
tions for these bulk quantities, reviewed in the accompanying chapters of this
book, may then give a good approximation to βFex[ρ] for systems with weak
variations of the density. The drawback of the truncated functional Taylor
expansion is that for density distributions having a large constant plateau at
a value different from ρ0, the local thermodynamics at the plateau is poorly
represented beyond the quadratic dependence of Fex(ρ) around ρ = ρ0.

From the opposite point of view, we may take any given DF approximation
for Fex[ρ] and use it to predict in two different ways the correlation structure
of any bulk liquid. The OZ route gets c(r, ρ0) from (7.13) and then h(r, ρ0)
from (7.12), while for systems with pairwise interactions, the test-particle route
uses the pair potential between two molecules u(r) as an “external” potential
acting on a bulk fluid from a particle pinned at the origin. The solution of the
Euler–Lagrange equation (7.2) would then give the density distribution of the
remaining molecules, which is interpreted as ρ(r) ≡ ρ0

[
1 + h(r, ρ)

]
in terms

of the total correlation in the bulk fluid. The exact DF form of F [ρ], for a
given molecular interaction, should give the same result for h(r, ρ0) along the
two routes, but the use of any DF approximation would lead to inconsistent
predictions. In particular, for hard-core interactions, the test-particle route
would always fulfill the exact requirement h(r, ρ0) = −1 inside the core, while
the compressibility route would (in general) fail to satisfy that condition. On
the other hand, the sum rule on the total correlation function in the grand-
canonical ensemble [5]

ρ0

∫
drh(r, ρ0) = −1 + ρ0kBTχT , (7.15)
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in terms of the bulk liquid isothermal compressibility χT ≡ ρ−1
0 (∂ρ0/∂p)T

(where p stands for pressure), is always satisfied by the compressibility route
to h(r, ρ0), but not by the test-particle one with DF approximations for F [ρ].
In general, the degree of inconsistency between the compressibility and the
test-particle routes to h(r, ρ0) gives a quality test for any DF approximation.

7.2.3 Density Functional Virial Expansion of the Excess Free
Energy

The usual virial expansion for the thermodynamics, and correlation structure,
of bulk fluids may be extended to get the generic density expansion of Fex[ρ]
in systems with pairwise interactions,

βFex[ρ] =
1
2

∫
dr1ρ(r1)

∫
dr2ρ(r2)f(r12)+

+
1
6

∫
dr1ρ(r1)

∫
dr2ρ(r2)

∫
dr3ρ(r3)f(r12)f(r23)f(r31) + · · · ,

(7.16)

where f(r) = 1 − exp(−βu(r)) is the Mayer function,1 with the pairwise
potential u(r). The expansion for the direct correlation function in a system
with uniform density follows from (7.13) and (7.16),

−c(r12, ρ0) = f(r12) + ρ0f(r12)
∫

dr3f(r23)f(r31) + · · · . (7.17)

As expected, the lowest order of the excess free energy DF produced by the
interactions between the particles is quadratic in ρ(r), while its second func-
tional derivative has a zero density limit c(r, 0) = −f(r). These exact low-
density results for βFex[ρ] provide useful hints for the development of DF
approximations.

7.2.4 The Local Density Approximation and the Gradient
Expansion

The local density approximation (LDA) is the simplest scheme to build a DF
approximation for βFex[ρ] from the restricted knowledge of the thermodynam-
ics of uniform systems. This DF form approximates the local excess free en-
ergy density in (7.11) as a function of the local density, ΦLDA([ρ]; r) = Φ(ρ(r)),
where Φ(ρ0) is the excess free energy per unit volume in a system with uni-
form density ρ0, directly accessible from its equation of state. The ideal gas
free energy DF does have exactly the local density form (7.9), but the generic

1 Notice the different sign of this definition with respect to the standard one.
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form of the excess Φ([ρ]; r) depends on the density distribution at different
positions, as already observed in the first term of the virial expansion (7.16),
so that the LDA can only give acceptable results if ρ(r) changes very smoothly
over molecular size distances. The LDA description of the HS excess free en-
ergy may also be regarded as a coarse grained description of ρ(r), when we
are interested in its long-ranged aspects rather than in the molecular layering
structure [6].

For systems with attractive interactions, there is a systematic, although
limited, way to improve the LDA in terms of density gradient expansions [1],
assuming that the generic functional Φ([ρ]; r) is not just a local function
of ρ(r) but also of its local gradient ∇ρ(r). van der Waals theory for the
structure of the liquid surface may be considered as the precursor of that DF
approximation [7], well before the DF formalism was established. However,
the approach fails from the beginning when applied to systems with hard-
core interactions. The non-local dependence of Φ([ρ]; r) implies a sharp finite
range of interference between ρ(r) and ρ(r′), associated to the geometry of
the molecule, and this cannot be represented as a simple expansion in terms
of the local density gradient.

7.2.5 The Mean Field Approximation

For systems with very soft molecular potentials, the particles may be assumed
to be fully uncorrelated, as in the ideal gas, so that Fex[ρ] has got no entropic
contribution and is given by the interaction energy

Fex[ρ] =
1
2

∫
drdr′ρ(r)ρ(r′)u(r − r′) . (7.18)

This is the mean field approximation (MFA) DF [2], since the functional
derivative in (7.2) takes the form

δFex[ρ]
δρ(r)

=
∫

dr′ρ(r′)u(r − r′) , (7.19)

and it is interpreted as the potential created on a particle at r by the (un-
correlated) mean distribution of particles over the whole system. The MFA
may give an accurate description of the full excess free energy for ultra-soft
interactions, like those between polymer chains in bad solvents [8], but it is
obviously out of question for the description of hard-core interactions with
an infinite u(r) inside the molecular cores. The relevance of the MFA in this
book comes from the usual treatment of simple liquids to split the interaction
potential in a repulsive core, urep(r), often described as a reference HS with
temperature-dependent diameter and the soft attractive part uatt(r), which
may be included through the MFA [2]. Such a simple addition of the molec-
ular packing and the attractive interaction effects is sometimes referred to as
a generalized van der Waals approximation, and it is the simplest and very
successful approach to the DF of realistic model interactions.
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7.3 The Exact Density Functional for Hard Rods

In 1976, Percus [4] presented the exact intrinsic free energy DF for a 1D
system of HR. Within the 1D version of (7.11), the excess free energy density
for rods of length σ is given by

Φ(1D)
(
[ρ];x

)
= −ρ(x) ln

⎛
⎝1 −

x+σ∫
x

dx′ρ(x′)

⎞
⎠ . (7.20)

The asymmetry of this expression, with the integral running only for values
of x′ larger than the local position variable, x, comes from the transfer ma-
trix procedure employed to compute it, in which the entropy associated to
the insertion of each particle is calculated by fixing the previously inserted
particles on its right. Exactly equivalent expressions may be obtained with
the opposite asymmetry and with the symmetric combination

Φ(1D)
(
[ρ];x

)
= −ρ(x+ σ/2) + ρ(x− σ/2)

2
ln
[
1 − η(x)

]
, (7.21)

where the local packing fraction

η(x) =

σ
2∫

−σ
2

dx′ρ(x+ x′) , (7.22)

represents the probability that the point x is covered by a HR.
The explicit DF form of βFex[ρ] for HR provides an excellent example to

analyze the practical use of the DF formalism and also a most valuable hint to
guess the free energy DF approximations for hard bodies in higher dimensions.
The minimum principle (7.2), in the presence of any external potential V (x),
gives

ln ρ(x) +
δβFex[ρ]
δρ(x)

+ βV (x) − βμ = 0 , (7.23)

with non-local dependence of the excess free energy functional derivative

δβFex[ρ]
δρ(x)

= − ln
[
1 − η

(
x+

σ

2

)]
−

x∫
x−σ

dx′
ρ(x′)

1 − η
(
x′ + σ

2

) , (7.24)

so that ρ(x) cannot be obtained by solving (7.23) independently for each x,
as in the ideal gas case (7.8). The interactions couple the values of ρ(x) at
positions within a rod length σ, and (7.23) becomes an integral equation to be
simultaneously solved for the whole ρ(x), rather than separately for each x.
Qualitatively, this integral equation is similar to those described below for DF
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approximations for HS and HD, and several numerical techniques have been
used either to solve it or equivalently to perform the numerical minimization
of Ω[ρ], as described in the next sections.

The exact direct correlation function of a uniform distribution of HR of
length σ and homogeneous 1D density ρ0 is directly obtained from the second
functional derivative of (7.20) or (7.21),

c(|x−x′|, ρ0) = − δ2βFex[ρ]
δρ(x)δρ(x′)

∣∣∣∣∣
ρ(x)=ρ0

= −Θ(σ−|x−x′|)1 − ρ0|x− x′|
(1 − η0)2

, (7.25)

where Θ(y) is the Heaviside step function (= 1 if y > 0 and = 0 if y < 0),
which makes c(|x− x|, ρ0) = 0 beyond the contact distance |x− x′| = σ, and
η0 = σρ0 is the packing fraction of the fluid. Notice that the Mayer function
for 1D HR is precisely f(x) = Θ(σ − |x|), so that, as it should be, (7.25) is
consistent with the generic density expansion (7.17).

The exact total correlation function h(x, ρ0) in a system with uniform
density ρ0 may be consistently obtained from c(x, ρ0), through the 1D version
of the Ornstein–Zernike equation (7.12), or by the test-particle route, solving
(7.24) with V (x) = 0 for |x| > σ and V (x) = ∞ for |x| < σ. The result may
be expressed as the infinite sum [9]

h(x, ρ0) =1 +
∞∑

k=0

Θ(|x| − (k + 1)σ)
ρk
0(|x| − (k + 1)σ)k

k!(1 − η0)k+1

× exp
{
−ρ0(|x| − (k + 1)σ)

1 − η0

}
,

(7.26)

with each term in the sum representing the contribution from the successive
neighbors of the particle centered at x = 0 (which in a 1D system with hard
core interactions are forced to keep the order along the line). As in other
problems in statistical physics, this 1D ordering is the key element to get the
exact functional form of βFex[ρ], and it is clearly absent in higher dimensions.
Early attempts [10, 11] to extend the DF form (7.21) to approximate the free
energy DF of 3D HS were not very successful, and the hints offered by 1D
system were of little use for the design of DF approximations in two and three
dimensions, until the advent of the most recent family of DF approximations
based on Rosenfeld’s FMT [12, 13] (that will be introduced in Sect. 7.5).

7.4 The Weighted Density Approximation

In 1980, Nordholm et al. [14] presented a theory for the free energy of an
inhomogeneous HS fluid which inspired a whole family of DF approximations.
The most successful members of that family had come to share the name of
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WDA, originally applied in the context of DF theory for the exchange and
correlation energy of electronic systems2 [15].

The common feature of the WDAs for classical fluids is to approximate the
local free energy DF by ΦWDA[ρ, r] = ρ(r)ψ(ρ̄(r)), where ψ(ρ0) ≡ Φ(ρ0)/ρ0 is
the excess free energy per particle of a bulk system with uniform density ρ0

and ρ̄(r) is a weighted density to represent a sampling of the density around
the point r through the convolution

ρ̄(r) =
∫

dr′ρ(r + r′)w(r′, ρ̄(r)) , (7.27)

with a normalized weight function, w(r, ρ), which may be assumed to depend
on the local value of ρ̄(r). The choice of that weight function is the key element
of the WDA because it determines the non-local dependence of Fex[ρ]. Notice
that the LDA is recovered with a delta-function weight, w(r) = δ(r). The MFA
may also be cast into the WDA form by taking the weight function w(r) =
u(r)/u0, with the pair potential normalized by its total volume integral, u0,
and the linear function ψ(ρ0) = u0ρ0/2 for the excess free energy per particle.
The use of non-local weights and non-linear functions ψ(ρ0) made the WDA
a very successful DF scheme for HS and other hard-core particles.

Nordholm et al. [14] proposed to use the HS Mayer function to account
for that non-local dependence, together with the simplest excluded volume
approximation for ψ(ρ) = − ln(1− 2πσ3ρ/3). The use of more accurate equa-
tions of state and the exploration of other analytical forms for w(r) paved
the road [16] to the crucial element of the WDA: the (density dependent)
weight function w(r, ρ0) may be tailored, through the relationship (7.13), to
reproduce any given approximation for the direct correlation function of the
bulk liquid, so that DF approximations for Fex[ρ] may be systematically built,
using as ingredients the equation of state and the correlation structure of the
HS liquid. The resulting functionals are much more effective than the plain
functional Taylor expansion (7.16) built with the same ingredients. The price
to pay with respect to the earlier density-independent weight functions is that
(7.27) becomes an equation for ρ̄(r) which has to be solved at every point r
and for every density distribution ρ(r) arising along the numerical procedure
to minimize Ω[ρ]. In practice, this difficulty may be temperated assuming a
simplified polynomial dependence [17]

w(r, ρ) = w0(r) + ρw1(r) + ρ2w2(r) + · · · , (7.28)

so that the evaluation of ρ̄(r) for a given ρ(r) requires a few plain convolutions
to get the weighted density components
2 Notice that two different non-local DF schemes were proposed in this work, one

under the name of averaged density approximation (ADA) and the other under
the name of WDA; but what came to be called as WDA in the context of classical
fluids corresponds to the ADA in electronic DF theory. The name ADA was used
during some time to refer to the DF approximation in [17].



7 Density Functional Theories of Hard Particle Systems 257

ρ̄ν(r) =
∫

dr′ρ(r + r′)wν(r′), ν = 0, 1, 2, . . . , (7.29)

and the solution of the algebraic equation

ρ̄(r) = ρ̄0(r) + ρ̄1(r)ρ̄(r) + ρ̄2(r)ρ̄(r)2 + · · · . (7.30)

The normalization of w(r, ρ), imposed so that ρ̄ equals the bulk density in a
homogeneous system, implies∫

drw0(r) = 1,
∫

drwν(r) = 0, ν > 0. (7.31)

The form of the first elementary weight functions, wν(r), may be obtained
to reproduce the exact first two terms of the exact density expansions (7.16)
and (7.17), which are also exactly given by the Percus–Yevick (PY) approxi-
mation for the bulk liquid cPY(r, ρ0). The exact zero-order weight function is
the normalized step function

w0(r) =
3

4πσ3
Θ(σ − r) (7.32)

employed in the preliminary explorations of the approach [14, 16], while the
exact w1(r) is the solution to the integral equation

10π
3
σ3w0(r) + 8w1(r) +

5π
3
σ3

∫
dr′w0(r′)w0(|r + r′|)

+ 8
∫

dr′w0(r′)w1(|r + r′|) =
[
8 − 6

r

σ
+

1
2

( r
σ

)3
]

Θ(σ − r).

(7.33)

This equation is solved in Fourier space as

ŵ1(k) =
π

6
σ3 f̂(k) − 20ŵ0(k) − 10ŵ0(k)2

8
[
1 + ŵ0(k)

] , (7.34)

where, using the notation q = kσ, we have

ŵ0(k) =
3
q3

(sin q − q cos q), (7.35)

f̂(k) =
288
q6

[
1 + q2 −

(
1 +

q2

2
+

5q4

24

)
cos q − q

(
1 +

q2

6

)
sin q

]
.(7.36)

Hence, the function w1(r) is obtained by the inverse Fourier transform,

w1(r) =
σ3

12πr

∞∫
0

dk k sin(kr)
f̂(k) − 20ŵ0(k) − 10ŵ0(k)2

8
[
1 + ŵ0(k)

] , (7.37)

which may be integrated numerically to get the result represented in Fig. 7.1.
The weight function w1(r) has a core region, for r ≤ σ, with negative radial
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Fig. 7.1. The full line gives the radial weight function w1(r) and the broken line the
function W1(z), defined in Eq. (7.42), to be used in problems with planar symmetry.
The inset shows the oscillating tails of both functions

slope and an oscillating tail for r > σ. The shape of w1(r) already indicates
that, in order to reproduce the direct correlation function of a dense HS liquid,
the WDA representation of Fex[ρ] requires a delicate choice of the weighting
function.

The WDA proposed under this name by Curtin and Ashcroft in 1985 [18]
makes formally consistent use of the PY approximation both for the thermo-
dynamics, ψPY(ρ), and for the direct correlation function cPY(r, ρ); here we
will refer to it as PY-WDA. The slightly earlier version, proposed by Tara-
zona [17], uses (7.29) with the exact forms for w0(r) and w1(r) but truncates
the expansion at second order with a purely empirical weight [19]

w2(r) =
5πσ3

24

[
1 − 2

r

σ
+

5
6

( r
σ

)2
]

Θ(σ − r) (7.38)

to obtain a global good fit to cPY(r, ρ0) over the entire range of liquid densities.
This approximation is in the same spirit as the one that leads to the semi-
empirical Carnahan–Starling (CS) equation of state, which does not improve
on the PY result for the virial expansion but produces quasi-exact results for
the pressure of the HS fluid at any density (see Chap. 3). The CS equation of
state was used by Tarazona to fix

ψCS(ρ) =
4η − 3η2

(1 − η)2
, (7.39)

with the packing fraction η = πσ3ρ/6, so that we will refer to that DF ap-
proach as CS-WDA. From a practical point of view, the CS-WDA truncation
of (7.29) at second order provides a simple analytical solution for (7.27) in
terms of the three direct convolutions of the density distribution, ρ̄0(r), ρ̄1(r)
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and ρ̄2(r). The applications of the PY-WDA may also be carried out with
some simplified prescription for w(r, ρ), similar to (7.28) and (7.29). Both
versions require, in practice, a truncation of the range of w(r, ρ) to a few
molecular diameters.

Notice that in any WDA version there are density distributions for which
the non-linear equation (7.27) has none or more than one solution. In the
CS-WDA, the lack of solutions corresponds to having a negative discrimi-
nant, (1 − ρ1(r))2 − 4ρ0(r)ρ2(r) < 0, while for a positive discriminant we
have to select the appropriate root. In the PY-WDA, the multiplicity or lack
of solutions cannot be controlled in an analytical way, but they can still ap-
pear along the numerical minimization. It was implicitly assumed that density
profiles leading to no positive solution for (7.27) were unphysical, and they
may be discarded within the minimization of Ω[ρ]. Whenever (7.27) had more
than one positive solution, the physical one is that closest to ρ̄0(r). In the
CS-WDA, this corresponds to

ρ̄(r) =
2ρ̄0(r)

1 − ρ̄1(r) +
√[

1 − ρ̄1(r)
]2 − 4ρ̄0(r)ρ̄2(r)

. (7.40)

Both the PY-WDA and the CS-WDA have been extensively applied in
the last twenty years to many problems concerning inhomogeneous distri-
butions of HS. Several variants, like splitting ψ(ρ̄) in several components,
each with a different elementary weight function, have been explored, some
of them with similarly good results but with no significant improvement
over the whole range of analyzed problems. Therefore, the two 1985 ver-
sions have become the standard forms of the WDA. The remaining part
of this section presents the application of the CS-WDA to two problems of
interest: the density profile ρ(z) of a HS fluid against a flat wall potential
V (z) and the description of the HS crystal as a self-stabilized inhomogene-
ity of the HS fluid. In general, the results with the PY-WDA are fairly close
to those of the CS-WDA, so we will only point out their more important
differences.

7.4.1 Hard Sphere Fluid Against a Planar Wall

In the absence of any kind of symmetry breaking effect, the density distri-
bution of a HS fluid near a planar wall potential V (z) should depend only
on the distance to the wall, which we take as the z coordinate. The DF
minimization of Ω[ρ] in (7.1) is then restricted to functions ρ(r) = ρ(z), so
that the numerical problem of minimization is hugely reduced with respect to
that of a 3D dependence of ρ(x, y, z). The weighted density inherits the same
symmetry, and the elementary weighted densities may be calculated as 1D
convolutions

ρ̄ν(z) =
∫

dz′ρ(z + z′)Wν(z′) , (7.41)
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where the functions

Wν(z) ≡
∞∫

−∞

∞∫
−∞

dxdy wν

(√
x2 + y2 + z2

)
= 2π

∞∫
|z|

dr r wν(r) (7.42)

can be analytically obtained for ν = 0,

W0(z) =
3

4σ3
(σ2 − z2)Θ(σ − |z|) , (7.43)

and ν = 2 in (7.38),

W2(z) =
5π2σ5

288

[
1 − 12

( z
σ

)2

+ 16
(
|z|
σ

)3

− 5
( z
σ

)4
]

Θ(σ − |z|), (7.44)

while W1(z) may be integrated numerically from (7.37) to get the func-
tion represented in Fig. 7.1. For practical purposes, W1(z) is tabulated over
the discrete mesh of z used to describe the density profile ρ(z) and usually
truncated at |z| = 3.55σ. The total weighted density ρ̄(z) in the CS-WDA
version is then readily obtained from (7.40), and the free energy density
ΦWDA

(
[ρ]; z

)
= ρ(z)ψ

(
ρ̄(z)

)
plus the ideal gas contribution is integrated along

the z axis to get the grand potential energy per unit area

βΩ[ρ]
A

=
∫

dz ρ(z)
[
ln ρ(z) − 1 + ψ

(
ρ̄(z)

)
+ βV (z) − βμ

]
. (7.45)

This integral should cover all the region of relevance, where ρ(z) is non-zero,
up to the bulk region where Φ[ρ; z] = Φ(ρ0) is constant. For dense HS fluids
near sharp walls, the region of variable ρ(z) to be used in the minimization
of (7.45) has to cover 10 − 20σ beyond the point where V (z) vanishes. In
determining an appropriate integration interval for (7.45), one has to bear in
mind that the region where ρ̄(z) �= ρ0 exceeds the one where ρ(z) �= ρ0 by the
maximum distance for which W1(z) �= 0. The bulk fluid contribution to Ω[ρ]
is Ω0 = −pV , in terms of the bulk pressure p(ρ0). A βp term may be added
to the integral in (7.45) so that the integrand vanishes away from the wall
and the integral directly gives ΔΩ[ρ]/A =

(
Ω[ρ] + pV

)
/A = γ, i.e. the surface

tension of the wall–fluid interface.
The Euler–Lagrange equation (7.2) takes, in the WDA, the form

ln ρ(z) + ψ
(
ρ̄(z)

)
+
∫

dz′ρ(z′)ψ′(ρ̄(z′))δρ̄(z′)
δρ(z)

+ βV (z) = βμ , (7.46)

where ψ′(ρ) ≡ dψ(ρ)/dρ, and from (7.27),

δρ̄(z′)
δρ(z)

=
W
(
|z′ − z|, ρ̄(z′)

)
1 −

∫
dz′′ρ(z′′)W ′

(
|z′ − z′′|, ρ̄(z′)

) , (7.47)
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andW ′(z, ρ) = ∂W (r, ρ)/∂ρ. Within the CS-WDA, we get a simple expression
for this functional derivative

δρ̄(z′)
δρ(z)

=
W0(|z′ − z|) + ρ̄(z′)W1(|z′ − z|) + ρ̄(z′)2W2(|z′ − z|)

1 − ρ̄1(z′) − 2ρ̄(z′)ρ̄2(z′)
, (7.48)

in terms of the same elementary weighted densities which define ρ̄(z). The
bulk chemical potential is βμ = ln ρ0 +ψ(ρ0) + ρ0ψ

′(ρ0), so (7.46) is trivially
solved within the bulk liquid with ρ(z) = ρ0.

The numerical solution of (7.46) is usually obtained with a discretized de-
scription of the density profile, ρi = ρ(zi), along a regular mesh {zi} over
the z axis. If there are N1 mesh points in a length σ, the numerical convolu-
tions to obtain ρ̄ν(z) (computed with a fast Fourier algorithm [20]) requires
a computational cost proportional to N1 lnN1, and the evaluation of the in-
tegral in (7.46) requires similar convolutions. This should be compared with
the computational cost to evaluate the exact expression (7.16) for Fex[ρ].
The first term of this expression may be exactly cast into the WDA form,
ΦWDA[ρ] = ρ(r)ψ(ρ̄(r)), with ψ(ρ) = 4πρσ3/3+ · · · and w(r, ρ) = w0(r)+ · · · ,
so that the required number of operations goes also like N1 lnN1; but the sec-
ond term contains a triple integral, which cannot be factorized in terms of a
one-center convolution, to get ρ̄(r), and an external integral over ρ(r)ψ(ρ̄(r)).
Therefore, the numerical effort to get the second term in (7.16) is propor-
tional to N2

1 lnN1. The exponent of N1 systematically grows for higher order
terms.

This is most relevant to understand the practical limitations in the design
of DF approximations, since any application would require many evaluations
of Fex[ρ] and of its functional derivative to minimize Ω[ρ]. It would be useless
to have a prescription for Fex[ρ], which requires an unfeasible computational
cost, like e.g. the expansion (7.16) extended up to a higher order in ρ(r).
The successful forms of Fex[ρ] are good compromises between the accuracy of
the approximation and its computational cost. The free energy for the 1D HR
system may be obtained from the computation of the infinite series (7.16), but
the exact result (7.20) or (7.21) has a computational cost equivalent to just
the first term of the series. Therefore, these DF forms for Fex[ρ] are extremely
useful rearrangements of (7.16), which achieve an enormous reduction of its
computational cost. It is only because of the 1D character that this can be done
exactly; the WDA for 3D HS represents an attempt to estimate the second
and higher order terms in (7.16) by means of a one-center convolution with a
weight function w(r, ρ). The requirement that FWDA

ex [ρ] reproduces the direct
correlation function of a bulk liquid implies that w(r, ρ) must be tailored to
resum the infinite series (7.16) up to its second functional derivative evaluated
at any ρ(r) = ρ0 and that rather stringent requirement can only be achieved
at the price of using a careful tuning of the oscillating tail of w(r, ρ).

The minimization of Ω[ρ] requires many times the computational cost of its
evaluation for a single-density profile. Several numerical methods have been
devised to minimize Ω[ρ] with the discretized description of ρ(z), over the
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{zi, ρi} mesh. A simple iterative scheme was used in the earliest applications,
rewriting (7.46) as

ρ(z) = ρ0 exp
(
−β
[
δFex

δρ(z)
+ V (z) − μex

])
(7.49)

and using a fixed point iteration, i.e. inserting an initial guess for ρ(z) to
evaluate the right-hand side and getting the new estimation for the density
profile from the left-hand side. Unless ρ(z) is low everywhere, the convergence
of that procedure is very slow. The reason is that, as such, the algorithm sel-
dom converges. In order to make it convergent, the new estimate has to be
weight-averaged with the old one, with a stronger weight on the latter, and
this severely slows down the iteration. A more efficient method is the use of
conjugate gradient techniques, exploring the minimum of Ω[ρ] along the func-
tional direction set by δΩ[ρ]/δρ(z) and projecting on the subspace which has
not been previously explored [20]. In any case, the density profiles like those
shown in Fig. 7.2, for HS fluids against a hard wall, present an increasingly
strong layering structure for growing ρ0, which reflects the ordered packing of
the spheres induced by the planar wall. The functional dependence of FWDA

ex [ρ]
is sharp enough to reproduce those layered structures as the minimum of Ω[ρ].
The rather costly numerical minimization process is intrinsic to the strongly
non-local dependence of the free energy with ρ(z).

Compared with computer simulations [21], the qualitative results obtained
either with the CS-WDA or the PY-WDA are similarly good; only for very
high-bulk densities a difference in favor of the CS-WDA is observed for the
contact value of the density at the wall, directly related to the bulk pressure
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Fig. 7.2. Density profiles of the HS fluid at a hard wall, for three values of the bulk
density. The lines are the results of CS-WDA, and the circles are the computer
simulations by Snook and Henderson [21]
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through the mechanical equilibrium balance ρ(0) = βp, which is consistently
given by any DF approximation beyond the LDA [2]. Therefore, the use of the
CS bulk equation of state gives quasi-exact values for ρ(0), while the PY-WDA
version tends to overestimate that contact value. Within the oscillatory part
of ρ(z), the two DF approximations give similar results, in reasonably good
agreement with the computer simulations, over the full range of fluid densi-
ties (notice that the highest ρ0 in Fig. 7.2 is only slightly below the freezing
value). For ρ0 > 0.8σ−3, the shape and position of the second peak in the
layering structure shows some discrepancies with the computer simulation re-
sults, but the overall quality of the WDA results is quite satisfactory and
generally better than those obtained from the application of integral equation
approximations with the wall–particle representation. Moreover, the WDA (as
any DF approximation) provides consistent results for the density profiles and
for the free energy of the system, which is not accessible from the integral-
equation approach to ρ(z). The results for the wall–fluid surface tension are
presented in Fig. 7.3, and they have a very good agreement with the best
computer simulations [22].

The consistent access to the density structure and the thermodynamics is
a major advantage of the DF formalism for the study of phase transitions in
surface or confined systems, like the problems of wetting and capillary con-
densation. These problems have been extensively explored [2, 19] for models
with reference HS cores plus attractive tails, within the generalized van der
Waals DF treatment described in Sect. 7.2.5.
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Fig. 7.3. Surface tension (with the sign changed) in kT/σ2 units for the HS fluid at
a hard wall. The circles with error bars are the results from the computer simulations
by Henderson and van Swol [22]. The dotted line is the result of the CS-WDA; the
broken line is the SPT in [23, 24]; the full line is the result from the DI-FMT
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The WDA has also been successfully applied to systems with non-planar
geometries, like cylindrical pores [19, 25] or spherical [26] external potentials,
including the test-particle approach to get the pair distribution function g(r)
as the (normalized) density profile around a fixed molecule [27]. In those cases,
the density distribution still depends on a single variable (the distance to the
cylinder axis or to the center of the sphere), so that the computational effort
is similar to that of planar walls, although the convolutions to get ρ̄(r) involve
a kernel with two variables, W (r, r′), rather than W (z − z′) in (7.42). Some
applications to systems with non-planar symmetry, like structured surfaces
[28] or slit capillaries [29], have also been explored, with the obvious increase
of the computational cost. The present computational capabilities, compared
to those in 1985 when the WDA was proposed, certainly play in favor of any
DF approach to solve the many interesting problems posed by systems with
complex density dependence.

7.4.2 Weighted Density Approximation
for the Hard Sphere Crystal

The problem of HS crystallization was a main target for the original develop-
ment of the WDA. The earliest molecular dynamic simulations by Alder and
Wainwright [30] in 1960 showed the crystallization of HS at high density. The
most accurate estimation for the coexisting mean densities in this first-order
phase transition is ρc = 1.05σ−3 for the FCC crystal and ρf = 0.94σ−3

for the fluid [31, 32, 33] (see also [34] for a comprehensive review of the
subject). 3

Within the scope of this chapter, the HS crystallization was probably the
most important problem for the development of DF approximations. The DF
approach to this problem sets that the crystal phase should be regarded as a
self-structured fluid, for which, even in the absence of any external potential,
the minimum of Ω[ρ] is not achieved by a homogeneous density ρ(r) = ρ0, but
rather by a strongly modulated density ρ(r), with the symmetry of the crystal
lattice. After some early attempts [35, 36, 37] to describe crystals with the
functional expansion (7.16) around a reference fluid, the first non-perturbative
result for the coexisting densities was obtained with the zero-order WDA by
Tarazona [16], using a Gaussian parametrization for the density,

ρ(r) =
(α
π

) 3
2 ∑

R

e−α|r−R|2 , (7.50)

with normalized peaks at the sites R of a crystal lattice. This parametrization
became standard with the more elaborated CS-WDA and PY-WDA.

The only free parameters to minimize Ω[ρ] within this restricted functional
family are the inverse square Gaussian width α and the crystal lattice param-
eters. Taking the FCC lattice as the most obvious candidate, we only have
3 The main branches of the phase diagram of a HS fluid are shown in Fig. 3.5 of

Chap. 3
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to fix the lattice length parameter, which is directly given by equating the
mean density ρ0 to the inverse volume of the unit crystal cell. Therefore, for
a fixed mean density, we have to minimize the free energy per unit volume,
f(α, ρ0) ≡ ρ0F [ρ]/N , with respect to the parameter α. The results plotted in
Fig. 7.4 were obtained with the CS-WDA for three values of ρ0, and they show
the three qualitatively different regimes which may be found. At low density,
the free energy density is minimum at α = 0, which corresponds to the sum
of infinitely flat Gaussians, so that the contributions from all the lattice sites
add to a constant homogeneous density ρ(r) = ρ0; i.e. the parametrization
(7.50) contains the uniform fluid phase as the α = 0 limit, and that is the
only stable phase at low density, with a free energy density ff (ρ0) given by
the CS bulk equation of state. For densities slightly above ρ0 = 0.9σ−3, the
global minimum of f(α, ρ0) is still at α = 0, but there is a local minimum at
a large value α ≥ 50σ−2, which corresponds to a strongly structured density
distribution and has to be interpreted as a metastable crystal phase, with
free energy fc(ρ0) per unit volume. Increasing ρ0 pushes fc(ρ0) below ff (ρ0),
so that the crystal phase becomes the most stable phase for ρ0 > 1.σ−3, as
shown in Fig. 7.5. The minimization of the grand potential energy per unit
volume, ω(μ) ≡ f(ρ0) − μρ0, at fixed μ, leads to the usual double tangent
construction for the mean densities of the coexisting fluid (ρf ≈ 0.94σ−3) and
crystal (ρc ≈ 1.05σ−3) phases,

f ′f (ρf ) = f ′c(ρc) ≡ μcoex (7.51)

and
ωf = ωc ≡ −pcoex , (7.52)
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Fig. 7.4. The free energy per unit volume f(α, ρ0) for the HS crystal, described
as a FCC lattice with Gaussian peaks, as a function of the inverse squared width
parameter α. The minimum at α = 0 gives the free energy of the fluid phase while at
the higher values of the mean density ρ0, the crystal phase appears as the (relative
or absolute) minimum at α > 50/σ2
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as functions of their mean density, within the CS-WDA with Gaussian peaks on the
FCC lattice for the crystal. The left panel gives a detailed view of the transition
region, and the broken straight line is the double tangent construction to get the
densities of the coexisting phases. The right panel presents the results over the entire
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with their common pressure, βpcoexσ
3 ≈ 11.66 and chemical potential βμcoex ≈

16.16.
The numerical evaluation of f(α, ρ0) within the CS-WDA is simplified with

the use of bispherical coordinates for the convolution of a single, normalized,
Gaussian peak (set at the origin) with the spherical weight functions centered
at a distance r = |r|,

ρ̄gauss
ν (r, α) ≡

(α
π

) 3
2
∫

dr′wν(|r − r′|)e−αr′2

=
2π
r

(α
π

) 3
2

∞∫
0

dr′r′wν(r′)

r+r′∫
|r−r′|

dr′′r′′e−αr′′2

=
1
r

√
α

π

∞∫
0

dr′r′wν(r′)
(
e−α|r−r′|2 − e−α(r+r′)2

)
.

(7.53)

The ν = 0 step weight function gives rise to the analytical expression

ρ̄gauss
0 (r, α) =

3
8πσ3

[
erf
(√
α(σ − r)

)
+ erf

(√
α(σ + r)

)
− e−α(σ−r)2 − e−α(σ+r)2

r
√
πα

]
.

(7.54)
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with the error function

erf(x) =
2√
π

x∫
0

e−t2 dt. (7.55)

More cumbersome, but still analytical, expressions may be obtained for
the empirical w2(r) of the CS-WDA (7.38) and for piecewise polynomial ap-
proximants to w1(r). Therefore, the evaluation of the elementary weighted
densities ρ̄ν(r) at any position of the crystal is performed via the sum of
analytical expressions over the lattice sites {R},

ρ̄ν(r, α) =
∑
{R}

ρ̄gauss
ν (|r − R|, α) . (7.56)

For small values of α (near the limit of the uniform fluid), the lattice sum would
require many values of R, since ρ̄gauss

ν (r, α) would decay very slowly with r.
However, the minimum value of α at which the crystal phase appears (even
as a metastable phase) is above 50/σ2, and the contributions to (7.56) decay
very fast with |r −R|. The numerical calculation is thus very effective on the
right-hand side of Fig. 7.4, which is the only relevant part to obtain fc(ρ0).
The evaluation of the full ρ̄(r) follows directly from (7.40), and the WDA
excess free energy Φ

(
[ρ]; r

)
= ρ(r)ψ(ρ̄(r)) may be obtained at any point of the

space. The integrals of this free energy density and of the ideal gas contribution
have to be done over the lattice unit cell, with any quadrature which takes
advantage of the point symmetries shared by ρ(r) and ρ̄(r). Alternatively, we
can place a lattice site at the origin and integrate the contribution of that
single Gaussian peak,

βf(α, ρ0) = ρ0

(α
π

) 3
2
∫

dre−αr2 [
ln ρ(r) − 1 + ψ

(
ρ̄(r)

)]
, (7.57)

extended to the whole volume. Notice that both ρ(r), in the ideal gas log-
arithmic term, and ρ̄(r), in the excess free energy Φ, have to be evaluated
with the full functions, including the contribution of all lattice sites, so that
the integrand of (7.57) depends on the direction of r. The radial integral may
be very effectively done with Gauss–Hermite quadratures, to take advantage
of its Gaussian decay, while the double angular integration has to be per-
formed with any standard numerical method. The computation of fc(α, ρ0)
was perfectly feasible twenty years ago, and it is trivially done nowadays.

In Table 7.1 we compare the theoretical and computer simulation re-
sults for the coexisting fluid and crystal densities. We also compare the
Lindemann ratio of the crystal, which gives the relative mean square dis-
placement of the particles from their lattice positions and which within the
Gaussian parametrization (7.50) is given by L = (ρc/2)1/3(3/α)1/2. The re-
sults of the CS-WDA, and to a lesser extent those of the PY-WDA, gave a
clear improvement over the existing theories [35, 36, 37], based on the DF
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Table 7.1. The results for the coexisting fluid and crystal densities, in HS di-
ameter units. The Lindemann ratio of the crystal at coexistence is given by
L = (ρc/2)1/3(3/α)1/2 in terms of the Gaussian parametrization of the crystal den-
sity distribution

ρf ρc ρc − ρf L

Computer simulations [31] 0.94 1.04 0.10 0.126
CS-WDA 0.943 1.061 0.118 0.109
PY-WDA 0.905 1.025 0.120 0.104
Zero-order WDA [16] 0.892 0.966 0.074
Early perturbative theories [35, 36, 37] 0.976 1.035 0.059

expansion (7.14) around a uniform reference fluid. The density gap between
the coexisting phases, which was grossly underestimated by the DF expan-
sion, became slightly overestimated by both WDA versions. The actual values
of the coexisting densities are very sensitive to changes in the theory, because
as shown in Fig. 7.5, the free energies of the fluid and crystal phases have a
nearly tangent intersection. More relevant is the systematic underestimation,
by 15–20% in the Lindemann parameter of the crystal at any given density,
which was obtained with any theoretical approach until the advent of the re-
cent FMT versions. L measures the mean squared departures of a HS from
its lattice position in the crystal, and a good description of the correlation
between the neighbor particles is needed to get the correct amplitudes for
the collective excursions of the HS within the crystal. Notice in this respect
that the HS crystal is very different from the usual harmonic-crystal model
analyzed in solid-state text books; the movement of each HS particle does not
follow from the sum of the harmonic normal (i.e. uncorrelated) modes asso-
ciated to the quadratic expansion of the energy, but it is made of purely free
flights between collisions, and all the thermodynamic and elastic properties
of the HS crystal follows from purely entropic effects.

The extension of the variational form (7.50) to more flexible shapes was
suggested by the observation of a small anisotropy of the particle deviations
from their lattice position in computer simulations of the HS crystal. The free
minimization over the Fourier space [38] did not change significantly the re-
sults of the simplest Gaussian description for the coexisting densities but gave
small anisotropies with a sign opposite to that of the simulations. However,
the CS-WDA evaluation of the elastic constants of the HS crystal, which also
required a deformation of the unit cell density distribution [39], gave good
results compared with computer simulations despite the qualitative failure of
other theories [40] for the HS crystal.

The most important failure of the WDA description of the HS crystal ap-
pears when the density distribution (either within the Gaussian parametriza-
tion or the full Fourier space description) is allowed to change the lattice space
independently of the mean density. The restriction to have exactly one particle
per unit cell, i.e. no vacancies or defect interstitial particles, is a very natural
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simplification of the variational space for ρ(r), and it corresponds to what is
observed in computer simulations. Nevertheless, we might expect that a good
DF approximation should be able to find that unit occupancy of the crystal
unit cell from the minimization of Ω[ρ], but this is not the case for the WDA.
The free variation of the normalization in (7.50) increases the mean density of
the coexisting crystal by 20% and destroys the good prediction for the coexis-
tence itself. This problem was not peculiar of the WDA: other DF treatments
of the HS crystal, based on refined versions of the functional expansion around
a uniform fluid (7.14), shared the same problem. Another qualitative failure
of the WDA appears when this DF approximation is used to describe a more
open crystal structure, like the BCC lattice. Although that crystal structure
(with only eight nearest neighbors) is not expected to be the equilibrium one
for HS at any mean density, it is useful to have theoretical results for the HS
BCC crystal as a reference system to describe systems with softer repulsions.
However, the WDA results for any non-compact crystal structures are un-
physical, with the Gaussian parameter α shrinking (instead of growing) when
the mean density approaches the complete packing.

These failures of the WDA are not surprising because the full DF approx-
imation is built on the information of the bulk HS fluid. The local correlation
structure in the dense HS fluid is not very different from that in an expanded
crystal with close-packed structure, with twelve neighbors around each parti-
cle, but the local structure in a BCC crystal is completely different from any
one likely to appear in a bulk HS fluid, and therefore the WDA has no input
to estimate the excess free entropy of such configurations.

7.4.3 Other Applications and Variants of the WDA

The generic DF structure of the WDA is not specific for HS; in fact, it was
first proposed (under the name of averaged density approximation) for the
exchange and correlation energy of the electron liquid [15]. However, its ap-
plications to HS systems have probably been the most successful. The WDA
concept has also been used to get DF approximations for 2D HD fluids and
to study their crystallization [41, 42], although without reaching the specific
features of 2D crystallization. The role of dislocations and disclinations of
the perfect crystal phase and the possible presence of an intermediate hexatic
phase would be very difficult targets for any DF treatment of the crystal,
described as a self-structured fluid at the level of the one-particle density dis-
tribution, and they are certainly beyond the WDA. Whether or not the effects
of those topological defects may be included with a more accurate representa-
tion of Fex[ρ] is still an open question. A further reduction of the dimension
leads to the exact results for 1D HR (7.20) and (7.21), which includes the
disruption of the long-ranged 1D order by point defects, so that there is no
phase transition and the fluid phase is stable at any mean density ρ0σ < 1.
The fact that a relatively simple analytic form of Fex[ρ] is able to describe,
at the ρ(x) level, an effect arising from global correlations extended to the
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whole 1D system gives hope to the future DF description of the complex 2D
crystallization. On the opposite sense, the accuracy of the WDA when applied
to systems of hyper-spheres, in D > 3 dimensions, should increase with D,
because its DF structure contains the basic elements of the low-density ex-
pansion (7.16), and the maximum density allowed by the packing constraints
decreases as D increases.

Some early attempts were made to apply the WDA to simple fluid mod-
els, with both attractive and repulsive regions of their interatomic potential,
but it was soon clear that the non-local aspects associated to the entropy
loss by the core repulsions cannot be directly added to those associated to
the energy of the attractive interactions. The best DF approximations for
these systems are based on the separated treatment of a reference HS sys-
tem and the MFA [2, 19], or similar DF schemes, for the description of the
attractive interactions [43]. For purely repulsive, but soft, pair interaction
potentials, the WDA has been applied with moderate success, allowing for
temperature-dependent weight functions [44, 45, 46]. However, the quality of
the approximation rapidly decreases as the repulsive potential u(r) becomes
softer, down to a rather discrete accuracy for the soft repulsion of the one-
component plasma.

Several variants of the WDA scheme for HS have been developed and
explored, among them that of Meister and Kroll [2, 47, 48], who explored a
variational method to determine ρ̄(r, ρ) within a DF expansion from a WDA
scheme (see relevant comments in [2]). Other variants of the WDA pointed to
a simplification of its practical use for the HS crystal, for its own sake or as
reference system for the solid phase of other simple fluid models. The modified
weighted density approximation (MWDA) of Denton and Ashcroft [49, 50, 51]
takes a constant weighted density over the entire system, rather than being
a function of the local position. That provides a strong simplification in the
numerical use of the theory, which becomes equivalent to the effective liquid
approximation (ELA) and its variants (GELA, MELA) [52, 53], in which
the crystal phase is described in a perturbative scheme around a uniform
fluid phase. The obvious drawback of these approaches, with respect to any
DF approximation, is that they cannot be applied to generic inhomogeneous
distributions ρ(r).

7.5 The Fundamental Measure Theory

In 1989, a new DF approximation for the HS fluid was proposed by Rosenfeld
[13] under the name of FMT, and it represented a breaking point in the theory
of inhomogeneous hard body systems. That original version will be referred
here as the oFMT to distinguish it from its subsequent variants, proposed
and tested by different authors. By the end of the century, it was clear that
the generic FMT scheme is qualitatively superior to any WDA although it
requires a much more careful design of the functional form and it also has some
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technical complexities, like the use of vector and tensor weighting functions,
which have probably scared some potential users. This section gives a brief
account of the main concepts of the FMT and the most advanced version,
based on the idea of dimensional interpolation. We present detailed recipes
for the practical application of the FMT to the most usual symmetries and
comments on the FMT results for the most important problems.

7.5.1 Rosenfeld’s Original Fundamental Measure Theory

Fundamental and subtle clues led Rosenfeld to the original development of
the FMT [12, 13], which was directly set as a DF theory for HS mixtures, as
we review in Sect. 7.8. Here, we present first the mono-component case, with
some changes in the original notation, to give a simpler account of both the
original FMT version and the most recent developments. The first point to
set up the FMT is to include the packing fraction as an essential non-local
measure for the free energy of HS. The best approximations for the equation
of state and correlation structure of the HS fluid cast the density dependence
in terms of the dimensionless packing fraction η = πρσ3/6, i.e. the ratio of
the volume occupied by the HS with respect to the total system volume. The
natural extension to inhomogeneous systems is the local packing fraction,

η(r) ≡
∫

dr′ ρ(r + r′) Θ
(σ

2
− |r′|

)
, (7.58)

which is a crucial piece of the exact free energy DF for 1D HR (7.21) and
(7.22). Notice that η(r) has the appealing interpretation of being the proba-
bility that for random molecular configurations over the equilibrium statistical
ensemble, the point r happens to be inside a HS core. A density distribution
producing anywhere a value η(r) > 1 is therefore forbidden for the HS fluid,
so that the use of this non-local measure gives a simple tool to locate the DF
borders of the accessible ρ(r), much more accurately than the lack of solutions
for ρ̄(r) in the WDA, although still not in a complete form.4

Notice that (7.58) is very different from the zero-order weighted function
in the WDA (7.32), since w0(r) is a (normalized) Mayer function, i.e. a radial
step function with radius equal to the HS diameter σ while the radius of the
step function defining η(r) is the molecular radius R ≡ σ/2. A main concept
of the FMT is precisely that the fundamental measure to describe the non-
local dependence of Φ

(
[ρ]; r

)
is the shape of a single molecule rather than

the excluded volume between two molecules; therefore the free energy DF is

4 The restriction to η(r) ≤ 1 is a necessary but not sufficient condition to have a
density distribution ρ(r) compatible with the HS core repulsion. Obviously, η(r)
cannot take, over extensive regions, values larger than the close packing of spheres
η = 0.74 although it may approach 1 over small regions of the size of a sphere.
See the discussion in Sect. 7.5.2 and in [54] for the smallest cases in which the
accessible DF boundary moves below η = 1.
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represented as a function of η(r) and other weighted densities, which are all
the convolutions of ρ(r) within the range of the HS radius.

The exact free energy for 1D HR given in (7.21) has precisely the form

Φ(1D)
(
[ρ];x

)
= φ1(η(x), n(x)) ≡ −n(x) ln

[
1 − η(x)

]
, (7.59)

with the local packing fraction (7.22) and the combination n(x) ≡
[
ρ(x+R)+

ρ(x − R)
]
/2, which may be regarded as the 1D version of a generic surface

weighted density,

n(r) ≡
∫

dr′ρ(r + r′)w(r′) , (7.60)

with the normalized molecular surface weight function,

w(r) ≡ δ(|r| −R)
sD

, (7.61)

sD being the total molecular surface in D dimensions (s1 = 2, s2 = 2πR,
s3 = 4πR2). Notice that we are not following Rosenfeld’s original notation:
the scalar density n(r) defined in (7.60) and (7.61) equals the homogeneous
density for any distribution ρ(r) = ρ0.

There is an interesting difference between the two alternative forms (7.20)
and (7.21) which can be used to describe the exact excess free energy of 1D
HR systems. In the first one, Φ(1D)

(
[ρ];x

)
is explicitly proportional to the

local density ρ(x), so that (like in the WDA) the free energy excess is locally
assigned to the position of the particle centers, with a value per particle which
depends on the sampling of the density up to distances σ around the point r.

In contrast, the expression (7.21) for Φ(1D)
(
[ρ];x

)
is not proportional to

ρ(x), and this functional form may assign a local density of excess free energy
to regions with ρ(x) = 0 but η(x) > 0. The proportionality with n(x) in
(7.59) has to be interpreted as the assignment of the free energy excess to
the positions of the molecular surface, i.e. of the two ends of the 1D HR.
Obviously, there is nothing wrong in having different exact expressions for
Φ(1D)[ρ;x], as far as they all integrate to the same Fex[ρ] for any density
distribution. The no-overlap restriction imposed by the hard cores produces
a global entropy decrease, which may be locally assigned in different ways, to
get the free energy density Φ(1D)

(
[ρ];x

)
.

For 1D HR, the exact ρ(x) → 0 limit of (minus) the direct correlation
function (7.17) is recovered from (7.21) as

f(x) ≡ Θ(σ − |x|) =
1
2

∫
dx′δ

(σ
2
− |x+ x′|

)
Θ
(σ

2
− |x′|

)
, (7.62)

where the Mayer function range, −σ ≤ x ≤ σ, arises from the convolution of
the two fundamental measures, each with half that range. The 3D geometry
of the HS makes it impossible to represent the spherical step of the Mayer
function, f(r) = Θ(σ − |r|), in terms of the half-ranged (R = σ/2) step
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w0(r) = Θ(R − |r|) in (7.58) and the spherical shell (7.61). That explains
the relatively poor performance of the direct extension of the 1D free en-
ergy DF form to describe 3D HS, attempted by Robledo et al. [10, 11]. To
solve this problem, Rosenfeld made the crucial proposal to enlarge the set of
fundamental measure functions with a vector weight,

w(r) ≡ r

R

δ(R− |r|)
sD

, (7.63)

to define a vector-weighted density,

v(r) ≡
∫

dr′ ρ(r + r′) w(r′) . (7.64)

The packing fraction (7.58), the scalar-weighted density (7.60) and the vec-
tor weighted density (7.64) are used as the three local variables to de-
scribe ΦFMT

(
[ρ]; r

)
= φ

(
η(r), n(r),v(r)

)
. The lowest (quadratic) order of

this function must depend on its three variables in the form φ(η, n,v) =
ηn + 4πR3(n2 − v · v) + O3(η, n,v). This is the unique combination which
recovers the exact low-density expansion of the direct correlation function
(7.17), since the unique geometrical construction to extend (7.62) to 3D is

f(r) ≡ Θ(σ − |r|) =
1

2πR2

∫
dr′δ (R− |r′|)

[
Θ (R− |r + r′|)

+R δ (R− |r + r′|)
(

1 − r′ · (r + r′)
R2

)]
.

(7.65)

The final clue followed by Rosenfeld was that the structure of the spherical
shell weight functions, w(r) and w(r), is directly related to the derivatives of
Θ(R − |r|) with respect to the molecular size, suggesting a connection with
the scaled particle theory (SPT) for the thermodynamic properties of hard
bodies [23, 24, 55]. This theory reproduces the exact equation of state in 1D
and the PY compressibility result for 3D HS.

The search for a function φ(η, n,v) with the exact low-density limit and
reproducing the PY direct correlation function led to the oFMT form

ΦoFMT

(
[ρ]; r

)
=

3∑
i=1

φ(3D)
i

(
η(r), n(r),v(r)

)
, (7.66)

with the first term φ(3D)
1 (η, n) = −n ln(1 − η) identical to the full 1D result

(7.59), and two more terms given by

φ(3D)
2 (η, n,v) = 4πR3 n2 − v · v

1 − η
(7.67)

and

φ(3D)
3 (η, n,v) = 8π2R6 n

n2/3 − v · v
(1 − η)2

. (7.68)
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The results of this DF approximation were a puzzling mixture of successes
and failures: the density profiles for HS against a hard wall are clearly better
than those obtained with the PY-WDA version, particularly in reproducing
the strong oscillatory structure for a high-density bulk fluid, as will be shown
in Fig. 7.9. The equation of state plugged into the CS-WDA provides a better
value of the contact density, but it still does not match the excellent descrip-
tion of ρ(z) given by the oFMT for the interlayer spacing, reflecting a sharper
representation of the correlation structure in inhomogeneous systems. Also,
the second functional derivative of the oFMT excess free energy is restricted
to the PY range, |r − r′| ≤ σ ≡ 2R, not only for bulk liquids but for any
density distribution. In contrast, the PY-WDA built on the same results for
the bulk liquid direct correlation has a second functional derivative which goes
beyond that range for inhomogenous density distributions, since the precise
tailoring of the oscillating tail in w(r, ρ) may only restrict the range for the
homogeneous fluid direct correlation. Another very appealing feature of the
oFMT was its natural extension to HS mixtures, in contrast with the con-
ceptual difficulties of the WDA for that task. We will elaborate more on this
point later in Sect. 7.6.

However, the oFMT has some qualitative pitfalls related to the use of delta-
function shells in w(r) and w(r). The overlap of these shells produces strong
divergences, which have to be tamed by the careful choice of the combinations
(7.67), (7.68) of n(r) and v(r). It is a generic feature of the FMT that slight
variants of a good approximation may be qualitatively wrong, in contrast with
the mild dependence of the WDA on the details of each particular version.
Still, the combination of n and v used in (7.68) can only avoid the unphysical
divergences of Φ

(
[ρ]; r

)
for homogeneous systems, and its application to highly

inhomogeneous systems, like the DF description of the HS crystal, leads to
a dramatic failure: as the Gaussian peaks shrink to delta functions, the free
energy of the crystal phase decreases without bound. It took ten years to
develop new versions of the FMT with this problem corrected and able to
provide an overall improvement over the WDA in all aspects, as we review
below.

This notwithstanding, the oFMT remains an excellent, and fairly used, DF
choice to solve problems of highly packed HS (and their mixtures) with planar
geometry, where the homogeneity over the transverse directions is enough to
avoid the divergences of the radial shells overlap. The practical implementa-
tion of those applications is discussed below, together with that of the more
recent FMT versions. The vector weighted density, v(r), gave the oFMT a
less intuitive character than the WDA, which has probably restrained some
potential users. The FMT version proposed by Kierlik and Rosinberg [56, 57]
substituted v(r) with the gradient of η(r). The resulting DF is perhaps more
intuitive, but with little (or none) advantage for the practical use of the the-
ory. In fact, the same authors proved that both versions of the FMT (with
and without vector density) are identical because they both yield the same
free energy DF [58].
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7.5.2 Dimensional Crossover and the Cavity Theory

The concept of dimensional crossover is a strong test for DF approximations
which was first applied [19] to the CS-WDA for HS. The idea is that any DF
approximation for the 3D excess free energy of HS, Fex[ρ], contains also pre-
dictions for any 2D distribution of HD, ρ2D(x, y), because the latter should be
fully equivalent to a 3D distribution with a delta function along the Z axis:
ρ3D(x, y, z) = ρ2D(x, y)δ(z); see Fig. 7.6. The extremely strong inhomogeneity
of that 3D density distribution provides a severe test for any DF approxima-
tion to Fex[ρ], and the WDA showed a rather limited success in this respect.
The dimensional crossover may be extended to represent 1D distributions of
HR as 3D distributions, with ρ3D(x, y, z) = ρ1D(x)δ(y)δ(z), and the equivalent
reduction from 2D to 1D can also be defined. The original FMT version for
3D HS and its 2D counterpart were subjected to those tests [59] in order to
extract the predictions for the excess free energy of uniform 2D and 1D sys-
tems from their higher dimensional representations. The results were again a
mixture of success and pitfalls: the DF reduction of the oFMT from 3D to 2D
is very accurate; however, the reduction from 3D to 1D was a complete failure,
since the third term φ(3D)

3 in (7.66) diverges. Nevertheless, it was pointed out
that if that term were eliminated, the sum φ(3D)

1 + φ(3D)
2 would give the exact

result for Φ(1D).
The DF dimensional crossover was pushed forward with the concept of

the zero-dimensional (0D) limit, leading to the development of the cavity

X

Y
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Z
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X

3D 2D 3D 1D

Fig. 7.6. Sketches of dimensional crossover within the DF formalism. On the left, a
3D distribution with the hard sphere centers located on the z = 0 plane ρ3D(x, y, z) =
δ(z)ρ2D(x, y) is fully equivalent to a 2D distribution of hard disks ρ3D(x, y, z) =
δ(y)δ(z)ρ1D(x). On the right, a 3D distribution with all the HS centers along the X
axis is fully equivalent to a system of 1D hard rods
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theory by Tarazona and Rosenfeld [54], which gave a fresh view to the FMT.
Consider a small cavity which cannot hold more than one HS and which is
connected to a particle reservoir at chemical potential μ. We use η0 ≤ 1 as
the mean number of particles in the cavity, i.e. the probability that the cavity
is occupied. Unlike the 2D and 1D cases, the exact 0D limit does not only
cover the strict reduction of the geometrical dimension, ρ(r) = η0δ(x)δ(y)δ(z),
but also a wide range of smoother 3D density distributions, with the only
restriction that the distance between any two points with ρ(r) �= 0 is less
than a HS diameter σ = 2R. The exact excess free energy Fex[ρ] may be
obtained for any density distribution ρ(r) allowed within the cavity, because
its grand partition function (7.3) takes exactly the form Ξ0D = 1+Z1 exp(βμ),
with the two first terms of the ideal gas expression (7.5) and the total integral
of the density distribution, i.e. the total occupancy of the cavity, is exactly
η0 = Z1 exp(βμ)/Ξ0D. Using this expression, eliminate the dependence of
Ξ0D with the chemical potential and the confining external potential in Z1.
The exact generic form of the 0D excess free energy is obtained as βFex =
φ0(η0) ≡ (1−η0) ln(1−η0)+η0, which depends on ρ(r) only through its total
integral η0, independently of the shape of the density distribution within the
cavity.

That 0D excess free energy has the low-density expansion φ0(η0) =
η2
0/2 + η3

0/6 + · · · , which could have been extracted from (7.16), since the
0D character of the cavity implies that f(rij) = 1 for any pair of points with
ρ(ri) > 0 and ρ(rj) > 0. In the opposite limit, for cavities which are nearly
always occupied, the free energy excess goes to φ0(1) = 1 with diverging
slope, as it corresponds to the physical condition that the full occupancy of
the cavity implies the lack of empty states in the total partition function,
which can only be achieved with a divergently high chemical potential in the
reservoir.

The requirement that any ρ(r) within a 0D cavity has an excess free en-
ergy φ0(η0) is a very severe condition which imposes strong restrictions on
the non-local dependence of Fex[ρ]. The cavity theory [54] shows that a full
Fex[ρ] for 3D HS (and also for 2D HD) may be built using only the require-
ment that the exact 0D limit is recovered over a partial set of cavity shapes.
That free energy DF has the essential elements of the FMT: the use of η(r)
and density convolutions with spherical delta-function shells or radius R. The
geometrical combinations of those convolutions are fixed in such way that
the divergences produced when they overlap are fully eliminated. Within this
0D FMT approach, the thermodynamics of the uniform bulk HS fluid is a par-
ticular output of the DF approximation rather than an input to be used in the
construction of Fex[ρ]. The 0D FMT excess free energy density for the bulk
HS fluid is directly given in terms of the successive derivatives of the 0D free
energy excess, φ0(η), with respect to η: φ′0(η) = − ln(1−η), φ′′0(η) = 1/(1−η)
and φ′′′0 (η) = 1/(1 − η)2, something that already appears in the result of
the SPT and that was directly plugged into the oFMT (7.66) and (7.68).
Rosenfeld had coined the term ideal liquid [60] to refer to the (unreachable)
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limit η → 1 of the HS fluid, since the inverse powers of 1 − η appear in any
good representation of the equation of state for the HS bulk fluid despite the
much lower geometrical close packing of spheres (with maximum mean value
ηmax = 0.740). Within the cavity theory, that ideal liquid limit of the bulk
fluid appears naturally as a reminiscence of the physical singularity in the 0D
excess free energy at η0 = 1.

The DF extracted from the 0D limit confirms that the FMT elements are
the natural building blocks of Fex[ρ], but it also unveils the limitations of
any DF approximation based on one-center convolutions. The structure of
the 0D FMT free energy DF follows closely that set in the oFMT: the free
energy density for isotropic hard core bodies in D dimensions has precisely
ν = 1, . . . , D terms, with the dependence on the local packing fraction given
by the νth-derivative of φ0(η) and with an order ν convolution of the density
with spherical delta-function shells, plus geometrical factors which eliminate
all the spurious divergences. The first-order term in any dimension has the
exact form of the 1D free energy, φ(1D)

1 (η, n) = nφ′0(η), identical to Rosenfeld’s
choice in (7.66). Also the second term for the 3D case becomes exactly that
in the oFMT form, φ(3D)

2 (η, n,v) = 4πR3(n2 − v · v)φ′′0(η). However, the third
term for HS (and the second term for 2D HD) cannot be separated in terms of
one-center convolutions, like n(r) and v(r). The appearance of non-separable
convolutions was already discussed in the comparison between the WDA and
the exact density expansion (7.16), and there is a strong practical bias to-
ward one-center DF forms. Moreover, even if the non-separable kernels were
accepted in φ(3D)

3 , the resulting DF approximations still leave out a class of
0D cavities, which were called the lost cases of the FMT [54], for which the
local packing fraction η(r) does not reach anywhere the total integral η0 of
the density distribution ρ(r). The simplest example of a lost-case cavity is
made of three point-like subcavities, at the vertex of an equilateral triangle,
separated by a distance between

√
3R and 2R, so that any two of them cannot

be occupied at the same time, but there is no point closer than R to the three
subcavities, where η(r) would be the sum of the three partial occupancies.
Forbidden density distributions, with 1 < η0 ≤ 3/2, are compatible with the
restriction η(r) ≤ 1, and they cannot be excluded within the FMT scheme of
one-center convolutions.

The importance of these lost cases increases with the dimension of the
supporting space. They are absent in cavities with 1D support, and the exact
Φ(1D)

(
[ρ]; r

)
of Percus may be built from the 0D FMT. In 2D, there are some

0D lost cases, and the 0D FMT does not lead to the exact result, but still it
leads to the (fairly accurate) SPT for the equation of state of homogeneous
systems of HD. In 3D, the increasing role of the lost cases is reflected in a
rather poor approximation for the bulk HS equation of state given by the
0D FMT free energy DF. The compromise between a good dimensional re-
duction, a good description of the HS bulk fluid and the practical handling of
the DF approximation leads to the recent DF approach presented in the next
section.
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7.5.3 The Dimensional Interpolation Fundamental
Measure Theory

The dimensional interpolation (DI) version of the FMT for HS was intro-
duced [61] as a practical approximation which balances the advantages of the
previous proposals. It is built to recover the PY direct correlation function
(and hence the PY-compressibility equation of state) for bulk homogeneous
HS fluids, as in the original FMT version of Rosenfeld, but using the 0D FMT
basic elements to systematically eliminate the spurious divergences in the 1D
and 0D reductions. As the original FMT version, the DI-FMT excess free
energy Φ(3D)

(
[ρ]; r

)
has three additive terms;

Φ(3D)([ρ]; r) =
3∑

ν=1

φ(3D)
ν

(
η(r), n(r), . . .

)
, (7.69)

and the first two have exactly the same form proposed by Rosenfeld, in terms
of the local packing fraction, the scalar and the vector density convolutions,
namely

φ(3D)
1 (η, n) = −n ln(1 − η) , φ(3D)

2 (η, n,v) = 4πR3n
2 − v · v
1 − η

. (7.70)

The third term requires a new tensor density, T (r), with cartesian components
(α, β = x, y, z) defined by the convolution

Tαβ(r) ≡
∫

dr′ρ(r + r′)
r′αr

′
β

R2

δ(R− |r′|)
4πR2

. (7.71)

There is a unique combination of this tensor with n(r), v(r) and η(r)
which added to Φ(3D)

1 + Φ(3D)
2 recovers the bulk PY direct correlation for

ρ(r) = ρ0 and the exact free energy for the strict 0D limit, ρ(r) = η0δ(r).
That combination defines the DI-FMT version with

Φ(3D)
3 (η, n,v, T ) = 12π2R6 v · T · v − n v · v − Tr[T 3] + nTr[T 2]

(1 − η)2
, (7.72)

in terms of the rotational invariants formed by the index contractions of T
and v, as well as the traces of T , T 2 and T 3. Notice that the scalar density
is precisely n(r) = Tr[T ].

The original Rosenfeld’s proposal (7.68) for Φ(3D)
3 (η, n,v) may be recovered

from (7.72) with the extra assumption that the tensor T is approximated as
n/3 times the unit 3D tensor, i.e. neglecting its anisotropy but keeping its
trace. That explains the good results of the oFMT for planar density pro-
files, ρ(r) = ρ(z), since the homogeneity over the XY directions renders the
anisotropy of T (r) nearly irrelevant because, by symmetry, this tensor is diag-
onal and has Txx = Tyy = (n− Tzz)/2. In contrast, the strong inhomogeneity
of the 3D representation for a 1D system of HR, ρ(x, y, z) = ρ1D(x)δ(y)δ(z),
leaves a crucial role to the anisotropy of T (r) as the geometrical tool to obtain
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the complete cancellation of this third term for any 1D density distribution,
so that the exact 1D result is recovered from the sum of the first two terms
in Φ(3D)

(
[ρ]; r

)
. Neglecting the anisotropy of T (r) in the oFMT produces the

spurious divergence of φ(3D)
3 (η, n,v) which invalidates the DF approximation

for that dimensional reduction.

7.5.4 Comparative Application of the Fundamental
Measure Theory and the Weighted Density Approximation
to a Spherical 0D Cavity

The application of different DF approximations to a simple 0D cavity offers
an interesting perspective of their essential aspects. Let us consider a spherical
density distribution, with total integral η0, homogeneously distributed inside
a small sphere of radius ε. For any ε < R and η0 ≤ 1, this density distribution
represents a 0D cavity, with total excess free energy φ0(η0) = (1 − η0) ln(1 −
η0) + η0. This value should be obtained if the exact 3D excess free energy,
βFex[ρ], were evaluated for the density distribution

ρ(r) =
3η0
4πε3

Θ(ε− |r|) , (7.73)

with a radial step function of radius ε. This is a very severe test for any DF
approximation, particularly with respect to the singular behavior of φ0(η0),
which has to reach the value φ0(1) = 1 with infinite derivative, to represent
the boundary between accessible and unaccessible density distributions of the
HS within the cavity. The WDA represents the local density of excess free
energy as ΦWDA = ρ(r)ψ

(
ρ̄(r)

)
.

As presented in the left panel of Fig. 7.7 for a cavity of ε/σ = 0.1, the
weighted density ρ̄(r) exceeds the range of r = σ, but only the values within
r ≤ ε are relevant for the evaluation of the free energy, through ψCS(ρ̄). In the
left panel of Fig. 7.8, the free energy excess for low occupation is shown to
be fairly independent of the cavity radius ε and recovers the exact quadratic
dependence FWDA

ex [ρ] = η2
0/2+O(η3

0). For larger η0, the CS-WDA results show
some dependence on ε, deviating from the exact φ0(η0). The representation
of the boundary to unaccessible (η0 > 1) distributions in the WDA may only
come from the lack of solutions for ρ̄(r), which in the CS-WDA occurs when
the discriminant (1 − ρ̄1(r))2 − 4ρ̄0(r)ρ̄2(r) in (7.40) vanishes. This is found
to happen first at the center of the cavity, r = 0, when the cavity occupation
reaches a value η0 = ηWDA

max , which is marked by the full circles in Fig. 7.8. The
WDA is not able to reproduce the exact result ηmax = 1 for any ε < 0.5σ,
but taking into account that this DF approximation was designed using only
information of the bulk liquid correlation structure, it is rewarding to observe
that it gives a reasonable estimate for the accessible 0D states, ranging from
ηWDA
max ≈ 0.8 at ε = 0 to ηWDA

max ≈ 1.3 at ε = R. Moreover, the values of βFWDA
ex [ρ]

are reasonably close to the exact result, shown by the thick full lines in Fig. 7.8.
The performance of the WDA for the description of the HS crystal is directly
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Fig. 7.7. Excess free energy density for a 0D cavity, with uniform density within a
sphere of radius ε = 0.1σ, marked by the vertical dash-dotted lines. The left panel
shows the CS-WDA weighted density (dashed line) and the free energy excess per
particle (full line) evaluated at ρ̄, within the spherical density distribution, because
that DF approximation assigns Φ([ρ], r) to the positions of the HS center; η0 is taken
close to its maximum allowed value. The right panel shows the main elements of the
FMT for η0 = 1, the local packing fraction (dashed line) is a smoothed radial step
around r = σ/2, with the inner value set by η0. The scalar density n(r) (dotted line)
is restricted to the region σ/2 − ε < r < σ/2 + ε, and the same applies to the (not
shown) vectorial and tensorial densities. Therefore, the excess free energy density
(full line) is locally assigned to the positions of the HS surface

related to that for 0D cavities; when the unit cell occupancy is set to unity,
the WDA estimation for the free energy is fairly good, because for η0 = 1 the
values of βFWDA

ex [ρ] are not far from the exact φ0(1) = 1. However, when the
unit cell occupancy is used as a free variational parameter, the WDA result
for the HS crystal is spoiled, because it is not able to locate the precise DF
boundary at η0 = 1.

In contrast, the FMT appears to have the precise non-local elements to
extract the 0D limit, and it does it in a very different manner than the WDA,
as shown in the right panel of Fig. 7.7. The local packing fraction η(r) obtained
from (7.73) reaches the value set by the total cavity occupancy η0 for any
|r| ≤ R− ε, while the scalar, vector and tensor densities have non-zero values
only over the range R−ε ≤ |r| ≤ R+ε, so that the free energy excess is locally
assigned to that region. The singularity of ΦFMT

(
[ρ]; r

)
at η0 = 1 comes from

the integration of the local free energy around |r| = R − ε, with vanishing
combinations of n(r), v(r) and T (r), divided by powers of 1− η(r). Both for
the FMT based only on the OD limit and for the DI-FMT, the integration
by parts of ΦFMT

(
[ρ]; r

)
recovers the singular behavior of the exact φ0(η0),
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Fig. 7.8. Excess free energy, in kT units, for 0D spherical cavities with ρ(r) =
3η0/(4πε3) for r ≤ ε < σ/2 and ρ(r) = 0 otherwise. The exact result (full line
in both panels) is independent of ε, and it is restricted to η0 ≤ 1, as marked by
the vertical lines. The dashed lines in the left panel show the CS-WDA results for
ε/σ = 0.1, 0.2, 0.3 and 0.4 as labeled. The full circles mark the upper limit for η0 set
by the existence of real roots for equation (7.30). The right panel shows the results
for the original FMT (dash-dotted lines) and the DI-FMT (dashed lines). The latter
is very close to the exact results, so that only the results for ε/σ = 0.2 and 0.4 are
presented. The oFMT presents qualitatively wrong negative values, diverging for
η0 → 1 at any ε and for ε → 0 at any η0

with diverging slope at η0 = 1, so that for any finite ε < R, the boundary
between accessible and unaccessible density distributions is exactly located.
Nevertheless, there are small shifts, of order η3

0ε
2, which generate a weak

dependence of the free energy excess with the cavity radius ε. For the DI-
FMT results presented in the right panel of Fig. 7.8, that deviation is hardly
visible at ε < 0.2σ. The FMT version based only on the 0D limit would reduce
this small discrepancy with the exact φ0(η0) but at the cost of a qualitative
degradation of the results for the bulk HS fluid.

The oFTM proposed by Rosenfeld shows here a qualitative difference,
because the contribution φ(3D)

3 (η, n,v) in (7.68) has a negative divergence,
proportional to −[ε (1 − η0)]−2, so that it ruins the good behavior of φ(3D)

1 +
φ(3D)

2 . As shown in Fig. 7.8, the results become even worse as ε decreases. From
the results for the simple 0D cavity analyzed here, it becomes clear that the DF
description of the HS crystal with the oFMT is bound to failure: the narrow
Gaussian peaks describing the fluctuations of each particle around its lattice
site would produce the same pathology in the evaluation of ΦFMT

(
[ρ]; r

)
, and

the minimization with respect to the Gaussian width would lead to a spurious
negative divergence for delta-function peaks.
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7.5.5 Application of the Fundamental Measure Theory
to Planar Density Profiles: Practical Handling
of Vector and Tensor Weights

The application of the FMT to describe the density profiles of a HS fluid
against a planar wall, or any other system with ρ(r) = ρ(z), is technically
similar in either the oFMT or the DI-FMT, and they also produce very similar
results. The convolutions of the density profile adopt the simple forms

η(z) = π

R∫
−R

dz′ρ(z + z′)(R2 − z′2) , (7.74)

n(z) =

R∫
−R

dz′
ρ(z + z′)

2R
. (7.75)

The only non-zero component of the vector density is

vz(z) =

R∫
−R

dz′ ρ(z + z′)
z′

2R2
, (7.76)

while the tensor weighted density becomes diagonal, with

Tzz(z) =

R∫
−R

dz′ ρ(z + z′)
z′2

2R3
≡ n(z) − η(z)

2πR3
(7.77)

and Txx = Tyy = (n− Tzz)/2 ≡ η(z)/(4πR3).
There are only three independent convolutions (7.74)–(7.76), carried over

the restricted range −R ≤ z′ ≤ R, to get the components of the excess free
energy density, φ(3D)

1 = −n(z) ln[1 − η(z)], φ(3D)
2 = 4πR3[n(z)2 − vz(z)2]/[1 −

η(z)] and any of the two versions for the third term, either in the oFMT
version (7.68)

φ(3D)
3 = 8π2R6n(z)

n(z)2/3 − vz(z)2

[1 − η(z)]2
, (7.78)

or in the DI-FMT (7.72)

φ(3D)
3 = 3π2R6 [n(z) − Tzz(z)][n(z)2 − 4vz(z)2 + 3Tzz(z)2]

[1 − η(z)]2
. (7.79)

Therefore, the formal use of vector and tensor weighted densities for these
planar profiles adds no extra practical difficulty to the FMT with respect to
the WDA. As commented above, the original expression (7.78) is recovered
from the DI-FMT (7.79) if we neglect the anisotropy of the tensor T while
keeping its trace, Txx = Tyy ≈ Tzz ≈ n/3.
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The integration of Φ
(
[ρ]; z

)
=
∑3

i=1 φ
(3D)
i is similar to that in (7.45),

with the only difference that it has to be extended to the full region with
n(z) �= 0, which goes up to a distance R = σ/2 beyond that with ρ(z) �=
0. Thus, to get the excess free energy of a HS fluid against a hard wall,
with ρ(z) = 0 for z < 0, the integral over the excess free energy has to be
extended from z = −R to cover all the region accessible to a HS surface,
rather than accessible to its center. As in the WDA, we have to extend the
integration beyond the maximum distance allowed for variable ρ(z) in order
to include the full range with n(z) �= ρ0. Altogether, the reduced range and
the simpler analytical forms of the required density convolutions make the
practical use of any of the FMT versions even easier than that of the WDA
for planar density profiles. The subtleties of the delta-function convolutions
disappear when applied to density distributions which only depend on z, and
the two versions give similarly good results. In Fig. 7.9, we present a detailed
view of the density profiles ρ(z) for a HS fluid at bulk density ρB = 0.81/σ3

against a hard wall. The computer simulation results by Snook and Henderson
[21] (circles) are compared with the CS-WDA (dotted line) and several FMT
versions. It is hard to distinguish the original formulation (oFMT, dashed line)
from the dimensional interpolation version (DI-FMT, full line), and they both
clearly improve the CS-WDA results in the interstitial region between the first
two HS layers although the expanded view presented in this figure allows the
observation of some deviations from the simulation data in the detailed shape
the layer at z � σ, which would be hard to observe in the scale of Fig. 7.2.
The DI-FMT results for the surface tension at a hard wall, as a function of the
bulk HS density, are shown in Fig. 7.3. They are very similar to those of the
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z/σ

0

0.5

1

1.5

2

ρ(
z)

 σ
3  

Fig. 7.9. Density profile for the HS fluid, with bulk density ρB = 0.81/σ3 against
a hard wall. The figure presents a detailed view of the central panel in Fig. 7.2. The
computer simulations results [21] are compared with the CS-WDA (dotted line) and
three FMT versions: oFMT (dashed line), DI-FMT (full line) and CS(WB)-FMT
(dash-dotted line)
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oFMT, slightly above the SPT predictions, and within the error bars of the
computer simulations.

Dimensional Reduction to the 2D Hard Disks Fluid

The most extreme inhomogeneity within the category of planar density profiles
is the representation of the 2D homogeneous fluid of HD as 3D spheres with
ρ(z) = ρ2Dδ(z). All the FMT weighted densities have the simple analytical
forms derived from (7.74)–(7.77), and even the integrals of Φ(3D)

i

(
[ρ]; z

)
can be

done analytically although their expressions are rather cumbersome [62]. All
these DF approaches recover the first term in the generic DF virial expansion
(7.16), and hence they give the exact value B̄2 = 2 in the virial expansion
βp/ρ2D = 1 + B̄2η2D + B̄3η

2
2D + · · · , with η2D = πρ2Dσ

2/4. For the next term,
the DI-FMT gives B̄3 = 328/105 = 3.1238, in very good agreement with the
exact value B̄3 = 3.128, slightly above the SPT theory result B̄3 = 3. The
CS-WDA (B̄3 = 3.54) and Rosenfeld’s oFMT (B̄3 = 8/3 = 2.666) have larger
deviations, with opposite signs.

However, the general aspect of βp/ρ2D at large ρ2D, presented in Fig. 7.10,
gives better overall results for the oFMT than for the DI-FMT. The quasi-
exact semi-empirical equation of state of Colot and Baus [63] appears between
the SPT and the oFMT, while the DI-FMT deviates upward, but is still much
better than the CS-WDA. It was shown in [62] that all the FMT versions
produce a dependence βp/ρ2D ∼ (1− η2D)−5/2, which fits worse than the SPT
form, βp/ρ2D ∼ (1− η2D)−2, to the density dependence of βp/ρ2D at large 2D
fluid densities. Therefore, the excellent result of the oFMT comes from the
fortunate cancellation of errors, between the underestimation of B̄3 for the
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Fig. 7.10. The equations of state for the 2D hard disks fluid given by the SPT (thin
full line) and the quasi-exact semi-empirical fit of Colot and Baus [63] (circles) are
compared to those derived from the dimensional crossover of the free energy DF
for 3D hard spheres: CS-WDA (thick full line), oFMT (dotted line) and DI-FMT
(dashed line)
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low-density expansion and the overestimation of the ideal liquid divergence in
the power of 1−η2D. The DI-FMT, built to interpolate between the 0D cavity
and the 3D bulk fluid, goes exactly through the 1D free energy and gives an
excellent result for B3 in 2D, but it cannot keep the same quality at higher 2D
densities. A different FMT version, with excellent interpolation between 0D,
1D and 2D, was also found [62], but it would give a rather poor estimation
for the 3D equation of state. Altogether, we may say that the dimensional
reduction from the DF for 3D HS to the equation of state of the 2D HD fluid
is a good test for the DF dependence of Φ(3D)([ρ], r) and that the different
FMT versions perform better than any WDA. Nevertheless, the best FMT
versions are reaching the limits within that DF class, so that any consistent
improvement would probably require the inclusion of a qualitatively different
DF structure.

7.5.6 Dimensional Interpolation Fundamental Measure
Theory Applied to the Hard Sphere Crystal

The application of the oFMT to describe the HS crystal was precluded by
the spurious negative divergence of the Φ(3D)

3 term. It was suggested [13] that
this failure represented a fundamental flaw in the DF description of a crystal
as a self-structured fluid, through the minimization of a density distribution
like (7.50). The analysis of the 0D limit showed that the problem was directly
associated to the negative divergence of Φ(3D)

3 , and an empirical modification
of the oFMT was proposed [64, 65] to eliminate it and to recover a good
description of the HS crystal within the FMT. However, it was only with
the DI-FMT, and through the use of the tensor weight function, that the
problem could be eliminated from its root, with the use of delta-function shell
convolutions vanishing in the strict 0D limit. The practical application of the
DI-FMT to density distributions made of Gaussian peaks is computationally
more demanding than with the WDA, since the local distribution of excess free
energy is assigned to the interstitial spaces, rather than being proportional to
the narrow peaks in ρ(r). Within the density parametrization (7.50), we may
obtain analytical expressions for the convolutions with a single, normalized,
Gaussian peak centered at the origin. The scalar function is

ngauss(r) =
√
α

π

e−α(|r|−R)2 − e−α(|r|+R)2

4πR|r| ≈
√
α

π

e−α(|r|−R)2

4πR|r| , (7.80)

where the second exponential term may be obviously neglected for any rele-
vant value of r ≈ R and ασ2 � 1. Within the same restrictions, the vector
function is

vgauss(r) = ngauss(r)
(

1 − 1
2αR|r|

)
r

|r| , (7.81)

parallel to r. The tensor components Tμν , with μ, ν = x, y, z, take the form
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T gauss
βγ (r) = ngauss(r)

[
1 − ξ(|r|)

2
δβγ +

3ξ(|r|) − 1
2

rβrγ
|r|2

]
, (7.82)

with a diagonal term, and the direct product of the radial directions, given in
terms of the function

ξ(r) = 1 − 1
αRr

+
1

2(αRr)2
. (7.83)

Notice that vgauss(r) and T gauss(r) have also exact (but more cumbersome)
expressions to be used away from the practical restriction to r ≈ R and
ασ2 � 1. The local packing fraction takes the form

ηgauss(r, α) =
3
2

[
erf
(√
α(R− |r|)

)
+ erf

(√
α(R+ |r|)

)
− e−α(R−|r|)2 − e−α(R+|r|)2

|r|√πα
]
,

(7.84)

The contributions of all the Gaussian peaks on the crystal lattice have
to be added, with fast convergence in terms of the distance to the point
r to the lattice position. After adding all the relevant contributions to the
vector and tensor cartesian components, the rotational invariant combinations
in (7.72) are evaluated. The final integral of Φ

(
[ρ]; r

)
has to be done much

more carefully than for the WDA, since it extends to a narrow region on
the lattice interstitial space and it contains inverse powers of 1 − η(r) with
(integrable) divergences in the strict limit of full unit cell occupancy. See [66]
for a discussion of the present best numerical results.

The larger computational cost necessary to obtain results for the HS crys-
tal with this DF approximation is clearly worthwhile because the equation of
state of the HS crystal and its structure (represented by the optimal parameter
α in (7.50)) are in excellent agreement with computer simulation results [61],
as shown in Fig. 7.11, and certainly improve on the WDA results. Moreover,
the extension of the DF minimization beyond the normalized Gaussian rep-
resentation provides an even stronger support for the DI-FMT. The wider
parametrization

ρ(r) = η0

(α
π

) 3
2 ∑
{R}

e−α|r−R|2 [1 + τξ(r − R)] , (7.85)

where ξ(r) = x4 + y4 + z4 − 3|r|4/5 is the leading term in the anisotropy
of the cubic lattices, was used to minimize Ω[ρ] with respect to η0, α and
τ . The restriction to unit cell occupancy, η0 = 1, which was essential for
the accuracy of the WDA, is removed and the minimization of the DI-FMT
free energy produces the self-adjusted normalization to 1 − η0 ≈ 10−8, i.e. a
crystal with a negligibly small number of vacancies, well below the limit of
observation in computer simulations (see the remarks on [67]). The anisotropy
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Fig. 7.11. The equation of state (left) and the square inverse Gaussian width
parameter (right) for the HS FCC crystal, in terms of the mean packing fraction
η = ρ0πσ3/6. The full lines are the results of the DI-FMT, the dashed lines those
of the CS-WDA and the circles present the computer simulation data from [32, 33].

of the density distribution was characterized with τ ≈ 0.02 for a crystal with
mean density ρ0 = 1.03/σ3, which is consistent with the computer simulation
observation of a maximum spreading between 10 and 15% of the density along
the interstitial [1, 1, 1] direction, with respect to that of the nearest neighbor
[1, 1, 0] direction, of the FCC lattice. This contrasts with the opposite sign for
the anisotropy (τ < 0) predicted by the WDA, which would correspond to a
small, but unphysical, accumulation of the density along the nearest neighbor
directions [38].

As with the WDA, the DI-FMT does not discern between the free energy
of the different closed packed structures. The FCC and HCP lattices have
identical free energies, up to the present best numerical accuracy. However,
the application to other (metastable) crystal structures marks a qualitative
difference, again in favor of the DI-FMT. A HS crystal with BCC structure
is unstable with respect to shears which would transform it into the FCC,
but its DF characterization is still useful for the description of systems with
soft repulsions from a HS reference system [68]. However, the WDA with nor-
malized Gaussian peaks on a BCC lattice gives fully unphysical predictions,
with the Gaussian peaks becoming wider as the density approaches its maxi-
mum compatible with the BCC structure. The use of the DI-FMT solves the
problem, and it gives very reasonable predictions for the metastable BCC and
even for the simple cubic, crystal structures [66].

Altogether, the representation of the HS crystal within the DI-FMT is ex-
cellent and qualitatively superior to the WDA or any other DF theory. In fact,
the main practical problem of the DI-FMT to study the crystallization of HS
comes from its unprecedented success in the representation of the HS crystal,
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since its equation of state is much more accurate than that of the compress-
ibility PY approximation for the bulk HS fluid, which is taken as an input to
design the DF approximation. The predicted densities of the coexisting fluid
and crystal phases are rather poor, ρf = 0.892/σ3 and ρc = 0.985/σ3, far
from the accuracy of the CS-WDA presented in Table 7.1, which makes more
paired errors in the thermodynamics of the two phases. In the following sub-
section, we comment on an attempt to solve this puzzling situation, having
a DF approximation which is too good in the description of the structured
phase, compared with the (input) thermodynamics of the homogeneous liquid.
However, we may anticipate that the question is still open, as a challenge for
the future, in the amazing development of the FMT.

7.5.7 Other Applications and Versions of the Fundamental
Measure Theory

Beside those which have already been commented, DF approximations within
the FMT scheme have been applied to other interesting problems, e.g. the use
of the test-particle route for the correlation structure [69] or fluids confined
in narrow cylindrical or spherical cavities [70]. Also, we have to comment on
several variants of the FMT which have been explored and used in different
contexts, like that of Gonzalez et al. [71], who build a FMT version using
only the two simplest elements: η(r) and the scalar delta-function shell con-
volution n(r). Their construction is based on the idea that φ0(η0) − 1 is the
ideal free energy of a gas of holes (of density 1 − η0) and it may be used as
a generating functional. It is clear that such a DF approximation will have
stronger unphysical divergences than the original FMT, since none of the
delta-function shell overlaps are eliminated; however, all these divergences
have positive sign, and the DF minimization of Ω[ρ] always avoids them. The
quality of the results for systems with planar symmetry was clearly worse
than with the oFMT, since avoiding the spurious divergences ρ(r) develops
unphysical kinks, but at least the results represent true minima of Ω[ρ], since
Fex[ρ] does not have the spurious bottomless pits for 0D cavities. An inter-
esting feature of that simple FMT version was its flexibility to plug any bulk
thermodynamics, like the CS equation of state which could improve on the PY
approximation.

The idea of plugging the CS equation of state within the FMT is most
appealing with the DI-FMT, since the excellent quality of the results for the
crystal phase made (comparatively) bad the PY approximation for the bulk
fluid. Along the lines of Gonzalez et al. [71], a CS version of the FMT was
proposed and tested by Tarazona [62] maintaining the DI-FMT structure, but
changing the η-dependence of φ(3D)

3 in (7.72) to

φ(3D)
3 (η, n,v, T ) = 12π2R6ϕCS(η(r))

×
(
v · T · v − n v · v − Tr[T 3] + nTr[T 2]

)
,

(7.86)
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with

ϕCS(η) =
2

3η2

[
η

(1 − η)2
+ ln(1 − η)

]
= 1 +

16
9
η +

5
2
η2 + · · · (7.87)

instead of ϕPY(η) = (1 − η)−2 = 1 + 2η + 3η2 + · · · used in (7.72). This
DI-FMT version, which we will refer to as the CS-FMT, was used to study
the HS crystal and its dimensional reduction to the 2D fluid of HD [62]. The
extension of this approximation to HS mixtures was later proposed by Roth
et al. [72], under the name of the White Bear (WB) FMT. That name appears
sometimes associated also to the mono-component case, which was used in the
same paper as a check of the results in [62] for the HS crystal and to explore
other problems of interest. The results of that CS(WB)-FMT are reasonably
good, keeping all the qualitative advantages of the DI-FMT with respect to
the WDA and improving the value of the coexisting fluid and crystal densities:
ρf = 0.934/σ3 and ρc = 1.023/σ3. However, it is clear that the quality of the
description for the HS crystal is degraded with respect to the (quasi-exact)
results of the DI-FMT. Also in the application to planar density profiles, like
the HS fluid against a hard wall shown in Fig. 7.9, the accuracy of the CS
bulk equation of state is reflected in a better value for the contact density
ρ(0) = βp(ρB) given by the CS(WB)-FMT, but the effect is restricted to a
very narrow range of distances to the wall, and for z ≈ σ the CS(WB)-FMT
results are marginally worse than those of the DI-FMT or the oFTM.

Therefore, the adjustment of the free energy for the bulk fluid in (7.87)
is done somehow against the natural structure of the FMT, changing the
1/(1 − η)2 dependence in (7.72) which emanates from the third derivative of
the exact 0D free energy φ0(η). It was also noticed by Tarazona [62] that
the low-density expansion of the PY approximation is exact, up to order ρ2

0

(included), for any |r| ≤ σ. The first discrepancy between the PY and the
exact c(r, ρ0) arises at order ρ3

0 inside the core, but it already appears at order
ρ2
0 outside the core, where the tail for σ < r ≤

√
2σ in the exact expansion is

neglected by the PY assumption c(r, ρ0) = 0 for r ≥ σ. The volume integral
of this tail produces the difference between the fourth virial coefficients in the
PY and the CS equations of state (bracketing the exact result), but within the
CS(WB)-FMT that difference is assigned to the core of c(r, ρ0) rather than
to create a tail for r > σ.

Therefore, the empirical corrections leading to (7.86), or to the generic
WB-FMT for HS mixtures, are giving the wrong non-local dependence to the
thermodynamic improvement, beyond the PY approximation. The FMT ap-
pears to be the natural extension of the PY approximation for inhomogeneous
HS fluids, with the assumption δ2Fex[ρ]/δρ(r)δρ(r′) = 0 for |r − r′| ≥ σ em-
anating from the use of the R-ranged fundamental measures. Hence, it would
be difficult to achieve a really consistent improvement of the FMT, with a
better thermodynamics for the bulk fluid, without going beyond the use of
one-center convolutions of the density. The analysis of HS mixtures presented
in the next sections also supports the FMT as the most satisfactory framework
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to get very good DF approximations for hard core particles, but still with its
intrinsic limitations, which seem difficult to overcome without a drastic trans-
formation of the generic description of the non-local dependence in Fex[ρ].

7.6 Density Functionals for Hard Sphere Mixtures

There are two obvious extensions of any DF approach to the HS model: in-
cluding soft, and maybe attractive, potentials and studying mixtures of HS.
For the former, it has already been commented that one way to deal with
such models is to use a MFA for the attractive part of the interaction po-
tential over a reference HS system (with possibly a temperature-dependent
diameter) that accounts for the repulsive part. The latter, however, turns out
to be more problematic, because we need special-purpose DFs to deal with
mixtures of HS, and the DFs we have already studied for a mono-component
fluid of HS are only half-way the final result. We need further insights to study
mixtures.

When facing this problem, the situation is very different if one considers
WDA-like or FMT-like DFs. While the WDA is the ‘easiest’ non-local DF
theory for HS, extending it for mixtures becomes a headache. FMT, however,
is a DF theory whose formulation for mixtures is rather straightforward, and
(except for some subtleties that will be explained later) its construction adds
no further complications to the theory. We will review both theories in what
follows, but first let us discuss the modifications we have to make in the general
scheme of DF theory in order to account for mixtures.

First of all, every component or species of anm-component inhomogeneous
mixture will have its own density profile, ρν(r), ν = 1, 2, . . . ,m. To simplify
notation, we introduce the vector

ρ(r) =
(
ρ1(r), . . . , ρm(r)

)
(7.88)

to refer to all density profiles collectively. As for one-component systems, there
exist a unique intrinsic free energy F [ρ] which is a functional of the vector
density ρ(r). If on particles of species ν acts an external potential Vν(r) and
there is a reservoir of particles with chemical potential μν for that species, the
grand potential

Ω[ρ] = F [ρ] +
m∑

ν=1

∫
dr ρν(r)[Vν(r) − μν ] (7.89)

reaches its absolute minimum for the equilibrium density profile vector ρ(r).
This minimum principle leads to the set of Euler–Lagrange equations

δΩ[ρ]
δρν(r)

=
δF [ρ]
δρν(r)

+ Vν(r) − μν = 0, ν = 1, . . . ,m . (7.90)
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A similar reasoning to that of Sect. 7.2.1 leads to the DF for an ideal gas
mixture

βFid[ρ] =
m∑

ν=1

∫
dr ρν(r)[ln ρν(r) − 1]. (7.91)

A remark is on purpose here. As in the one-component case, there is a ther-
mal wavelength Λν which is different for each component. When dealing with
‘quenched’ mixtures, the most common kind of mixture, for which the global
composition of the system is fixed beforehand, we can ignore this wavelength,
as we have done so far, and set it to 1. This is what we will do henceforth.
However, maintaining this factor is relevant when species are actually aggre-
gates of particles whose composition is determined by chemical equilibrium.
When describing this kind of systems, the thermal wavelength (or rather the
thermal volume) is replaced by the internal partition function of an aggregate
of species ν, and its specific shape is most relevant for the equilibrium config-
uration of the system [73] (for an illustration of the dramatic effects this may
have on the system, see [74, 75, 76, 77]).

The ideal term contains the entropy of mixing, and the remaining contri-
bution to a DF will be the excess free energy,

βF [ρ] = βFid[ρ] + βFex[ρ] ≡
∫

dr
{
Φid

(
ρ(r)

)
+ Φ

(
[ρ]; r

)}
, (7.92)

where Φid(ρ) =
∑

ν ρν(ln ρν − 1). The direct correlation function will now be
a matrix, which can be obtained trough

δ2βFex[ρ]
δρμ(r1)δρν(r2)

∣∣∣∣
ρ(r)=ρ0

= −cμν(r12,ρ0), μ, ν = 1, . . . ,m , (7.93)

and which is related to the total correlation function hμν(r,ρ0) via the
(matrix) Ornstein–Zernike equation

hμν(r,ρ0) = cμν(r,ρ0) +
m∑

λ=1

ρ0,λ

∫
dr′cμλ(r′,ρ0)hλν(|r − r′|,ρ0). (7.94)

One final remark concerns polydisperse systems. In all expressions above,
we have considered, for simplicity, multicomponent mixtures. Polydisperse
mixtures are a special kind of mixtures in which there are virtually an in-
finity of species, labeled by a continuous parameter s ∈ (s0, s1) (s may refer
to size, shape, charge or whatever parameter or set of parameters that ren-
ders the mixture polydisperse). For these systems, ρν(r) becomes a function
ρ(s; r) and dependencies on ρ(r) become functional dependencies on that
function. Hence, all expressions change accordingly and all sums on ν must
be replaced by integrals on s. The resulting equations are formally the same,
so we will only refer to this kind of mixtures when there are relevant issues to
mention.
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7.7 Weighted Density Approximation for Mixtures
of Hard Spheres

In 1990, Denton and Ashcroft proposed an extension of the WDA to binary
mixtures [50] and applied it to determine freezing. The theory was one of the
many conceivable generalization of the WDA for HS, and in its construction
several simplifications were assumed. Although some of them may be ques-
tionable, the theory represents a reasonable trade off between flexibility and
numerical tractability. The form we are presenting it here would be its formu-
lation for an m-component mixture although, as it will be clear, applying the
resulting DF to more than a few components (most of its applications are for
just 2 components) is only for the braves.

Denton and Ashcroft’s proposal for the excess free energy density is

ΦWDA([ρ], r) =
m∑

μ=1

ρμ(r)ψ
(
ρ̄(μ),x

)
, (7.95)

where x = (x1, . . . , xm) is the composition vector whose components,
xν = ρν/ρ, ρ =

∑
ν ρν , are the global values of the molar fractions of the

species over the entire system of volume V , and ψ(ρ,x) is the free energy
per particle of a mixture of total density ρ and composition vector x. The
effective total densities ρ̄(μ), μ = 1, . . . ,m, are defined through weighted con-
volutions of the density profiles

ρ̄(μ)(r) =
m∑

ν=1

∫
dr′ρν(r + r′)wμν

(
r′; ρ̄(μ)(r),x

)
. (7.96)

Weights are assumed to be normalized to 1 and symmetric (wμν = wνμ).
Now, as in the WDA for HS, determining the weights amounts to relate the

second derivative of βFex[ρ] of the uniform mixture with its direct correlation
function, i.e.

δ2βFex[ρ]
δρμ(r)δρν(r′)

∣∣∣∣
ρ(r)=ρ0

= −cμν(|r − r′|,ρ0) . (7.97)

Before going any further, let us comment on the assumptions leading to
this proposal. There are two main simplifications: one is the dependence on
x, rather than assuming a dependence on the whole set of effective densities
ρ̄(μ)(r); the other one is to assume the same form ψ(ρ,x) for all partial free
energy per particle functions in the ansatz (7.95). The aim of both simplifica-
tions is to keep the complexity of the theory at a reasonable level. However,
there is a rationale behind them: the approximation implies that each par-
ticle of the non-uniform mixture contributes to the excess free energy as if
it interacted with an effective locally uniform mixture whose total density is
different for each species.
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It turns out that, of the two assumptions made by Denton and Ashcroft,
the most questionable is the constant composition hypothesis. A decade later,
Davidchack and Laird made a version of this WDA without this assumption
[78]. They replaced equation (7.95) by

ΦWDA([ρ], r) =
m∑

μ=1

ρμ(r)ψ
(
ρ̄(μ)(r)

)
, (7.98)

where now ψ(ρ) is the free energy per particle of a mixture with partial den-
sities ρ = (ρ1, . . . , ρm), and the effective densities ρ̄(μ)(r) =

(
ρ̄
(μ)
1 , . . . , ρ̄

(μ)
m

)
,

μ = 1, . . . ,m, are defined by the averages

ρ̄(μ)
ν (r) =

∫
dr′ρν(r + r′)wμν

(
r′; ρ̄(μ)(r)

)
. (7.99)

Not only is this version of the WDA for mixtures more symmetric, but it
also leads to simpler equations for the weights. Because of the constraint on
the composition, in the version of Denton and Ashcroft there appears a term
proportional to the inverse volume of the system, V −1, which is absent in the
Davidchack and Laird formulation.

When equations (7.98) and (7.99) are used in (7.97), the resulting equa-
tions for the weights are (in Fourier space)

−ĉμν(k) =
(
∂ψ

∂ρμ
+
∂ψ

∂ρν

)
ŵμν(k) +

∂2ψ

∂ρμ∂ρν

m∑
λ=1

ρλŵμλ(k)wλν(k)

+
∂ψ

∂ρμ

m∑
λ=1

ρλ
∂ŵμλ

∂ρν
(k)ŵλν(k) +

∂ψ

∂ρν

m∑
λ=1

ρλŵμλ(k)
∂ŵλν

∂ρν
(k),

(7.100)

where the dependence on ρ is implicitly assumed. Equation (7.100) represents
a computational challenge: they form a system of partial differential equations
very hard to solve even numerically. One could try the CS-WDA strategy,
namely expanding wμν(r,ρ) in powers of the densities ρλ,

wμν(r,ρ) = w(0)
μν (r) +

m∑
λ=1

ρλw
(1)
μνλ(r) +

m∑
λ,γ=1

ρλργw
(2)
μνλγ(r) + · · · , (7.101)

and truncate at second order. The weights w(0)
μν (r), w(1)

μνλ(r) and w
(2)
μνλγ(r)

are determined by inserting the expansion (7.101) in equation (7.100) and
replacing ĉμν(k) by its density expansion to second order. This eliminates the
problem of the partial derivatives with respect to the densities. If once the
weights are determined, we evaluate the convolutions
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ρ̄(0)
μν (r) =

∫
dr′ρν(r + r′)w(0)

μν (r′), (7.102)

ρ̄
(1)
μνλ(r) =

∫
dr′ρν(r + r′)w(1)

μνλ(r′), (7.103)

ρ̄
(2)
μνλγ(r) =

∫
dr′ρν(r + r′)w(1)

μνλγ(r′) , (7.104)

then the weighted densities are the solution to the (approximate) system of
algebraic equations

ρ̄(μ)
ν (r) = ρ̄(0)

μν (r)+
m∑

λ=1

ρ̄
(1)
μνλ(r)ρ̄(μ)

λ (r)+
m∑

λ,γ=1

ρ̄
(2)
μνλγ(r)ρ̄(μ)

λ (r)ρ̄(μ)
γ (r). (7.105)

This problem is definitely simpler than the one posed by equation (7.100),
but still not computationally trivial. We have a system of m2 algebraic equa-
tions rather than a simple quadratic equation, and obtaining it requires the
determination of m(m+1)/2 weights w(0)

μν (they are symmetric), m2(m+1)/2
weights w(1)

μνλ andm2(m+1)2/2 weights w(2)
μνλγ (they are symmetric in μ, ν and

in λ, γ), that makes a total of m(m+ 1)2(m+ 2)/4 weights. Just for a binary
mixture, m = 2, this amounts to computing 18 weights; for a ternary mixture
this number rises to 60 weights! And then we need to compute convolutions
of them all with the densities and solve the equations. . .

This is probably the reason why this theory has never been applied as
such. Denton and Ashcroft explicitly mention the numerical difficulty of this
extension of the WDA and switch to the so-called modified WDA (MWDA),
an effective liquid theory, to study freezing in a binary mixture of HS [50].
Their results are quite good compared to simulations, specially if one takes
into account that effective liquid theories entirely refuse to account for the
fluid structure appropriately. A year later [79], they changed the theory and
introduced the WDA at the level of the first-order direct correlation functions
c
(1)
μ (r, [ρ]) = −δβFex/δρμ(r). This simplifies the equations for the weights to

the extent of making them proportional to the direct correlation functions, so
the resulting theory is much easier to apply. The results for the layering of a
binary HS mixture near a hard wall that they obtained with this new version
were reasonable although there were important discrepancies with respect to
simulations. Davidchack and Laird did compute the weights of the WDA as
presented here by numerically solving the system (7.100), but they did it just
for illustration purposes because, in order to apply it to the freezing problem,
they also resorted to the MWDA version of their theory. There are hybrid
approaches [80] in which local effective densities are used in (7.98), but on the
right-hand side of (7.99), these local densities are replaced by their averages.
This leads to simpler equations for the weights and to slightly improved results
for the density profiles of a binary HS mixture near a hard wall.

We will not pursue this approach any further. By now its computational
complexity should be clear, even for few component mixtures; if the number
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of components is large it is hopeless and its applicability to study polydisperse
mixtures is out of question. On the other hand, at present it is not worthwhile
to invest more effort in this or similar approaches because FMT provides a
much better alternative to study, not only mixtures with an arbitrary number
of species, but even polydisperse mixtures. So let us see how FMT deals with
mixtures.

7.8 Fundamental Measure Theory for Mixtures
of Hard Spheres

Two key pieces in Rosenfeld’s inspiration to create FMT were the 1D DF
and SPT. Let us see what they tell us about mixtures. We shall begin with
the 1D DF. The exact functional for an additive mixture of HR in a segment
was obtained by Vanderlick et al. [81]. Appropriately written, its form is most
revealing. Formally, it looks the same as the one derived by Percus for a
one-component fluid,

Φ(1D)
(
[ρ];x

)
= −n(x) ln

[
1 − η(x)

]
; (7.106)

the difference lies in the definition of the weighted densities, which now is

n(x) =
1
2

m∑
ν=1

[
ρν(x+ σν/2) + ρν(x− σν/2)

]
, (7.107)

η(x) =
m∑

ν=1

σν/2∫
−σν/2

ρν(x+ x′) dx′. (7.108)

In other words, the mixture is accounted for by introducing a weight function
for each species and adding up all the resulting weighted densities.

Let us see now what we can learn from SPT. The excess free energy density
(in kBT units) provided by SPT can be written in the form [12, 23, 24, 55]

Φ = −ξ0 ln(1 − ξ3) +
ξ1ξ2

1 − ξ3
+

1
24π

ξ33
(1 − ξ3)2

, (7.109)

where the variables ξi, i = 0, 1, 2, 3 are geometrically weighted density
averages,

ξi =
m∑

ν=1

ρνR
(i)
ν , (7.110)

with R
(0)
ν = 1, R(1)

ν = Rν , R(2)
ν = 4πR2

ν and R
(3)
ν = 4πR3

ν/3 being 1, the
curvature radius, the surface and the volume of a sphere of diameter Rν ,
respectively. This suggests that a free energy functional should depend on
weighted densities whose weights have locally the same geometrical meaning.
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Thus, Rosenfeld’s proposal [13] for the weight functions was to define,
for each species ν = 1, . . . ,m, the same normalized weighted densities as for
HS, i.e.

ην(r) =
∫

dr′ρν(r + r′)Θ(Rν − |r′|),

vν(r) =
∫

dr′ρν(r + r′)
r′

Rν

δ(Rν − |r′|)
4πR2

ν

,

nν(r) =
∫

dr′ρν(r + r′)
δ(Rν − |r′|)

4πR2
ν

.

(7.111)

With them, one can define six collective densities

η(r) =
m∑

ν=1

ην(r), n(2)(r) =
m∑

ν=1

4πR2
ν nν(r),

v(2)(r) =
m∑

ν=1

4πR2
ν vν(r), n(1)(r) =

m∑
ν=1

Rν nν(r), (7.112)

v(1)(r) =
m∑

ν=1

Rν vν(r), n(0)(r) =
m∑

ν=1

nν(r),

where the scaling factors are chosen such that in the limit of uniform densities
we have η(r) → ξ3, n(2)(r) → ξ2, n(1)(r) → ξ1 and n(0)(r) → ξ0. By repeating
the same procedure that led to the functional (7.66)–(7.68), one can obtain
Rosenfeld’s original excess free DF as ΦoFMT

(
[ρ], r

)
= Φ1

(
[ρ], r

)
+Φ2

(
[ρ], r

)
+

Φ3

(
[ρ], r

)
, where [13]

Φ1

(
[ρ], r

)
= −n(0) ln(1 − η) , (7.113)

Φ2

(
[ρ], r

)
=
n(1)n(2) − v(1) · v(2)

1 − η
, (7.114)

Φ3

(
[ρ], r

)
=

1
24π

n(2) n
(2)n(2) − 3v(2) · v(2)

(1 − η)2
. (7.115)

Actually, Rosenfeld found his functional directly for mixtures in the form just
presented. For later convenience and for computational simplicity, we will use
a form involving only the normalized weighted densities (7.111),

Φ1

(
[ρ], r

)
= −

m∑
ν=1

nν ln(1 − η), (7.116)

Φ2

(
[ρ], r

)
= 2π

m∑
ν,μ=1

RνRμ(Rν +Rμ)
nνnμ − vν · vμ

1 − η
, (7.117)

Φ3

(
[ρ], r

)
= 8π2

m∑
ν,μ,λ=1

R2
νR

2
μR

2
λnν

1
3nμnλ − vμ · vλ

(1 − η)2
. (7.118)
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As its one-component counterpart, this DF can give very accurate density
profiles of HS mixtures near a hard wall. As a matter of fact, because of its
expressibility in terms of collective densities, it can be as easily applied to poly-
disperse mixtures. As such, it has been successfully used by Pagonabarraga
et al. [82] to study size segregation at the adsorption profiles of a polydisperse
mixture of HS near a hard wall, something inconceivable with a WDA. But as
it comes to study freezing, this functional has the same divergences that cause
the breakdown of the solid minimization for the one-component HS fluid.

With an exception that we will comment later on, fixing these divergences
requires the same strategy as the one followed for the one-component FMT. In
fact, when expressed in terms of the collective densities, the resulting function-
als are formally the same. Thus, apart from the empirical corrections intro-
duced to avoid these singularities [64, 65] (and which have been applied with
success to study entropic selectivity in microporous materials [83]), we can
formulate an analog of the DI-FMT by introducing the new tensor weighted
density

(Tν)αβ(r) =
∫

dr′ρν(r + r′)
r′αr

′
β

R2
ν

δ(R− |r′|)
4πR2

ν

(7.119)

and replacing Φ3 of the oFMT by

Φ3

(
[ρ], r

)
= 12π2

m∑
ν,μ,λ=1

R2
νR

2
μR

2
λ

ϕνμλ(r)[
1 − η(r)

]2 , (7.120)

ϕνμλ(r) = vν · Tμ · vλ − nμvν · vλ − Tr(TνTμTλ) + nμ Tr(TνTλ). (7.121)

The fact that the coefficient in (7.120) is a polynomial in the radii allows for
an alternative form in terms of collective densities. Thus, if

T (r) =
m∑

ν=1

4πR2
ν Tν(r) , (7.122)

then (7.120) and (7.121) can be rewritten as

Φ3

(
[ρ], r

)
=

3
16π

v(2) · T · v(2) − n(2) v(2) · v(2) − Tr(T 3) + n(2) Tr(T 2)
(1 − η)2

.

(7.123)

But if one checks dimensional crossover with this new functional, one en-
counters the surprise that it does not even recover the exact 1D limit! It is
surprising because its one-component counterpart does. The reason is that the
third term is not zero in this dimensional reduction. In order to understand
what is going on, we should imagine situations in which the centers of three
spheres are aligned and their three surfaces intersect at a common circle. For
spheres of the same size, this can only occur if at least two spheres are at the
same position. This means that their surfaces fully overlap, and the correction
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introduced by the DI-FMT DF is such that the third term vanishes when this
happens. However, if the spheres are different, such a triple intersection can
occur and the three spheres can sit at different positions. The DI-FMT DF
does not account for these situations and so they do contribute to the third
term. In [84], we considered this problem and showed that it can be fixed by
adding a rank-3 tensor weighted density

(Mν)α,β,γ(r) =
∫

dr′ρν(r + r′)
r′αr

′
βr

′
γ

R3
ν

δ(Rν − |r′|)
4πR2

ν

, (7.124)

and correcting ϕνμλ(r) in (7.121) with the addition of

Δϕνμλ(r) =
2R2

μ(Rν −Rλ)
Rν(Rν +Rμ)(Rμ +Rλ)

(
vν · Mμ : Tλ − vν · Tλ · vμ

)
(7.125)

(the symbol ‘:’ denotes the contraction of two indices). The vanishing of this
term for a one-component fluid is patent from the factor Rν−Rλ. Also, it gives
no contribution for uniform fluids because then vν(r) = 0 and Mνμλ(r) = 0.
One striking feature is that the coefficient dependent on the radii is no longer a
polynomial, but a rational function. The dramatic consequence of this is that
the new functional cannot be written in terms of a finite number of collective
densities, as the previous ones, thus spoiling one very nice feature of FMT,
specially when applied to polydisperse mixtures. The difficulty in applying
this functional with respect to the DI-FMT one is considerable, so it can only
be justified if the gain in accuracy is enough.

In [84], density profiles of a binary HS mixture near a hard wall and
within a narrow slit were obtained with both the corrected functional and
the DI-FMT one. The profiles are shown in Figs. 7.12 and 7.13. As it can be
seen, the differences between the two DFs are negligible. Also the comparison
between the dimensional reduction to 1D of the DI-FMT and the corrected
one (which is exact) shows, again for a binary mixture, that the differences
are smaller than 2% for all packing fractions up to η = 0.8 and is not larger
than 10% for such a high packing fraction as η = 0.95. The conclusion so far
is that the higher complexity of the corrected FMT does not justify using it
instead of the DI-FMT one, which is not only much simpler in that it con-
tains no rank-3 tensor, but also in that it can be written in terms of collective
variables, which gives a considerable advantage when studying polydisperse
mixtures. It remains to study what we could call the worst case scenario:
namely, inhomogeneous 1D-like situations like cylindrical pores. As far as we
know, nobody has tested these two functionals in this situation yet.

Irrespective of this analysis, no matter whether we consider the DI-FMT or
the corrected one, the problem of the lost cases commented on in Sect. 7.5.2 is
even worse for mixtures than it is for a one-component fluid [84]. The reason is
the inability of these FMT functionals to recover the lowest order in a density
expansion of the third-order direct correlation function. As already mentioned,
circumventing this problem would amount to modifying the structure of FMT
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Fig. 7.12. Density profiles of the two components of a binary mixture of radii
R1 = 1, R2 = 5 near a hard wall (the density is scaled with the volume of each
sphere, denoted v in the axis label). With a dashed line we plot the results of the
DI-FMT, with a full line we plot the results of the corrected FMT functional

functionals dramatically, and it is not clear at all whether such modifications,
even if they corrected the problem, would be computationally amenable. So
this seems to be as far as FMT can go.

Nevertheless, empirical modifications of FMT have proposed that, even
though they necessarily spoil some of their nice features, they can still produce
very good results when applied to specific problems. As already mentioned in
Sect. 7.4.3, one of the obvious modifications is to replace the SPT excess free
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Fig. 7.13. Same as Fig. 7.12 for a slit of width 20R1
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energy density by the empirical BMCSL (from Boubĺık–Mansoori–Carnahan–
Starling–Leland). This has been done for the oFMT version [72, 85] as well
as for the DI-FMT version [72]. The results for the density profiles of binary
mixtures near a hard wall are in excellent agreement with simulations. When
applied to polydisperse mixtures [86] they even improve those obtained with
the original Rosenfeld’s functional [82]. Finally, another empirical modification
based on the CS free energy density [87] has been applied with excellent
results to the calculation of the surface tension and bending rigidities of HS
near a spherical surface (although the fluid is mono-disperse in this case,
the analytical expressions derived for these magnitudes require the DF for a
binary mixture, where one of the components becomes the spherical surface).
Thus we see that, as it comes to concrete applications, FMT can still tolerate
enough flexibility to gain in accuracy.

7.9 Non-Additive Mixtures of Hard Spheres

So far we have only considered ordinary, or additive, HS mixtures, but this is
not the only interesting model of HS mixtures, there is a more general class
of them which are non-additive. This means that, although the interaction
between particles of either the same or different species is hard core, the
effective diameters are related through the relationship

σνμ =
1
2
(σνν + σμμ)(1 + Δνμ). (7.126)

The case Δνμ = 0 for ν �= μ describes the situation for additive HS and the
cases Δνμ > 0 or Δνμ < 0 describe non-additive HS. Such a model describes
well certain mixtures of chemical compounds or mixtures of colloidal particles
and polymers.

In spite of the apparent minor modification we have made, the resulting
model is extraordinarily more difficult than the additive one, so much that
there is no known functional for a single non-additive HS mixture even in 1D.
Just to illustrate the problem, one must bear in mind that, while additive HR
in 1D remain mixed for all densities up to close packing, if the mixture is non-
additive with Δνμ > 0, the mixed state is entropically disfavored with respect
to the mixed one, so that close packing is only attainable for a fully demixed
state. This fact forces the system to undergo a glass transition because, upon
increasing density, the system gets trapped in smaller regions of the phase
space as soon as some mixed configuration stops being reachable for that given
density [88]. Thus, non-additive HS mixtures bring about a higher complexity
than additive ones.

Because of this, there are fewer DFs for non-additive HS mixtures than
there are for additive ones. Nevertheless we should mention a few exceptions
in which functionals in the FMT spirit have been proposed, although to obtain
them some of the nice features of this theory have had to be sacrificed. We
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will mostly describe two of them, plus an attempt at generalizing FMT to
non-additive HS mixtures with arbitrary Δνμ.

7.9.1 The Asakura–Oosawa–Vrij Model

Let us consider the following simplified model of a colloid–polymer mixture
introduced first by Asakura and Oosawa [89] and later by Vrij [90]. Colloidal
particles have a typical radius Rc and polymers Rp. Interaction between col-
loidal particles is HS-like with diameter σcc = 2Rc, between colloidal particles
and polymers is also HS-like with diameter σcp = Rc +Rp, but polymers are
ideal particles to themselves (i.e. σpp = 0). This is a non-additive HS mixture
with Δcp = Rp/Rc > 0. For this model, Schmidt et al. [91] proposed the
following functional. They kept the general FMT scheme, so their functional
is formally the same as (7.116), (7.117), (7.120), (7.121),

Φ1

(
[ρ], r

)
=
∑

ν=c,p

nνφν(ηc, ηp), (7.127)

Φ2

(
[ρ], r

)
= 2π

∑
ν,μ=c,p

RνRμ(Rν +Rμ)
[
nνnμ − vν · vμ

]
φνμ(ηc, ηp), (7.128)

Φ3

(
[ρ], r

)
= 8π2

∑
ν,μ,λ=c,p

R2
νR

2
μR

2
λ

[
vν · Tμ · vλ − nμvν · vλ

−Tr(TνTμTλ) + nμ Tr(TνTλ)
]
φνμλ(ηc, ηp) , (7.129)

where the weighted densities ην(r), nν(r), vν(r) and Tν(r), ν = c, p, are
defined as in (7.111), (7.119) and

φν1···νl
(ηc, ηp) =

∂lφ0(ηc, ηp)
∂ην1 · · · ∂ηνl

, (7.130)

φ0(ηc, ηp) being the excess free energy of a 0D cavity.
If the colloidal particles and polymers were just additive HS, then the

grand partition function of a 0D cavity would be

Ξ0 = 1 + zc + zp , (7.131)

with zc, zp their respective fugacities. Then ην = zν/Ξ0, from which Ξ−1
0 =

1 − ηc − ηp and therefore

φ0(ηc, ηp) ≡ ηc + ηp − lnΞ0 + ηc ln(zc/ηc) + ηp ln(zp/ηp)
= ηc + ηp + (1 − ηc − ηp) ln(1 − ηc − ηp).

(7.132)

Substituting this function back into (7.127)–(7.129), one recovers the DI-FMT
for an additive HS mixture (7.116), (7.117), (7.120), (7.121).

But if particles are like in the Asakura–Oosawa–Vrij (AOV) model, then

Ξ0 = zc + ezp (7.133)
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because in a 0D cavity there may be one colloidal particle or an arbitrary
number of polymers. Therefore,

ηc =
zc

Ξ0
, ηp =

zpe
zp

Ξ0
, (7.134)

so zc = ηcΞ0, from (7.133) ezp = Ξ0(1 − ηc) and thus

zp =
ηp

1 − ηc
, Ξ0 =

exp
(

ηp

1−ηc

)
1 − ηc

, zc =
ηc exp

(
ηp

1−ηc

)
1 − ηc

. (7.135)

The excess free energy that follows from these expressions is

φ0(ηc, ηp) = ηc + (1 − ηc − ηp) ln(1 − ηc). (7.136)

The functional (7.127)–(7.129) possesses a set of good properties: (i) by
construction (it has the same structure as the DI-FMT), it recovers the cor-
rect 0D limit for 0D cavities with no lost cases; (ii) the first two terms in the
low-density limit of the direct correlation function are exact; (iii) it generates
the correct depletion potential between two colloidal particles in a sea of ideal
polymers at any density [92], and (iv) it is linear in ηp(r). The latter has
some important implications: on the one hand, the direct correlation func-
tion cpp(r, ρc, ρp) = 0 as in the PY approximation; on the other hand, the
Euler–Lagrange equation for ρp(r) permits to obtain explicitly this density as
a functional of only ρc(r), something that greatly simplifies the minimization
process. As a matter of fact, this nice feature can be used to obtain explicitly
a DF for the effective fluid of colloidal particles interacting with the deple-
tion potential induced by the polymers. This can be achieved through the
procedure described in [93].

As for the results one can get from this functional, for uniform densi-
ties [91, 94] the resulting free energy coincides with that of the free-volume
approximation of the AOV model [95], which predicts a stable gas–liquid co-
existence for Δcp � 0.32. For Δcp < 0.1547, the model can be exactly mapped
onto a one-component colloidal fluid with pairwise interaction [96]. This allows
to perform simulations for such an asymmetric mixture that would otherwise
be hindered by severe equilibration problems. The comparison of the structure
factors is quite good [91].

A variant of this model in which a third component, point-like HS, mimics
a poor solvent can also be dealt with in the same manner [97]. The model
exhibits a richer phenomenology, with a reentrant demixing transition for a
sufficiently high solvent concentration.

The procedure sketched here is a very ingenious twist of the standard
FMT for additive HS. Its results are very good, considering the simplicity of
the proposal and the difficulty of the model. This notwithstanding, there is
an important and unavoidable flaw in this extension of FMT to non-additive
models: the 1D limit cannot be correctly recovered. Having in mind the dimen-
sional crossover behavior of the DI-FMT, it is obvious that, for Δνμ = 1, the
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1D limit of this AOV DF will be just Φ1 in (7.127), a result that is only a crude
approximation to the exact excess free energy of the 1D AOV model [88]. Even
worse, if Δνμ �= 1, then the term Φ3 in (7.129) also makes a contribution for
the same reasons that it does for an additive HS mixture (see Sect. 7.8) [94].
Actually, this problem can be fixed by patching out the DF in a way similar
to that employed in Sect. 7.8, i.e. adding a contribution like (7.125) to the
term (7.129). Notice that this will change neither the excess free energy nor
the direct correlation function of the uniform fluid, so all features of the AOV
FMT described above remain intact; only the 1D limit will change and will
then be given by (7.127) for any particle radii.

7.9.2 The Widom–Rowlinson Model

Another model whose DF can be obtained with the same procedure is the
Widom–Rowlinson model [98]. This is an m-component non-additive HS mix-
ture of radii Rν , ν = 1, . . . ,m such that

σνμ = Rν +Rμ, σνν = 0. (7.137)

This extreme non-additivity, in which there is interaction only between dif-
ferent species, favors demixing. The scheme to construct a FMT DF for this
model is the same as for the AOV model [99]; the only thing that needs to
be changed is φ0(η1, . . . , ηm). This function is determined from the grand
partition function of a 0D cavity,

Ξ0 = 1 −m+
m∑

ν=1

ezν . (7.138)

Unfortunately, an analytic expression for φ0 cannot be obtained explicitly, so
it has to be solved numerically using the relationships

ην =
zνe

zν

Ξ0
, ν = 1, . . . ,m . (7.139)

The dimensional crossover behavior of this DF is similar to that of the
AOV DF described above, so it shares the same fundamental flaw in 1D. On
the other hand, the bulk fluid has no other thermodynamic stable phases than
uniform ones (either mixed or demixed): because there is no excluded volume
between particles of the same species, no solid phase is stable at high densities.
Only when the number of components is large can the solid be more stable
than the demixed fluid phases (notice that increasing the number of species
increases the stability of the mixed phase, as the probability for a particle to
have a neighbor of its same species decreases). There is evidence of this fact,
when the number of components m > 31, coming from a different model: the
parallel hard hypercubic model [100].
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7.9.3 General Non-additive Mixtures

Schmidt has recently proposed a FMT for rather general HS binary mixtures
[101]. The shape of his DF is

βFex[ρ1, ρ2] =
∫

drdr′
3∑

ij=0

Kij(|r − r′|)Φij

(
{n(k)

ν }, {n(l)
μ }
)
, (7.140)

where the Φij are functions of weighted densities, as usual in FMT. Two
novelties render this functional peculiar: first of all, the weights are all scalar,
as in Kierlik and Rosinberg’s version of FMT [56, 57] (using derivatives of
delta functions instead of vector and tensor weights); secondly, there is a kernel
Kij(|r − r′|) which accounts for the non-additivity. The components of this
kernel are also weights á la Kierlik-Rosinberg (with higher order derivatives),
but their radius is R12 instead of the radii of the spheres. Both the kernel
and the weights are tailored so as to recover the lowest order of the density
expansion of βFex.

At low densities of both components, the structure of the fluid is sat-
isfactorily reproduced, something to be expected because it is in the very
construction of FMT. The prediction of the demixing transition is also quite
accurate compared to simulations. However, this functional has two serious
drawbacks. The first one is that in the limit Δ12 → −1 (so that R12 = 0 and
the two species do not see each other), the functional is not the sum of two
DF, one for each species, as it should. The second one is that the choice of
weights carries the same flaw for the solid phase as the original Rosenfeld’s
functional, so it can only be used to study density profiles close to a wall and
similar problems. But in spite of these problems, the idea of introducing a ker-
nel depending on R12 is worth exploring and might be the clue to construct
the definitive FMT able to deal with such complex models.

7.10 Density Functionals for Anisotropic Bodies

This section is devoted to give a view on different approximations commonly
used to construct DFs of fluids composed of anisotropic particles. These par-
ticles, which can be molecules or colloidal particles, have, apart from po-
sitional, orientational degrees of freedom. They can have prolate (rod-like)
or oblate (disk-like) shapes and, because of that, form a set of new phases.
The isotropic fluid is the most disordered phase that can be conceived, with-
out positional and orientational order. A direct consequence of the particle
anisotropy is the appearance of orientational order where at least one of the
principal axes of particles are on average aligned along a preferential direction
while the positional order is absent. This phase was discovered in 1888 by the
Austrian botanic Friedrich Reinitzer and later classified by Friedel as the ne-
matic phase [102]. The coupling between positional and orientational degrees
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of freedoms makes these fluids to exhibit also, under certain conditions, a
phase transition to the so-called smectic phase [102]. The latter is a periodi-
cally layered phase composed of prolate particles aligned perpendicular to the
layers. In the layer planes, the centers of mass are randomly positioned, which
constitutes the main reason why one can think of smectics as a 1D periodic
fluids. Some fluids composed of particles with disk-like symmetries exhibit a
transition to a columnar phase, in which the centers of mass are randomly
positioned in liquid-like columns. The columns are located at the nodes of
a 2D grid, while the particle axes are oriented parallel to the columns. One
of the crystalline phases present in liquid crystals is the plastic solid, char-
acterized by long-ranged 3D positional order while the orientational order
is absent. Although we will not mention other liquid crystalline phases, the
number of them found experimentally is much greater than the few examples
presented here.

As was already pointed out at the beginning of this chapter, the DF for-
malism describes any fluid in terms of its density distribution function. The
complete set of variables necessary to describe the degrees of freedom of the
anisotropic particle is now x ≡ {r, Ω̂}, where Ω̂ ≡ {φ, θ, χ} is the set of Euler
angles that fix the particle orientation. Thus, the density distribution func-
tion ρ(x) depends, in general, on six variables that makes the study of these
systems much more difficult.

All DFs used in the study of liquid crystals belong to one of the two
following sets: (i) those that make emphasis on the attractive contribution
of the anisotropic pair potential and (ii) those that describe the fluids in
terms of their purely repulsive (and usually hard core) interactions. The use
of a simple hard core potential to model a real liquid crystal molecule is,
of course, a crude simplification, but as it was shown firstly by Onsager
[103, 104] and further by Frenkel [105, 106, 107], this simple interaction is
enough to stabilize the nematic, smectic, columnar and different crystalline
phases. These works showed that the main liquid crystal symmetries can be
explained by the entropic nature of the hard core potentials.

As we will see below, many of these functionals have as an important
ingredient the thermodynamic (the equation of state) and structural (the
direct correlation function) functions taken from the HS fluid. The reason
behind this is the lack of good approximations for these functions for fluids
composed of anisotropic particles. In the following section, we will describe
the DFs mainly based on the attractive anisotropic part of the pair interaction
and further, in Sect. 7.10.2, we will present DFs based on purely hard core
interactions.

7.10.1 Mean Field and Related Density Functionals

The bulk and interfacial phase behavior of liquid crystals has been crucial on
determining the origin of several DF approximations. In this section, we will
describe their evolution for the particular case of fluids interacting through
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anisotropic attractive pair potentials. At the same time, the main features of
liquid crystal phase behavior will be briefly introduced.

One of the first approaches used to describe the liquid crystal isotropic-
nematic phase transition is due to Maier and Saupe [108, 109, 110]. Their
approximation is equivalent to using the most simple DF which includes,
apart from the ideal gas term, βF id[ρ] =

∫
dxρ(x) [ln ρ(x) − 1] (note that x

represents the set of spatial and angular variables), an excess part which is
approximated in a mean field way with the following attractive pair poten-
tial between particles with axial symmetry: V (r, θ12) = −V0(r)P2(cos θ12),
where θ12 is the angle between the principal axes of the molecules and P2(x)
is the second-order Legendre polynomial [111]. The factor V0(r) > 0 consti-
tutes the spatial dependence of the pair potential, which is assumed to be
decoupled from the angular one. This potential, for a fixed r, reaches its min-
imum value for parallel configuration of particles, favoring in such way the
nematic order, while is positive for the mutual perpendicular configuration.
The choice of this potential, apart from its simplicity, is motivated by the fact
that the adequate order parameter that describes the degree of nematic order
is just S ≡ 〈P2(cos θ)〉, where θ is the angle between the particle axes and the
so-called nematic director (the direction of preferential alignment), and the
average is taken over the orientational distribution function h(θ) = h(π − θ),
with head–tail symmetry.

The excess part of the free energy functional has the standard mean field
form

Fex[ρ] = −1
2

∫
dx1

∫
dx2ρ(x1)ρ(x2)V0(r12)P2(cos θ12) . (7.141)

Due to the absence of positional ordering in the nematic phase, the den-
sity distribution function can be expressed as ρ(x) = ρh(θ)/(4π), where
ρ is the fluid density and the angular density function is normalized as∫ 1

−1
d(cos θ)h(θ) = 1. The equation (7.141) can be drastically simplified by

taking into account that Ω̂i = {θi, φi} (the polar and azimuthal angles of the
principal axes are sufficient to describe the orientation of axially symmetric
bodies) and carrying out the integration over the angles φi with the use of the
identity [111]

∫
dφ1

∫
dφ2P2(cos θ12) = (2π)2P2(cos θ1)P2(cos θ2) (θi being the

angle between the axis of particle i and the nematic director). The ideal part
of the free energy density, βFid[ρ]/V ≡ Φid[h(θ)], is a functional of h(θ) and
can be written as Φid[h(θ)] = ρ

[
ln ρ− 1 +

∫ 1

−1
d(cos θ)h(θ) lnh(θ)

]
, where the

second term is the orientational entropy.
The constrained functional minimization of Φ[h(θ)] = βF [ρ]/V with re-

spect to h(θ) results in

h(θ) =
exp [aSP2(cos θ)]

1∫
−1

d(cos θ) exp [aSP2(cos θ)]
, (7.142)
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with a = βv0ρ and v0 = 4π
∞∫
0

drr2V0(r). Multiplying (7.142) by P2(cos θ) and

integrating over cos θ between −1 and 1, we obtain a self-consistent integral
equation to calculate the equilibrium value of S for a fixed temperature β and
density ρ. The insertion of the found equilibrium orientational distribution
heq(θ) in the free energy density and the application of the usual double
tangent construction allow us to find the coexisting densities for the isotropic
and nematic phases at fixed temperature and to calculate the phase diagram
of the Maier–Saupe model.

In order to consider within the same model the smectic phase, we need
to impose that ρ(x, θ) = ρ(z, θ), i.e. the spatial symmetry is broken in the
direction of preferential alignment and the density profile is a periodic func-
tion with period d. In principle, its value should be found through the DF
minimization, but as the Maier–Saupe functional does not include a repul-
sive contribution from the particle core, its absolute minimum is reached at
d = 0, i.e. the density of aligned molecules builds up in and infinitely small
region. Thus, the parameter d should be fixed at some value comparable with
the molecule length. The constrained functional minimization (with the con-

straint d−1
d∫
0

dz
1∫

−1

d(cos θ)ρ(z, θ) = ρ, ρ being the mean density) leads to the

following self-consistent integral equation for the density profile

ρ(z, θ) =
ρ exp [−Veff(z, θ)]

d−1
d∫
0

dz
1∫

−1

d(cos θ) exp [−Veff(z, θ)]
, (7.143)

where the effective potential in reduced thermal units is a functional of the
density profile

Veff(z, θ) = −β

⎡
⎣ ∞∫
−∞

dz′
1∫

−1

d(cos θ)V0(z − z′)P2(cos θ′)ρ(z′, θ′)

⎤
⎦P2(cos θ) ,

(7.144)

with V0(z) = 2π
∞∫
|z|

drrV0(r). In principle, this equation can be solved itera-

tively for a periodic function ρ(z + d, θ) = ρ(z, θ) at each point (zi, cos θi) of
the constructed rectangular grid [0, d] × [0, 1].

The phase diagram in the coordinates T and d (conveniently scaled with
the attractive potential parameters) qualitatively coincides with the experi-
mental results. For small molecule lengths, the system goes from the isotropic
to the nematic and then to the smectic phases as the temperature decreases;
for higher values of d, there is a direct isotropic to smectic transition [112, 113].

Selinger and Nelson applied the same model to study the vapor–fluid in-
terface. For this purpose, they modeled the interface through an external
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potential of the form Vsurf(z, cos θ) = −εs exp
[
−(z/r0)2

]
P2(cos θ) favoring

perpendicular alignment of molecules at the interface. They found complete
wetting by the nematic phase as the temperature approaches the isotropic–
nematic coexistence temperature from the isotropic side. They also found
incomplete wetting by the smectic phase with one and two layering transi-
tions at temperatures slightly higher than the isotropic–smectic coexistence
temperature [113].

As it was mentioned above, the absence of repulsive interactions makes
the model non-predictive with respect to the equilibrium value of the smectic
period. For the same reason, the model does not exhibit a vapor–liquid phase
transition, thus the necessity to model the interface by an external poten-
tial. The first DF which included repulsive interactions between particles was
developed by Telo da Gama [114, 115]. The first proposed version was

F [ρ] = Fid[ρ] + FHS[ρ] +
1
2

∫
dx1dx2ρ(x1)ρ(x2)Vatr(x1,x2) , (7.145)

where the repulsive part was approximated by the HS potential and its con-
tribution was calculated using the LDA (see Sect. 2.4), i.e.

FHS[ρ] =
∫

drΦHS(ρ(r)) , (7.146)

where ΦHS(ρ) is the HS free energy density derived from the compressibility
equation of state. With respect to the attractive part, the following approxi-
mation was used in [114, 115]

Vatr(x1,x2) = V0(r12) + V1(r12)P2(θ12) , (7.147)

with Vi(r) = 0 for r < σ (the HS diameter) while Vi(r) = −εi(r0/r)6 for
r > σ, i = 0, 1. This potential can be regarded as the first terms in a general
spherical harmonic expansion of the full anisotropic potential [116]. The first
one, V0(r12), is the isotropic part responsible, together with the repulsive
core, of the vapor–liquid phase separation, while the second term stabilizes
the nematic phase if ε1 > 0. It should be noted that (7.145) is nothing but a
DF constructed from a perturbative scheme with the HS fluid as the reference
system and the attractive contribution as the perturbation. In this scheme,
the radial distribution function of the reference fluid is approximated by its
low-density limit gref(r; η) = Θ(r − σ).

The temperature–density bulk phase diagram predicted by the present
model includes a vapor (V)–isotropic liquid (I) coexistence ending in a criti-
cal point and a vapor–nematic (N) or I–N coexistence for temperatures below
or above the V–I–N triple point; within this functional different interfaces, as
the V–I, V–N and I–N ones can be calculated self-consistently in the neighbor-
hood of the triple point. The numerical calculations of the density and order
parameter profiles at the V–N interface for some fixed value of ε1 (selected so
as to model the real liquid crystal anisotropy) give complete wetting by the
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I phase (i.e. a surface-induced disordering transition) at the triple point. As
explained in Sect. 7.4.1, the surface tension is calculated through

γ =
Ω + pV

A
, (7.148)

with Ω[ρ] the equilibrium value of the grand potential, obtained from its
minimization with respect to the density ρ(z) and the angular distribution
function h(z, θ) profiles [ρ(z, θ) = ρ(z)h(z, θ)], p the bulk pressure at coex-
istence, V the total system volume and A the surface area of the planar
interface. The functional minimization with respect to h(z, θ) is a constrained
minimization with a Lagrange multiplier required to fulfill the condition∫

d(cos θ)h(z, θ) = 1. The nematic order parameter profile, calculated as
S(z) =

∫
d(cos θ)h(z, θ)P2(cos θ), is a function of the interface coordinate.

To implement the numerical minimization, the density and order parameter
are fixed at the left and right sides of the minimization box and are set to
the bulk coexisting values. The box length should be large enough for the
full interface to fit in. A pair of coupled integral equations for {ρ(z), S(z)} is
obtained after the exponentiation of the functional minimization of Ω[ρ] with
respect to ρ(z) and h(z, θ), the latter multiplied by P2(cos θ) and integrated
over cos θ. These equations can be solved iteratively selecting adequate initial
guesses for these functions.

The structure of the V–N and I–N interfaces resulting from this model
has monotonic density and order parameter profiles. Also, there is no orien-
tational order at the V–I interface (the order parameter is always zero along
the interface). Finally, the surface tension does not depend on the orientation
of the nematic director through the interface. All these results are in con-
tradiction with experiments on liquid crystals which usually find an excess
surface ordering near the interface with particles aligned in preferential direc-
tions with respect to it. Besides, the density and order parameter profiles have
an oscillating behavior near the interface. All these features can be obtained
by improving the model with (i) the use of a non-local DF approximation to
evaluate the free energy of the HS reference fluid, which makes the density
profile to be an oscillating function around the interface position and (ii) the
inclusion of higher order terms in the spherical harmonic expansion of the
attractive potential; specially, those terms which couple the positional and
orientational degree of freedoms of particles (those proportional to P2(cos θ′i),
with θ′i being the angle between the axis of particle i = 1, 2 and the ra-
dius vector joining the centers of mass of particles 1 and 2). The inclusion of
these terms can favor a perpendicular alignment of particles at the interface.
They also contribute to generate an excess of nematic ordering in regions of
the space where the density gradient is large. Moreover, as we will see shortly,
the presence of these terms are necessary to stabilize the smectic phase.

All these requirements were included in the DF version for smectic liquid
crystals developed by Mederos and Sullivan [117]. As the reference part of the
free energy functional, they took a parallel hard ellipsoid (PHE) fluid whose
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functional form is exactly the same as that of a HS fluid with the appropriate
scaling along the z direction to transform the HS into ellipsoids of whatever
axis ratio, i.e.

ΦPHE[ρ(r)] = ρ(r)ψHS(ρ̄(r)) , (7.149)

where the CS-WDA was used to evaluate the free energy per particle. The
weighted density is calculated through

ρ̄(r) =
∫

dr′w(r′; ρ̄(r))ρ(r + σ̂r′) , (7.150)

with w(r′; ρ̄(r)) given by (7.28), (7.32), (7.34) and (7.38). The scaling is ac-
counted for the diagonal tensor σ̂, with components σ⊥ along the x and y di-
rections and σ‖ along the z direction (the direction of alignment). Sufficiently
large particle aspect ratio σ‖/σ⊥ and the use of attractive pair potential,

V (x1,x2) = V0(r12) + V1(r12)P2(cos θ12) + V2(r12) [P2(cos θ′1)
+P2(cos θ′2)] , (7.151)

are necessary to stabilize the smectic phase. Note the presence of the new
terms proportional to P2(cos θ′i), which couple the positions and orientations
of particles. Taking the proper signs, the third term in (7.151) reaches its min-
imum value for parallel alignment of particles with their axes perpendicular
to the joining vector, i.e. the usual configuration for smectics.

In order to numerically minimize the functional (7.145) for the smectic
density profiles, it should be noted that the orientational part of the ideal gas
contribution,

Sor[h] = −
1∫

−1

d cos θ h(z, θ) ln [h(z, θ)] , (7.152)

is an universal function of the nematic order parameter S(z). Thus, this func-
tion can be calculated for a uniform nematic phase and tabulated for a regular
set of points Si ∈ [−1/2, 1]. Taking into account that the mean field contri-
bution of the free energy is a functional only of ρ(z) and S(z), the grand
potential can be minimized with respect to those functions evaluated at the
points of the discretized minimization box which contains at least one smec-
tic period. The conjugate gradient algorithm [20] can be used to achieve this
minimization. The values of the orientational entropy and its derivatives with
respect to S(zi) necessary to calculate the energy and the gradients can be
evaluated using a cubic spline interpolation from the already tabulated set of
points.

The authors of [117] calculated the phase diagrams for different attractive
potentials. They found apart from the usual V, I and N phases an stable
region of the smectic phase for high densities. The smectic can coexist with
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the nematic or with the isotropic liquid, for small or large values of ε2/ε0 as
compared to ε1/ε0, εi being the strength of Vi(r).

This model has also been applied to the study of the surface ordering
at the wall–isotropic fluid interface, where the external potential of type
Vs(z) = −εsP2(cos θ)/(z0 + z)3 was used to model a flat surface which fa-
vors the homeotropic anchoring (perpendicular to the wall–particle align-
ment). Complete and incomplete wetting by the smectic phase was found
together with layering transitions as the strength of the external potential
is increased [118, 119]. Finally, the thinning transitions in freely suspended
smectic films was also studied with this model [120, 121].

The surface ordering and layering transitions was also found as a result of
applying this model to the calculation of the V–I interface. To illustrate the
strong ordering generated at the interface, we have plotted in Fig. 7.14(a)–(b)
the density and order parameter profiles resulting from the minimization of
the grand potential at the equilibrium V–I interface for a fixed set of parame-
ters {εi} corresponding to a layering phase transition between two and three
smectic layers.

We end this subsection with a very successful version of liquid crystal
interparticle potential that has been included in the DF formalism via a per-
turbation theory and has also been applied in MC simulations of liquid crystal
molecules. The origin of this potential can be traced back to the original work
of Berne and Pechukas [122], who proposed the so-called Gaussian overlap
model. In this work, the authors calculated the effective potential between
two ellipsoids with a Gaussian repulsive core. The amplitude and the range
of the repulsive potential was calculated through the overlap region between
two Gaussians representing the mass distribution of two particles separated
by a distance r with their uniaxial axes pointing along Ω̂i (i = 1, 2). They
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Fig. 7.14. Density ρ(z) (solid lines) and order parameter S(z) (dashed lines) pro-
files corresponding to the V–I interface containing two (a) and three (b) coexisting
smectic peaks as a result of the density functional minimization
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proposed a quite general form for interparticle potentials by the simple rescal-
ing of the interparticle distance by the found range parameter σ(Ω̂, Ω̂1, Ω̂2)
given by

σ2
0

σ(Ω̂, Ω̂1, Ω̂2)2
= 1 − χ

2

⎡
⎢⎣
(
Ω̂ · Ω̂1 + Ω̂ · Ω̂2

)2

1 + χΩ̂1 · Ω̂2

+

(
Ω̂ · Ω̂1 − Ω̂ · Ω̂2

)2

1 − χΩ̂1 · Ω̂2

⎤
⎥⎦ ,

(7.153)

which explicitly depends on their particle orientations and on the unit vec-
tor joining their center of mass Ω̂. The anisotropy parameter χ is deter-
mined by the aspect ratio of the ellipsoidal Gaussians κ = σ‖/σ⊥ through
χ = (κ2 − 1)/(κ2 + 1). The potential amplitude was later modified from its
original form so as to take into account appropriately the anisotropy by in-
cluding some fitting parameters in its functional form [123]. These parameters
were selected in such a way as to quantitatively reproduce the well depths and
well widths for the side-by-side and end-to-end particle configurations of the
Lennard-Jones (LJ) site potentials (where each particle is formed by n LJ
centers positioned along a straight line). The resulting pair potential, known
as the Gay–Berne potential [123], was later included in a perturbative scheme
of DF formalism [124, 125] to calculate the phase diagram of a liquid crystal
model. The resulting temperature–density phase diagram, which includes va-
por, isotropic liquid and nematic phases, compares reasonably well with the
simulation results [124, 125]. A further extension of the model was made to
include the smectic symmetry. A comparison of the results with the available
computer simulations indicates that the theory leads to qualitatively correct
predictions [124, 125].

7.10.2 Density Functionals for Hard Anisotropic Particles

Among hard anisotropic particles, the hard spherocylinder (HSC) is the
paradigmatic hard body on which most theoretical and simulation studies
have been done. It consists of a cylinder of length L and diameter D capped
by two hemispheres of the same diameter. The reason for this particular choice
is the simplicity to implement the HSC pair overlap criterion in simulations
and also the simple analytic expression that the HSC excluded volume has.
The excluded volume between two hard bodies is defined as the spatial region
excluded to the center of mass of a second particle, for fixed orientations of
both particles, and has for HSCs the following form

Vexcl(Ω1,Ω2) = 2L2D| sin γ| + 2πD2L+
4
3
πD3 , (7.154)

with γ the relative angle between the long axes of both particles.
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Density Functionals for Uniform Fluid Phases

For uniform fluids (as the isotropic or nematic phases), the virial expansion
of the excess part of the free energy density up to third order reads

Φex[h(Ω̂)] = B2[h(Ω̂)]ρ2 +
1
2
B3[h(Ω̂)]ρ3 + · · · , (7.155)

B2[h(Ω̂)] =
1
2

∫
dΩ̂1

∫
dΩ̂2h(Ω̂1)h(Ω̂2)Vexcl Ω̂1, Ω̂2 , (7.156)

B3

[
h(Ω̂)

]
=

1
3V

[
3∏

i=1

∫
dxih(Ω̂i)

]
f(r12, Ω̂1, Ω̂2)

×f(r23, Ω̂2, Ω̂3)f(r13, Ω̂1, Ω̂3) , (7.157)

where V is the system volume and f(rij , Ω̂i, Ω̂j) is the Mayer function be-
tween two particles with fixed orientations Ω̂i and Ω̂j . Onsager showed that for
the isotropic fluid [h(Ω̂) = 1/(4π)], the following asymptotic behavior is ful-
filled for large aspect ratios κ ≡ (L+D)/D: Biso

3 /
(
Biso

2

)2 ∼ κ−1 lnκ [103, 104].
Then, after scaling the density ρ with Biso

2 = π
4DL

2 to define the dimension-
less density ρ∗ = ρBiso

2 , the excess free energy in the limit of infinite elongation
κ → ∞ retains only the second virial contribution. This approach, extended
also to the study of HSC with a finite aspect ratio κ, is known as the Onsager
approximation.

The constrained functional minimization of the total free energy with re-
spect to h(Ω̂) within the Onsager approach results in an integral equation of
the form

h(θ) =
exp

[
−8ρ∗

π

∫
d(cos θ′)K(θ, θ′)h(θ)

]
∫ 1

−1

d(cos θ) exp
[
−8ρ∗

π

∫
d(cos θ′)K(θ, θ′)h(θ′)

] , (7.158)

K(θ, θ′) =

2π∫
0

dφ
√

1 − (cos θ cos θ′ cosφ+ sin θ sin θ′)2, (7.159)

where the axial symmetry of the HSC has been used [h(Ω̂) = h(θ)], θ is the
angle between the HSC axis and the nematic director. Equation (7.158) can
be solved iteratively for the equilibrium orientational distribution function
h(θ) at a fixed ρ∗. Then, after the insertion of this function into the free-
energy density and the use of the usual double-tangent construction to find
the coexistence densities of the isotropic and nematic phases, the following
values are obtained: ρ∗I = 3.290 and ρ∗N = 4.191 while the nematic order
parameter at ρ∗N is S = 0.7922 [126].
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The Parsons–Lee Approach

For finite values of κ, further virial coefficients should be included if we want
to accurately reproduce the I–N coexistence densities. The inclusion of the
third virial coefficient B3[h(θ)] in the virial expansion involves the numeri-
cal calculation of the integral (7.157), which is not an analytic function of
the relative orientations Ω̂i and of the particle characteristic lengths. Thus,
a multidimensional integral must be evaluated, making the functional min-
imization a numerically difficult task. Parsons and later Lee conceived a
DF which includes all the virial coefficients after the third approximately
[127, 128, 129]. They proposed as the excess free energy density of the
HSC

Φex[h(θ)] = ρψHS(η)
B2[h(θ)]

B
(HS)
2

, (7.160)

where B(HS)
2 = 4v is the HS second virial coefficient, with v the hard rod

volume selected equal to the HS volume and ψHS(η) = η(4 − 3η)/(1 − η)2 is
the CS excess free energy per particle of the HS fluid, with η = ρv its packing
fraction. This approximation, known as the Parsons–Lee (PL) approximation,
recovers the second virial low-density limit while it approximates the remain
virial coefficients by the expressions

Bn[h(θ)] = (n− 1)(n+ 2)vn−1B2[h(θ)]

B
(HS)
2

. (7.161)

This simple approach gives quite reasonable values for the coexisting den-
sities as compared to the simulation results. For example, for κ = 5, the PL
approach gives ηI = 0.3995 and ηN = 0.4172, while simulations show an
isotropic–nematic phase transition at packing fraction equal to 0.4.

The Scaled Particle Theory

The SPT, originally developed by Reiss [23, 24] for HS and later extended
to anisotropic particles by several workers [130, 131, 132, 133, 134], has been
successfully applied to the study of liquid crystal models composed of hard
convex anisotropic particles. This is a systematically constructed theory which
approximates the thermodynamic work to insert a scaled particle with a fixed
orientation in a fluid. The approximation amounts to interpolating that work
between its two known limits: those corresponding to small and large values
of the scaling parameters.

For the scaled HSC with length and width equal to λ1L and λ2D, respec-
tively (λi are the scaling parameters), in the limit λi → 0 the probability
that the inserted particle does not overlap with any of the fluid particles is
exp[−βW (Ω̂;λ1, λ2)], (W (Ω̂;λ1, λ2) being the thermodynamic work necessary
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to insert the scaled particle with orientation Ω̂. Taking only into account over-
laps of two particles, one finds

exp[−βW (Ω̂;λ1, λ2)] = 1 − ρ

∫
dΩ̂′h(Ω̂′)Vexcl(Ω̂, Ω̂′;λ1, λ2) , (7.162)

where Vexcl(Ω̂, Ω̂′;λ1, λ2) is the excluded volume between the scaled particle
and a fluid particle with orientation Ω̂′. For large values of λi, the work
required to insert the particle is just a work required to open a macro-
scopic cavity of volume equal to that of the scaled particle against the fluid
pressure, i.e W (Ω̂;λ1, λ2) = pV (λ1, λ2). In the scaled particle treatment,
it is assumed that the work to add a particle with arbitrary values of λi

can be calculated from the expansion of W (Ω̂;λ1, λ2) obtained from Eq.
(7.162) by the Taylor series around (0, 0) up to second order and adding
pV (λ1, λ2) as the third-order term. The excess chemical potential of HSPCs
with length L and diameter D can be obtained by setting λi = 1 and in-
tegrating over all possible orientations with the distribution function, i.e.
μex =

∫
dΩ̂h(Ω̂)W (Ω̂; 1, 1). The pressure can then be obtained through the

Gibbs–Duhem equation ∂p/∂ρ = 1 + ρ∂μex/∂ρ. This yields an excess free
energy per particle ψ[h] = μex + 1 − p/ρ, given by

ψ[h] = − ln(1 − η) +A[h]y +
1
2
B[h]y2 , (7.163)

A[h] = 3
(

1 +
4(κ− 1)2

π(3κ− 1)
〈〈| sin γ|〉〉

)
, (7.164)

B[h] =
12κ

(3κ− 1)2

(
2κ− 1 +

4
π

(κ− 1)2〈〈| sin γ|〉〉
)
, (7.165)

with y = η/(1 − η) and where 〈〈u〉〉 =
∫

dΩ̂
∫

dΩ̂′h(Ω̂)h(Ω̂′)u(Ω̂, Ω̂′) defines
the double angular average of function u with respect to h(Ω̂). The values
that the SPT gives for the I–N coexistence packing fractions for κ = 5 are
ηI = 0.36 and ηN = 0.39, less accurate that the Parson’s approach. However,
the estimation that the SPT makes for the third virial coefficient is better
than Parsons result.

Density Functionals for Non-uniform Liquid Crystal Phases

All the DFs extended to the study of non-uniform liquid crystal phases (as
the smectic phases), except the last versions based on the FMT which will be
described in next subsection, include as basic ingredient in their constructions
the thermodynamic and structural functions of the HS fluid. See the review
of Vroege et al. [135] for a more detailed discussion. Practically, all of them
approximate the exact second-order expansion of the excess free energy of the
non-uniform fluid around some reference uniform fluid of density ρ0
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Fex[ρ(x)] = Fex[ρ0(Ω̂)] +
∫

dx1μex[ρ0(Ω̂1)]Δρ(x1)

− kT

∫
dx1

∫
dx2

1∫
0

dλ

λ∫
0

dλ′c(x1,x2; [ρ0(Ω̂)

+ λ′Δρ(x)])Δρ(x1)Δρ(x2) , (7.166)

where Δρ(x) = ρ(x) − ρ0(Ω̂) and ρ0(Ω̂) + λ′Δρ(x) represents a parame-
terized integration path from the uniform isotropic or nematic state to the
non-uniform final state.

Selecting a reference fluid of zero density and taking the low-density limit
of the direct correlation function equal to f(x1,x2), the Mayer function, we
obtain the Onsager approximation extended to the non-uniform fluid

Fex[ρ(x)] =
1
2

∫
dx1

∫
dx2ρ(x1)ρ(x2)f(x1,x2) . (7.167)

This approximation has been successfully applied to study the isotropic-
nematic interface by Shundyak and van Roij, in particular the analysis of par-
ticle orientations along the interface [136]. The trivial extension of (7.167) to
binary mixtures allowed also the study of the isotropic–nematic and nematic–
nematic interfaces near an I–N–N triple point that can exhibit certain mix-
tures of HSCs [137, 138].

The Decoupling Approximation

Selecting as the reference fluid an isotropic fluid and carrying out a density
expansion of the direct correlation function around this reference fluid (7.166)
leads to the approximation

Fex[ρ(x)] = Fex[ρ0] + μex[ρ0]
∫

dx1Δρ(x1)

− 1
2
kT

∫
dx1

∫
dx2c(|r1 − r2|, Ω̂, Ω̂1, Ω̂2; ρ0)Δρ(x1)Δρ(x2) ,

(7.168)

which has been used as the starting point for studies of the smectic [139]
and crystalline [140, 141, 142] phases. However, the function c(|r1 − r2|,
Ω̂, Ω̂1, Ω̂2; ρ0), the direct correlation function for the isotropic fluid of den-
sity ρ0, is in general unknown (except for the case of HS where we have the
PY approximation). Different attempts to approximate this function are all
based in the known PY analytic form of the HS direct correlation function.
For example, the first recipe was proposed by Pynn, who approximated the
direct correlation function of the isotropic HR fluid by the HS PY correlation
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function of the scaled distance [143, 144], taking the contact distance between
two HR σ(Ω̂, Ω̂1, Ω̂2) as the scaling factor, i.e.

c(r, Ω̂, Ω̂1, Ω̂2; η) = cPY

(
r

σ(Ω̂, Ω̂1, Ω̂2)
; η

)
. (7.169)

This single anisotropic dependence is known as the decoupling approximation.
However, in the limit r → 0, the correlation function becomes unphysically
isotropic. To circumvent this problem, Baus and coworkers [145, 146] intro-
duced the following approximation for the hard ellipsoid correlation function

c(r, Ω̂, Ω̂1, Ω̂2, η) =
Vexcl(Ω̂1, Ω̂2)

v0
cPY

(
r

σ0
; η
)
, (7.170)

with v0 = 4πσ3
0/3, the excluded HS volume selected to be equal to the ellip-

soid volume (σ3
0 = a2b). Again, the angular and translational dependence are

decoupled.

Weighted Density Approximations

Another route to extend the DF theory to the study of non-uniform phases
was developed by Somoza and Tarazona [147, 148, 149] and Poniewierski and
Ho�lyst [150, 151]. Both approximations are based on the WDA. Both theo-
ries introduce the anisotropic correlations through a new weight w(r, Ω̂1, Ω̂2)
which takes care of the orientations of the interacting particles. Somoza and
Tarazona selected for the weight the Mayer function f(r, Ω̂, Ω̂′) and imposed
the requirement the functional recovered the Onsager limit at low densities.
Thus, if we define the number of HR which interact with a given particle
placed at r and oriented along Ω̂ as

N(r, Ω̂) =
∫

dr′
∫

dΩ̂′ρ(r′, Ω̂′)f(r − r′, Ω̂, Ω̂′) (7.171)

and the number of interacting rods in the parallel particle approximation
(considering that all of them have the symmetry of an ellipsoid of revolution
with the same volume)

NPHE(r) =
∫

dr′ρ(r)fPHE(r − r′) , (7.172)

with ρ(r) =
∫

dΩ̂ρ(r, Ω̂), the proposed functional is defined by

Fex[ρ(r, Ω̂)] =
∫

dr

∫
dΩ̂ρ(r, Ω̂)ψCS[ρ̄(r)]

N(r, Ω̂)
NPHE(r)

, (7.173)

where the CS-WDA for a fluid of PHEs was selected to calculate the free
energy per particle. Thus, the angular correlations are taken through the
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scaling factor N(r, Ω̂)/NPHE(r). It should be noted that this approximation
recovers Parson’s approach for uniform fluids. The aspect ratio of the reference
hard ellipsoid was calculated by also requiring that its average tensor of inertia
be proportional to that of the HSC.

Ho�lyst and Poniewierski chose the weight w(r, Ω̂, Ω̂′) = f(r, Ω̂, Ω̂′)/(2Biso
2 )

which satisfies the normalization condition
∫

dr〈〈ω(r, Ω̂, Ω̂′)〉〉 = 1, with the
angular brackets meaning the double angular average with respect to the uni-
form isotropic distribution function h(Ω̂) = 1/(4π) [150, 151]. Thus, the
weighted density is calculated through

ρ̄(r) =
∫

dr′ρ(r′)
〈〈
w(r − r′, Ω̂, Ω̂′)

〉〉
, (7.174)

where the double angular average is now with respect to the orientational dis-
tribution functions h(r, Ω̂) and h(r′, Ω̂′), respectively. The free energy func-
tional in this approximation is calculated as

βFex[ρ(r, Ω̂)] =
∫

drρ(r)ψ(ρ̄(r)) , (7.175)

with the excess free energy per particle

ψ(ρ) = ρBiso
2 + ψCS(ρ) − 4η , (7.176)

which recovers the exact second virial form for the isotropic fluid.
Phase diagrams of HSC’s including isotropic, nematic and smectic phases

were calculated using both theories. The nematic–smectic transition was cal-
culated through functional minimization of the Somoza–Tarazona functional
and through bifurcation analysis of the Poniewierski–Ho�lyst functional. The
transition densities and order parameters of the smectic phase compare rea-
sonably well with simulation results for κ = 5. The Somoza–Tarazona theory
predicts a N–Sm tricritical point located at L/D = 50 and a triple I–N–Sm
coexistence at L/D = 3 in agreement with simulations. This model was also
successfully implemented in the study of the isotropic–nematic interface of
HSCs by Velasco et al. [152].

7.11 Fundamental Measure Theory
for Anisotropic Particles

The first attempt to extend the FMT to hard convex anisotropic bodies was
made by Rosenfeld [153]. He realized that the exact decomposition of the
Mayer function between two HS of different radii in terms of the one-particle
weights w(α)

μ (r) can be regarded as the direct application of the Gauss–Bonnet
theorem of differential geometry [154]. This theorem constitutes one of the
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fundamental results in the theory of surfaces and relates the average over
a surface of its Gaussian curvature to a topological property of the surface
called its Euler characteristic. If a convex body is formed by the intersection
volume between two particles μ and ν, then the Gauss–Bonnet theorem says
that Euler characteristics of the surfaces of this intersection volume can be
obtained as

4πfμν(r) =
∫∫

∂μ∩ν

KμdSμ +
∫∫

∂ν∩μ

KνdSν +
∫

∂μ∩∂ν

[
k(μ)

g + k(ν)
g

]
dl ,

(7.177)

where ∂μ∩ ν is the surface of that part of body μ which is inside body ν (the
same definition works for ∂ν ∩ μ), while ∂μ ∩ ∂ν is the closed curve obtained
by the intersection of both surfaces. Kμ and Kν are the Gaussian curvatures
of surfaces of μ and ν, while k(μ)

g and k(ν)
g are their geodesic curvatures along

their common intersection curve. The first two integrals are surface integrals,
while the third one is a line integral. For spheres, it can be shown that

k(μ)
g =

Hμ [1 − uμ · uν ]
|uμ × uν |

, (7.178)

with Hμ the mean curvature of the surface of body μ, and uμ its unit external
normal.

If we insert this expression in (7.177), we end up with the decomposition
of the Mayer function in terms of a sum of convolutions between one-body
weights that defines Rosenfeld’s original FMT [13], cf. Eq. (7.65).

The use of (7.178) for any convex body is of course an approximation
firstly proposed by Rosenfeld to construct a fundamental measure functional
for anisotropic hard bodies. Accordingly, the structure of the functional is
exactly the same as his first proposal for HS mixtures (7.113)–(7.115) but
with the extended weights

w(3)
μ (r) = Θ(r − |Rμ(Ω̂)|), w(2)

μ (r) = δ(r − |Rμ(Ω̂)|), (7.179)

w(2)
μ (r) = uμδ(r − |Rμ(Ω̂)|), w(0)

μ (r) =
Kμ

4π
w(2)

μ (r) , (7.180)

w(1)
μ (r) =

Hμ

4π
w(2)(r), w(1)

μ (r) =
Hμ

4π
w(2)

μ (r) , (7.181)

where Rμ(Ω̂) is the radius vector from the center of body μ with orientation
Ω̂ to its surface. Once the parametrization of the surface is given, we can cal-
culate the Gaussian Kμ and mean curvature Hμ of body μ using the standard
formulas from differential geometry [154]. The weighted densities are obtained
by convoluting the density profiles with (7.179)–(7.181) and integrating the
result over Ω̂
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n(α)(r) =
∑

μ

∫
dΩ̂ρμ ∗ w(α)(r, Ω̂), α = 0, 1, 2 (7.182)

v(α)(r) =
∑

μ

∫
dΩ̂ρμ ∗ w(α)(r, Ω̂), α = 1, 2 (7.183)

η(r) =
∑

μ

∫
dΩ̂ρμ ∗ w(3)(r, Ω̂). (7.184)

If we impose to the functional that it recovers the DI-FMT form (7.113),
(7.114) and (7.120)–(7.121) for the HS limit, we also need to introduce
the second-rank tensors Tμ(r) with components (Tμ)ij (r) = u

(μ)
i u

(μ)
i δ(r −

|Rμ(Ω̂)|), with u(μ)
i (i = x, y, z) the external unit normals components. With

this definition and the Eqs. (7.179)–(7.181), the free energy density obtained
from the DI-FMT can in principle be used to obtain a fundamental measure
functional for general convex bodies.

This approximation gives the exact second virial coefficient for the isotropic
fluid

Biso
μν =

1
2
[
Vμ +AμR̄ν + R̄μAν + Vν

]
, (7.185)

with Vμ, Aμ and R̄μ = 1/(4π)
∫

∂μ
HμdSμ, the volume, surface area and mean

curvature radius of body μ, respectively. The calculation of the direct cor-
relation function from this generalized functional gives an expression with
different terms proportional to ΔVμν , ΔAμν and ΔRμν , the volume, the sur-
face area and the mean curvature radius of the intersection of the two bodies,
which is consistent with the PY approximation. However, the low density
term gives only an approximation for the Mayer function fμν . One can think
that this is a minor fault of the present theory, unfortunately, the substitu-
tion of the exact Mayer function by the approximated one in terms of a sum
of convolutions of single body weights has as a consequence that the Fourier
transform of the direct correlation function at the zero wave vector q = 0 is
always isotropic [155]. This in turn means that the isotropic fluid is always
stable with respect to an orientationally ordered phase (as the nematic phase),
which is obviously unphysical.

To solve this problem, different approximations for the direct correlation
function of anisotropic fluids were worked out by Chamoux and Perera [155].
One of them is obtained from the second functional derivative of the ex-
tended Rosenfeld functional replacing its low-density term by another one
proportional to the exact Mayer function fμν [155]. This approximation gives,
from the compressibility route 1−

∑
ij ρiρj ĉij(q = 0) = ∂(βp)/∂ρ, the scaled

particle equation of state and also exhibits an spinodal isotropic–nematic in-
stability at q = 0.

Another framework to construct DFs for anisotropic particles is based on
the deconvolution of the exact Mayer function in terms of weights that can
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also depend on the orientations of both particles. If we renounce to have single
body weights, then the decomposition can be exactly obtained, but for some
special limits of the particle anisotropy. This approximation will be described
later.

7.11.1 FMT for Parallel Hard Cubes

Beside HS, there is another particle geometry for which a FMT has been
consistently developed, namely the case of a fluid of parallel hard cubes
[156, 157, 158]. We briefly describe the theory here. The Mayer function
between two parallel cubes of edge lengths σμ and σν is

fμν(r) = Θ(σμν − |x|)Θ(σμν − |y|)Θ(σμν − |z|) , (7.186)

with σμν = (σμ + σν)/2. This Mayer function can be decomposed exactly in
terms of a finite sum of convolutions between one-particle weights as

fμν(r) = w(3)
μ ∗ w(0)

ν (r) + w(0)
μ ∗ w(3)

ν (r) + w(2)
μ ∗ w(1)

ν (r)

+ w(1)
μ ∗ w(2)

ν (r) , (7.187)

with the weights defined as

w(0)
μ (r) ≡ ζμ(x)ζμ(y)ζμ(z), (7.188)

w(1)
μ (r) ≡ (τμ(x)ζμ(y)ζμ(z), ζμ(x)τμ(y)ζμ(z),

ζμ(x)ζμ(y)τμ(z)) , (7.189)

w(2)
μ (r) ≡ (ζμ(x)τμ(y)τμ(z), τμ(x)ζμ(y)τμ(z),

τμ(x)τμ(y)ζμ(z)) , (7.190)

w(3)
μ (r) ≡ τμ(x)τμ(y)τμ(z) , (7.191)

where ζμ(x) =
1
2
δ
(σμ

2
− |x|

)
and τμ(x) = Θ

(σμ

2
− |x|

)
. Introducing two

more weights as ω(1)
μ (r) ≡ u ·ω(1)

μ (r) and ω(2)
μ (r) = u ·ω(2)

μ (r) [u = (1, 1, 1)],
the most general form of the excess part of free energy density according to a
dimensional analysis is

Φ = a0n
(0) + a1n

(1)n(2) + b1v
(1) · v(2) + a2

(
n(2)

)3

+ b2n
(2)v(2) · v(2) + cv(2) · v(2) · v(2) , (7.192)

where the weighted densities are introduced as usual, n(α)(r) =
∑

μ ρμ ∗w(α)
μ ,

v(α)(r) =
∑

μ ρμ ∗ w
(α)
μ and v · v · v ≡ v3

x + v3
y + v3

z . The coefficients ai(η),
bi(η) and c(η) are all functions of the dimensionless local packing fraction
η =

∑
μ ρμ ∗ w(3)

μ . Introducing Eq. (7.192) in the SPT differential equation
[156, 157, 158]



322 P. Tarazona et al.

−Φ +
∑
α

m(α) ∂Φ
∂m(α)

+ n(0) = (1 − η)
∂Φ
∂η

, (7.193)

with m(α) ≡ {n(α),v(α)}, we obtain a set of first-order differential equa-
tions to determine {ai, bi, c} up to the integration constants. Note that Eq.
(7.193) can be easily obtained from the usual definition of the fluid pressure
together with the identity βp = ∂Φ/∂η valid for the SPT. The density expan-
sion of the direct correlation function cij(r) obtained from (7.192) together
with the exact knowledge of the Mayer and the triangle diagrams, obtained
as sums of convolutions between single particle weights, allow us to fix all
the integration constants but one. Finally, imposing the exact dimensional
crossover to zero dimension, this constant can be determined, resulting in the
functional

Φ(3) = −n(0) ln(1 − η) +
v(1) · v(2)

1 − η
+
v(2x)v(2y)v(2z)

(1 − η)2
. (7.194)

It should be noted that the free energy evaluated at density profiles corre-
sponding to arbitrary 0D cavities exactly recovers the 0D limit, i.e. the parallel
hard cubes fluid is free from lost cases. The fundamental reason behind this
is that there are no configurations of three particles having pairwise overlap
but no triple overlap.

Based on this property, FMT functionals for hard core particles on a lattice
were constructed by the projections of the parallel hard hypercube lattice
model on different planes. The FMT for lattice model can then be reformulated
based on the exact 0D crossover, and functionals for arbitrary hard particles
on a lattice can be obtained that are free from lost cases [159, 160, 161, 162,
163, 164]. The same procedure of projecting the hard hypercube geometry
on a particular plane was recently implemented to obtain a FMT for hard
hexagons in the continuum [165]. It was shown that the number of weighted
densities necessary to obtain a functional free from lost cases is infinite. Note
that the hexagon geometry allows to have configurations of three particles
with pairwise overlap but no triple overlap.

Following the same procedure, we can obtain the 2D functional for a fluid
of parallel hard squares as

Φ(2) = −n(0) ln(1 − η) +
v(1x)v(1y)

1 − η
, (7.195)

where the 2D weights are

w(0)
μ (r) ≡ ζμ(x)ζν(y) , (7.196)

w(1)
μ (r) ≡ (τμ(x)ζμ(y), ζμ(x)τμ(y)) , (7.197)

w(2)
μ (r) ≡ τμ(x)τμ(y). (7.198)
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One-component Parallel Hard Cube Model

It is known that the equation of state of the uniform fluid obtained from the
FMT is the SPT applied to the parallel hard cubes fluid; the other only stable
phase for this model is a cubic crystal, which was calculated in [166]. For this
model, the following parametrization of density profile was used

ρ(r) = η0

(α
π

) 3
2 ∑

k

exp
[
−α(r − Rk)2

]
= Ψ0(x)Ψ0(y)Ψ0(z) ,(7.199)

Ψ0(x) = η
1
3
0

(α
π

) 1
2

∞∑
k=−∞

exp
[
−α(x− kd)2

]
, (7.200)

where Rk = kd [k = (k1, k2, k3)] are the vector positions of the nodes of the
simple cubic lattice with period d and η0 representing the particle occupancy
probability per unit cell. With this parametrization, the excess free energy
density (7.194) for the one-component parallel hard cube fluid becomes

Φ(3) = n(0)

[
− ln(1 − η) +

3η
1 − η

+
η2

(1 − η)2

]
, (7.201)

with n(0)(r) = n(0)(x)n(0)(y)n(0)(z), η(r) = η(x)η(y)η(z), where

n(0)(x) =
1
2

[
Ψ0

(
x− σ

2

)
+ Ψ0

(
x+

σ

2

)]
, (7.202)

η(x) =
1
2

[
Ψ1

(
x+

σ

2

)
− Ψ1

(
x− σ

2

)]
, (7.203)

Ψ1(x) = η
1
3
0

∑
k

erf
[√
α (x+ kd)

]
. (7.204)

Thus, the total free energy per unit volume βF/V is minimized with re-
spect to α and η0 to find the equilibrium density profile. The mean density
ρ, the cell period d and the occupancy probability η0 are related through
ρ = η0d

−3. The fluid–solid transition is continuous and occurs at η = 0.314,
with a fraction of vacancies of 31% [166]. The equation of state for the solid
phase compares very well with simulation results for mean packing fractions
η > 0.5 as can be seen in Fig. 7.15. However, the simulations predict a fluid–
solid continuous transition at η ≈ 0.48, higher than the FMT-predicted value
of 0.314 [168]. As for HS, the fluid phase is to blame on this discrepancy
in the FMT prediction for crystallization. It is known that the SPT equa-
tion of state for the fluid of parallel hard cubes deviates from simulation
results at intermediate densities ∼ 0.4. In this sense, the situation is even
worse than for the HS fluid because the exact virial expansion has negative
coefficients while the expansion of the SPT equation of state has only positive
coefficients.
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Fig. 7.15. Equation of state of the parallel hard cube system. Solid lines correspond
to the pressure of the stable phase (fluid or solid) at a given packing fraction η.
The dotted line is the unstable fluid branch beyond freezing. Full squares are the
simulations of [167] and empty squares those of [168]

Binary Mixtures of Parallel Hard Cubes

The fundamental measure functional defined trough the free energy density
(7.194) was used in the study of the demixing transitions in mixtures of par-
allel hard cubes [166]. Note that again the uniform limit of that functional
coincides with the SPT result, and it was shown that for an asymmetry ra-
tio r ≡ σ1/σ2 > 9.98, the parallel hard cube mixture phase separates in two
phases, each one richer in one of the components [166]. In Fig. 7.16(a), we
show the fluid–fluid coexistence for different mixtures. The same figure also
shows the spinodal curves of the fluid–solid transition. It can be seen in the
figure that the fluid–fluid demixing is always preempted by a fluid–solid phase
separation. The same analysis for parallel hard square mixtures, using the uni-
form limit of (7.195), shows that the demixing is forbidden in 2D. However,
using the SPT for a mixture of freely rotating hard squares, it can be shown
that demixing occurs between an isotropic fluid and a tetratic nematic phase
for r > 4 [169, 170, 171]. The last one, also observed in simulations [172], is
an orientationally ordered phase invariant under rotations of π/2 (the tetratic
symmetry), i.e. in terms of the orientational distribution function, we have
h(θ) = h(θ + π/2) [169]. In Fig. 7.16 (b), we show the demixing scenario of
a mixture of freely rotating hard squares with asymmetry ratio r = 10 [173].
We can observe the presence of a lower and upper critical points, apart from
a tricritical point below which the isotropic–tetratic nematic transition is of
second order.

These results show that certain cautions should be taken in the extrap-
olation of results given from any DF theory of parallel anisotropic particles
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Fig. 7.16. (a): Phase diagram of a binary mixture of parallel hard cubes. Packing
fraction η versus fraction of volume of big species xv ≡ η1/η. The numbers label the
asymmetry ratio r. Solid lines show the binodals, while dashed lines represent the
fluid–solid spinodals. The positions of critical points are shown with a dotted line.
(b): Phase diagram of freely rotating hard squares for r = 10. Pressure in reduced
units versus the molar fraction of big species x. Dashed line shows the continuous
isotropic–tetratic nematic transition. Open circles show the critical points

to predict the phase behavior of freely rotating particles. The restriction of
orientations allows us to obtain a consistent FMT for parallel hard cubes
but paying the price of losing information about the orientational ordering
phenomena inherent to the particle anisotropy.

The Adhesive Parallel Hard Cube Fluid

The parallel hard cube model is far from being a realistic model for particle
interactions in colloids or in molecular fluids. However, it has been success-
fully applied to clarify the entropic mechanism behind the fluid–solid demixing
that the highly asymmetric binary mixture of hard core particles usually ex-
hibit [174, 175]. For this purpose, a DF for an adhesive hard cube fluid was
obtained taking the limit of infinite asymmetry σ2/σ1 → 0 of the functional
Υ (μ2, [ρ1]) = F [ρ1, ρ2] − μ2

∫
drρ2(r) (the thermodynamic potential for the

semi-grand ensemble), where 1 and 2 label the solute and solvent particles,
respectively. The chemical potential of the smaller component μ2 is fixed to a
constant value. As a result, an effective one-component functional for the so-
lute particles is obtained with the following expressions for excess free energy
density in dimensions 2 and 3

Φ(D)
eff = Φ(D) + Φ(D)

ad , (7.205)
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Φ(2)
ad =

z

8

[
g1(z)|∇η|2 − 4g2(z)v(1) · v(1) + 8g3(z)v(1x)v(1y)

]
1 − η

, (7.206)

Φ(3)
ad =

z

8

[
|∇η|2 − 4v(2) · v(2)

]
1 − η

, (7.207)

where g1(z) = 1/(1 + z), g2(z) = (1 + z)/(1 + 2z) and g3(z) = z/(1 + 2z) are
functions of the solvent’s fugacity z = exp(βμ2). The terms Φ(D)

ad take into
account the residual depletion interaction between solute particles induced by
the solvent. The phase diagram of this 3D adhesive hard cube fluid is shown
in Fig. 7.17. The adhesiveness makes the fluid metastable with respect to
a phase separation between a close-packed crystal and an infinitely diluted
fluid. Different metastable or unstable phases are separated by spinodal lines
plotted in the phase diagram (see Fig. 7.17). If a small degree of polydispersity
Δσ ≡

√
〈σ2〉/〈σ〉2 − 1 is included to avoid the presence of the close-packed

solid, then the phase diagram exhibits a fluid–solid or solid–solid coexistence.
This result is qualitatively similar to that found in the asymmetric HS binary
mixture [176, 177, 178, 179].

7.11.2 Fundamental Measure Theory for the Zwanzig Model

It can be shown that the free energy functional for parallel hard hypercube
systems in dimension D can be obtained from the 0D free energy density

0.0 0.2 0.4 0.6 0.8 1.0
η

10–1

100

101

z–1
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MS

U

Fig. 7.17. Inverse of the solvent fugacity z−1 versus solute packing fraction η of
the infinitely asymmetric binary mixture of parallel hard cubes. The thick solid line
separates the unstable region (U) from the metastable one; the thin one marks the
(continuous) transition from a metastable fluid (MF) to a metastable solid (MS);
the dashed one is the fluid–fluid spinodal. The dotted lines mark the fluid–solid or
solid–solid transition and the fluid–fluid metastable coexistence for a polydisperse
fluid with polydispersity Δσ = 4.5%
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Φ(0) by applying a differential operator [156, 157, 158]. Moreover, the same
expression can be used to obtain the functional corresponding to a ternary
mixture of hard parallelepipeds with restricted orientations (the orientations
are restricted to each of the cartesian axes). This result reads

Φ(D) =
∂D

∂σ(D) · · ·∂σ(1)
Φ(0)(η) , (7.208)

where the D-dimensional local packing fraction is defined as

η(r) =
∑

μ

D∏
i=1

⎛
⎜⎝

xi+σ(i)
μ /2∫

xi−σ
(i)
μ /2

dx′i

⎞
⎟⎠ ρμ(x′1, . . . , x

′
D) , (7.209)

and we have introduced the short-hand notation

∂

∂σ(i)
≡
∑

μ

∂

∂σ
(i)
μ

, (7.210)

σ
(i)
μ being the edge length parallel to the i axis of the species μ (each species

has a different orientation). This result means that we have found a FMT for
the model introduced by Zwanzig to study the isotropic–nematic phase tran-
sition by restricting the orientations of parallelepipeds to the three cartesian
axes [180, 181]. Through this approximation, the virial coefficients can be cal-
culated up to seventh order. In this way, Zwanzig proved the robust character
of the isotropic–nematic phase transition, i.e. that the theoretically predicted
transition is not a mere effect of the low-order virial expansion.

Bulk Phase Diagram

The complete phase diagram of the Zwanzig model, including not only
isotropic and nematic phases but also non-uniform phases as smectic, colum-
nar, plastic and oriented solid, has been calculated using FMT [182]. Both,
rod and plate symmetries were included in this study. For this purpose, it is
better to use a different parametrization of the density profiles which includes
all possible symmetries. The truncated Fourier series of the density profile
reads

ρμ(r) = ργμ

N∑
k

α
(μ)
k

3∏
i=1

cos
(

2π
di
kixi

)
, (7.211)

where γμ (μ = x, y, z) is the average occupancy probability of the unit cell
of species μ, α(μ)

k are the Fourier amplitudes of the same species and di (i =
1, 2, 3) are the simple parallelepipedic lattice periods in the x, y and z spatial
directions. The cut-off vector N ≡ (N1, N2, N3) is selected in such a way as
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to guarantee α(μ)
N < 10−7 for all μ. For uniaxial parallelepipeds, the nematic

order parameter S is enough to define all the coefficients γμ, because the
symmetry of the problem requires that γ⊥ = γx = γy = (1 − S)/3 and
γ‖ ≡ γz = (1 + 2S)/3. The nematic director is set parallel to the z axis. Also,
the Fourier amplitude α0,0,0 is set to unity. These density profiles should be
included in the definitions of the weighted densities n(α)(r) =

∑
μ=x,y,z ρμ ∗

ω
(α)
μ (r), v(α)(r) =

∑
μ=x,y,z ρμ ∗ w

(α)
μ (r) and η(r) =

∑
μ ρμ ∗ w(3)

μ (r). The
weights are the same functions (7.188)–(7.191) with the functions ζμ and τμ
replaced by

ζμ(xi) =
1
2
δ

(
σi

μ

2
− |xi|

)
, τμ(xi) = Θ

(
σi

μ

2
− |xi|

)
, (7.212)

with σi
μ = σ + (L− σ)δμi (L and σ being the length and width of the paral-

lelepiped with δμi the Kronecker delta). All convolutions defining n(α)(r),
v(α)(r) and η(r) are trivially computed so they are analytic functions of
the minimization variables S, d⊥, d‖ and α

(⊥,‖)
k . Note that the symmetries

of all possible phases are now conveniently included. The smectic, colum-
nar and solid symmetries have vectors k = (0, 0, k3), k = (k1, k2, 0) and
k = (k1, k2, k3), respectively.

In Figs. 7.18(a) and 7.18(b), we plot, respectively, the phase diagrams for
prolate and oblate particles calculated with FMT. Note the presence of the
discotic smectic (DS) phase, where the uniaxial particle axes are randomly
oriented in the plane of smectic layers. The stability of this peculiar phase
is due to the restriction of orientations imposed on the particle axes as was
shown by Casey and Harrowell in their MC simulation study of the Zwanzig
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Fig. 7.18. Phase diagrams of prolate (a) and oblate (b) parallelepipeds. Several
phases are labeled as I: isotropic, N: nematic, Sm: smectic, DS: discotic smectic,
C: columnar, PS: plastic solid, OS: orientationally ordered solid and POS: perfectly
orientationally ordered solid. The transition densities are labeled with different sym-
bols. The shaded areas limit the regions of two-phase coexistence
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model [183]. We should say that although the restriction of orientations seems
to be a crude simplification to treat the orientational degrees of freedoms, all
the liquid crystal phases (smectic, columnar, plastic and oriented solid) found
in the theoretical and simulation studies of freely rotating hard particles are
present in the Zwanzig phase diagram obtained from FMT. Also, the charac-
teristic aspect ratios at which the smectic and columnar phases of rods and
plates become stable (κr = κ−1

p ∼ 5) are similar to those found in simulations
of HSCs (κ ∼ 4.5) [184] and cut spheres κ ∼ 0.2 [185].

Rod-plate Polydisperse Mixture

The second virial approximation of the free energy of the Zwanzig model
has been employed to investigate the phase diagram of symmetric mixtures
of rods and plates [186]. Stimulated by theoretical calculations made in the
early 1970s [187] which show that a binary mixture of rods and plates can
stabilize a biaxial nematic phase (in which the symmetry axes of particles
of different types point along mutually perpendicular directions), van Roij
and Mulder studied the relative stability of this phase against a N–N phase
separation [186]. The FMT of the Zwanzig model has been applied to study
the effect of polydispersity on the stability of the biaxial nematic phase in a
mixture of plates and rods [188, 189]. The polydispersity was introduced in
the particle aspect ratio κ = L/σ (with L and σ the length and width of the
parallelepiped) around two values κp < 1 and κr > 1 symmetrically positioned
with respect to κ = 1. It was shown that enough amount of polydispersity
can stabilize the biaxial nematic phase even for values of κp and κr, for which
the bidisperse mixture does not exhibit this phase [188, 189]. In Fig. 7.19(a),
we show the phase diagram corresponding to a binary mixture of rods and
plates with the same particle volumes and with (κr, κp) = (5, 0.2), while Fig.
7.19(b) represents the phase diagram of a polydisperse binary mixture with
length and breath polydispersities equal to ΔL = 0.610 and Δσ = 0.302,
respectively. As we can see, enough polydispersity can stabilize the biaxial
nematic phase [the shaded region in Fig. 7.19(b)], which is not stable in the
binary mixture.

Onsager’s theory applied to the mixture of freely rotating plates and rods
also confirms the presence of the biaxial nematic phase [190, 191]. However,
the inclusion of end-effects in the expressions for the excluded volumes desta-
bilizes the biaxial phase with respect to I–N or N–N phase transitions [192].
There are also several studies employing the extension of the Parsons–Lee
theory to a mixture of freely rotating rods and plates [193, 194, 195]. The
aim of these works was to shed some light on the very rich phase behavior
of the polydisperse rod–plate colloidal mixtures observed in experiments, in
which the system can exhibit triphasic equilibrium between phases with dif-
ferent symmetries [196]. The theoretical works predicted different demixing
scenarios, some of them in qualitative agreement with experiments [193, 194,
195]. The Parsons–Lee approach for a binary mixture of rods was later ex-
tended by Cinacchi et al. to take into account also smectic inhomogeneities
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Fig. 7.19. (a): Phase diagram of a binary mixture of rods and plates with κr =
κ−1

p = 5; xr is the fraction of rods. Phases are labeled I: isotropic, N−: nematic phase
of plates, N+: nematic phase of rods, C± and S±: columnar and smectic phases of
rods (+) and plates (−). N−–N+ represents the two-phase coexistence region. (b):
Phase diagram of polydisperse mixture of rods and plates with the same aspect
ratio and length and breath polydispersities ΔL = 0.610 and Δσ = 0.302. I–N± and
I–N−–N+ represent the two-phase and three-phase coexistence regions. The shaded
area shows the region of stability of the biaxial phase (B)

[197, 198, 199]. The main results of their numerical minimization of the pro-
posed functional provided phase diagrams including demixing phase tran-
sitions between different smectics and also between smectic and isotropic
or nematic phases. For mixtures with species having very different lengths,
they found mesophases in which the shortest component is microsegregated
at the interstitials between the layers mainly formed by the large compo-
nent [197, 198, 199].

Interfacial Phase Behavior

The treatment of the spatial degrees of freedoms given by the FMT of the
Zwanzig model is very accurate, as it was shown by Bier et al. in their
theoretical study of the isotropic–nematic interface of a binary mixture of
oblate parallelepipeds [200]. Van Roij et al. studied the interface of the one-
component HR fluid confined in a slit using the Zwanzig model in the limit of
infinite elongation, i.e. with the excess part of the free energy density equal
to Φex = n1 ·n2 [201, 202]. Despite the simplicity of the model, the obtained
results are in qualitative agreement with MC simulations where the confined
fluid exhibits a biaxial nematic phase close to the walls whose length increases
with the bulk chemical potential up to a value at which a capillary nematiza-
tion of the pore occurs. This surface phase transition ends in a critical point
(a critical value for the pore width) [201, 202]. Later, Harnau and Dietrich ex-
tended this study to a binary mixture of HR by applying the Zwanzig model of
hard parallelepipeds confined in a slit geometry or in geometrically structured
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surfaces. See their recent review [203] for a compilation of works on the study
of liquid crystal interfaces, specifically those using the Zwanzig approach, for
particles with prolate and oblate symmetries.

The 2D wall–fluid interface of the HR fluid was recently studied by the
2D version of the FMT for hard rectangles with restricted orientations, Eq.
(7.195) and [204]. It was found that for a particular case of hard rectangles
having aspect ratio κ = 3, complete wetting by the columnar phase of the
wall–isotropic interface occurs. The isotropic fluid confined by two hard lines
also exhibits capillary ordering and layering transitions in analogy with the
phenomenology found in the study of the confined 3D smectic phase [205,
206]. We show in Fig. 7.20 the interfacial phase diagram (the pore width H
versus chemical potential μ) obtained from the DF minimization. The figure
shows that for chemical potentials well bellow its bulk coexistence value, the
confined fluid exhibits a first-order transition to an interfacial phase with
columnar symmetry. The 2D columnar phase is a layered phase with the
long particle axes parallel to the layers. In Fig. 7.21, we plot the coexisting
isotropic phase and the 25 layered columnar phase confined in a pore with
H/σ = 30.

For a fixed value of the pore width H and increasing the chemical potential
above its bulk coexisting value, an n− 1 → n layering transition occurs. The
capillary ordering and layering transitions coalesce in a set of triple points,
two of them shown in Fig. 7.20. The same phase diagram topology was found
in MC simulations of a confined hard-sphere fluid [207].

28 28.5 29 29.5 30

H/σ

5.5

5.6

5.7

5.8

5.9

6

βμ

C24 C25

I

βμI-C
C23

Fig. 7.20. Surface phase diagram, chemical potential μ versus pore width H,
of a confined hard rectangle fluid. The solid lines show the capillary isotropic
(I)–columnar (C) and n − 1 → n layering transitions bellow and above the bulk
chemical potential μIC , respectively. The regions of stability of the isotropic and
columnar interfacial phases with 23, 24 and 25 layers are shown
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Fig. 7.21. Density profiles of the coexisting isotropic (a) and columnar (b) inter-
facial phases

7.11.3 Fundamental Measure Theory for Freely Rotating Hard
Anisotropic Particles

This subsection is devoted to present the recent advances of the extension of
the FMT to freely rotating particles. Cinacchi and Schmid proposed a DF
approximation for general anisotropic particles interpolating between Rosen-
feld’s DF for HS and Onsager’s DF for HR [208]. However, the first attempt
to construct a DF with the use of the exact deconvolution of the Mayer func-
tion was made by Schmidt for a mixture of HS and infinitely thin HR [209].
In this model, the interaction between the spheres and needles is also hard,
i.e. the pair interaction potential is zero if they do not overlap and is infinite
otherwise. Finally, the needles do not interact with each other. The DF is con-
structed in such a way to recover the exact 0D limit for this model, which has
the form Φ(0) = (1−η−η′) ln(1−η)+η, with η and η′ the packing fractions of
the hard (spheres) and ideal (needles) particles, respectively [209]. Also, the
low-density limit of the corresponding functional (the second virial term) has
the correct form. Schmidt showed that the Mayer function between a needle
and a sphere can be calculated exactly as

fsn(r, Ω̂) = w(3)
s ∗ w(0)

n (r, Ω̂) + w(2)
sn ∗ w(1)

n (r, Ω̂) , (7.213)
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where the subindices s and n stand for spheres and needles, respectively.
The weights corresponding to HS are the same as those of the original FMT
(7.179)–(7.181) with the spherical symmetry while those for the needles cor-
respond to the Rosenfeld extension (7.179)–(7.181)

w(1)
n (r, Ω̂) =

1
4

L/2∫
−L/2

dlδ
(
r + Ω̂l

)
, (7.214)

w(0)
n (r, Ω̂) =

1
2

[
δ
(
r + Ω̂L/2

)
+ δ

(
r − Ω̂L/2

)]
, (7.215)

except the new one

w(2)
sn (r, Ω̂) = 2|v(2)

s (r) · Ω̂| , (7.216)

which depends on the position of the sphere and on the orientation of the nee-
dle. In this sense, this is not strictly a one-particle weight, but its definition
is necessary to recover the Mayer function decomposition exactly. The func-
tional for the sphere–needle fluid proposed in [209] has the form Φ = Φs +Φn,
with Φs the one-component HS free energy density (7.69)–(7.72), while Φs

includes the interaction between spheres and needles and it has the form

Φsn = −n(0)
n ln(1 − ηs) +

n
(1)
n n

(2)
sn

1 − ηs
, (7.217)

where n(α)
μ (r, Ω̂) = ρμ ∗ w(α)

μ (r, Ω̂) for μ = n, sn, while ηs(r) is the HS local
packing fraction. Thus, the excess free energy is calculated as βFex[ρs, ρn] =∫

dxΦ
(
{n(β)

α }
)
, where the integration is taken over x = {r, Ω̂}, the spatial

and angular variables. This functional was applied to the calculation of the
bulk phase diagram of the isotropic rod–sphere mixture for different values
of the aspect ratio L/σ. The phase diagrams are identical to those obtained
from the free-volume theory, which predicts a demixing transition ending in
critical points. The direct sphere–sphere correlation function obtained from
the DF is in good agreement with simulations.

To include the rod–rod interaction in the theory, Brader et al. expressed
the Mayer function between two needles as the following convolution

fnn(r, Ω̂, Ω̂′) = w(2)
nn (r, Ω̂; Ω̂′) ∗ w(1)

n (r, Ω̂′) , (7.218)

where the new weight

w(2)
nn (r, Ω̂; Ω̂′) = 16D

√
1 −

(
Ω̂ · Ω̂′

)2

w(1)
n (r, Ω̂) (7.219)

was introduced to describe the residual rod surface in the limit of large aspect
ratios [210]. Note that the new weight w(2)

nn depends on the orientations of
both needles. Thus, the new weighted density is calculated as
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n(2)
nn (r, Ω̂) =

∫
dΩ̂′ρn(r, Ω̂′) ∗ w(2)

nn (r, Ω̂′; Ω̂) , (7.220)

where, apart from the spatial convolution, the angular average with respect
to the angles defining the unit vector Ω̂′ is taken. This fact complicates the
calculations involved in the excess free energy evaluation. The new form of
the excess free energy density now becomes Φ = Φs + Φsn + Φsnn, with

Φsnn =
n

(1)
n n

(2)
nn

1 − ηs
. (7.221)

This functional was applied to study the planar fluid–fluid interface of the
HS HR mixture. The sphere and needle density profiles show either mono-
tonic or damped oscillatory behavior on the sphere-rich side of the interface,
depending on which side of the Fisher–Widom line is the bulk fluid in the
phase diagram for pure HS. On the needle-rich side, both density profiles de-
cay monotonically toward their respective bulk densities. Needles have biaxial
order (they lie preferentially parallel to the interface) on the needle-rich side,
while on the sphere-rich side they are oriented normal to the interface [210].

A further extension of the sphere–needle functional was made by
Esztermann and Schmidt to account for the first correction (of order D/L)
to the Mayer function decomposition between two HSCs [211]. This is accom-
plished by introducing four new geometric weight functions into the frame-
work. Their corresponding weighted densities, ñi, combine in the new con-
tribution ΔΦ = f({ñi})/(1 − ηs) to the excess free energy density, Φ =
Φs+Φsn+Φsnn+ΔΦ, with {ñi}, the set of new introduced weighted densities.
See the details in [211].

The same formalism was extended to propose a FMT for a ternary mixture
of HS, hard platelets and HR, with both needles and platelets of vanishing
thickness [212]. The geometric weights were constructed to ensure the exact
decomposition of the Mayer functions between different species, except that
corresponding to the sphere–platelet interaction, for which the same level of
approximation proposed by Rosenfeld for the HD fluid was used. The func-
tional in the one-component platelet limit was tested to consider the isotropic–
nematic bulk transition, which was found to be weakly first order, with values
for the coexistence densities and the nematic order parameter that compare
well with simulation results [212].

7.12 Summary

In this chapter, we have presented a review of DF theory, one of the most
important developments of the theory of liquids, whose history is strongly en-
tangled to that of the HS model. Beginning with a general description of the
conceptual framework of the theory, we have presented the most important
approximations developed to describe the thermodynamics and structure of
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the HS fluid. Rosenfeld’s FMT has been given a special treatment both be-
cause of its more involved structure and because it nowadays stands as the
most successful DF approximation. The perspective of the advances made
during the past two decades is certainly impressive: in the early 1980s, the
LDA was nearly the only available choice for the treatment of the HS packing
effects within the DF formalism, and now we have DF approximations which
may extract from ρ(r) the discreteness of the particles, to give the exact 0D
limit in a narrow cavity. Despite such impressive progress, there are challenges
ahead, which are probably beyond the scope of the FMT. The consistent im-
provement over the PY equation of state for the bulk fluid, but keeping all the
advantages of the DI-FMT for the crystal phase, would be a most important
goal for the future.

Beyond the simplest mono-component HS model, we have considered two
extensions: mixtures of HS and anisotropic hard convex bodies. The reason is
that most approximations initially developed for HS have been later general-
ized, with more or less success, in these two directions. Again, FMT plays a
crucial role in the extension to mixtures, and it has been applied not only to
ordinary additive mixtures but also to non-additive ones, of particular inter-
est in the theory of colloids and polymers. The superiority of the FMT with
respect to any other DF approximation is absolute for these systems. Before
its publication, only binary mixtures were amenable to the DF formalism and
even then with great difficulty. FMT has permitted to study multicomponent
mixtures, as well as polydisperse systems, with only a manageable level of dif-
ficulty. But it is also for mixtures that the limits of the theory become more
evident. Future workers in the field have plenty of opportunities to develop
better DF approximations for HS mixtures of very different size and to deal
with the effects of non-additivity of their excluded cores.

Finally, we have described two alternative approaches for a problem which
is qualitatively more difficult than the HS packing: the construction of den-
sity functionals for hard anisotropic bodies, beyond the generic low-density
expansion pioneered by Onsager. The first route is to try the approximate
assembly of the excellent DF for isotropic hard cores, with those magnitudes
characterizing the anisotropic pair interactions (such as the Mayer function or
the contact distance). The second approach is based on the extension of the
FMT to these systems, as it was already attempted by Rosenfeld, so that the
crucial ingredient for the non-local dependence of the free energy DF would
be the shape of a single molecule rather than the excluded volume between
two molecules. The approach has been very successful for systems of parallel
anisotropic bodies, in which the orientational degrees of freedom are frozen. A
partial extension to systems with orientational disorder has been done within
Zwanzig model for liquid crystals: hard parallelepipeds with restricted orien-
tations, which may be treated as a mixture of perfectly oriented bodies. At
this point, an interesting question arises: What kind of particle geometry is
suitable for first principles derivation of the fundamental measure functional?
A useful criterion requires that the pair overlap volume between particles



336 P. Tarazona et al.

should have the same symmetry of constituent particles. This requirement is
fulfilled for HS and hard parallelepipeds, but it does not apply to freely ro-
tating anisotropic bodies. This appears to be the fundamental reason why the
recent extensions of FMT to freely rotating anisotropic particles are forced
to make strong simplifications, like an expansion in the limit of large particle
anisotropy. Our only certainty here is that the field is open and game goes on!
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69. A. González, F. L. Román and J. A. White: J. Phys.: Condens. Matter 11,

3789 (1999)



338 P. Tarazona et al.
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