
Genetic Algorithm for Burst Detection and
Activity Tracking in Event Streams�

Lourdes Araujo1, José A. Cuesta2, and Juan J. Merelo3

1 Departamento de Sistemas Informáticos y Programación, Universidad Complutense
de Madrid, Spain

lurdes@sip.ucm.es
2 Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de

Matemáticas, Universidad Carlos III de Madrid, Spain
cuesta@math.uc3m.es

3 Departamento de Arquitectura y Tecnoloǵıa de Computadores, Universidad de
Granada, Spain

jmerelo@geneura.ugr.es

Abstract. We introduce a new model for detection and tracking of
bursts of events in a discrete temporal sequence, its only requirement
being that the time scale of events is long enough to make a discrete time
description meaningful. A model for the occurrence of events using with
Poisson distributions is proposed, which, applying Bayesian inference
transforms into the well-known Potts model of Statistical Physics, with
Potts variables equal to the Poisson parameters (frequencies of events).
The problem then is to find the configuration that minimizes the Potts
energy, what is achieved by applying an evolutionary algorithm specially
designed to incorporate the heuristics of the model. We use it to ana-
lyze data streams of very different nature, such as seismic events and
weblog comments that mention a particular word. Results are compared
to those of a standard dynamic programming algorithm (Viterbi) which
finds the exact solution to this minimization problem. We find that,
whenever both methods reach a solution, they are very similar, but the
evolutionary algorithm outperforms Viterbi’s algorithm in running time
by several orders of magnitude, yielding a good solution even in cases
where Viterbi takes months to complete the search.

1 Introduction and State of the Art

Suppose you are the marketing manager of a publishing house which has recently
released a book targeted at being a new best-seller, you have launched a mar-
keting and PR campaign and want to know its impact. One thing you can do
is to collect e-mails from public discussion forums on books and check for those
that talk about the topic the new book deals with. Once these messages have

� Supported by MEC projects TIC2003-09481-C04 (LA and JJM) and BFM2003-
0180 (JAC), CAM-UC3M project UC3M-FI-05-007 (JAC), and CAM project S-
0505/ESP/000299 MOSSNOHO (JAC).

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 302–311, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Genetic Algorithm for Burst Detection and Activity Tracking 303

been selected, you end up with a temporal sequence of events. The campaign can
be considered successful if after the targeted advertising campaign, references to
the book show up as a burst of activity in your temporal series.

In the area of “topic detection and tracking” (TDT) [1], once the document
topics have been identified, the sequence of documents for a particular topic can
be regarded and analyzed as any other temporal series. There are many natural
and social phenomena that produce such temporal series of events: seisms, books
or CDs sales, news, e-mails and citations to a scientific paper, to name a few. In
all of them, events roughly concentrate in bursts in which, loosely speaking, the
frequency of their occurrence first rises, stays there for a while and then fades
away. In a graphical representation of such sequences these bursts are more or
less visible; however, a precise automatic detection of these bursts and of the
frequency of events in them is not trivial because the sequence of events is a
stochastic process and noise hides the relevant information. Even in the middle
of the burst, events can apart from each other. On the contrary, even if there is
no such burst, a few events may be close together. Discriminating whether these
are just noise or a significant part of a burst is the real problem that we address
in this paper.

Different statistical techniques[6,3,5] have been applied to analyse temporal
changes in document streams. In particular, Kleinberg proposed in [6] a prob-
abilistic automaton to model the frequency of document arrival, e-mails with a
given topic in his case. High activity episodes or bursts correspond to intervals of
high frequency of arrival. The most probable sequence of frequencies follows from
Bayesian inference through Viterbi’s dynamic programming algorithm [4,7]. A
similar analysis using an evolutionary algorithm (EA) instead was recently pro-
posed by some of us [2].

However, there is a limitation in Kleinberg model: events can happen at any
time instant, which is true for a certain kind of them (for instance, the problem
that motivated Kleinberg, which was e-mail classification). However, the time-
scale of some events is so long that this may be too much information for a proper
modeling. For instance, low intensity earthquakes have a timescale of days; sales
are registered with a timescale of days or even weeks, and e-mails on a given
topic in a discussion forum also have a timescale of days (an accurate registering
of time leads to some modeling issues as the difference between day and night, for
instance). A typical sequence of such events consists of the number of occurrences
per day, per week, per month or other adequate time period, which is a discrete
temporal sequence that cannot be correctly modeled by Kleinberg’s model. That
is the main reason why we propose here a new automaton model for such a kind
of sequences and apply it to several data streams of this type. The search for
the most probable sequence of frequencies is made with both Viterbi’s algorithm
and an EA. When the complexity of the temporal sequence is high enough, the
latter, which we present here, is shown to perform much better, even in cases in
which Viterbi is infeasible.

The rest of the paper is organized as follows: section 2 describes the proba-
bilistic model, section 3 introduces the EA to obtain the most probable sequence

304 L. Araujo, J.A. Cuesta, and J.J. Merelo

of event frequencies, and section 4 shows the performance in applications to dif-
ferent kinds of data. Results are summarized in section 5.

2 Potts Model for Event Streams

Suppose we have an event log along T time units (days, months, years. . .) that
registers the number of events which occurred at all times t = 0, 1, . . . , T . If
events arrive at a constant average frequency, λ, independently of each other,
the number of events at any given time, n, follows a Poisson distribution

P (n|λ) = e−λ λn

n!
, n = 0, 1, 2 . . . (1)

Frequencies may be different at different times, so assuming independence of
events occurring at different times, the probability that we observe a certain
stream of events {n1, n2, . . . , nT } will be given by

P (n1, n2, . . . , nT |λ1, λ2, . . . , λT) =
T∏

t=1

P (nt|λt), (2)

where λt denotes the event frequency at time t, and P (n|λ) is given by (1).
In a typical experiment we have the stream {n1, n2, . . . , nT } and what we

want to estimate is the sequence of frequencies which these events have occurred
with. Thus we apply Bayesian inference and express

P (λ1, . . . , λT |n1, . . . , nT) =
P (n1, . . . , nT |λ1, . . . , λT)P (λ1, . . . , λT)

P (n1, . . . , nT)

=
exp

{∑T
t=1(nt ln λt − λt)

}
P (λ1, . . . , λT)

P (n1, . . . , nT)
∏T

t=1 nt!
,

(3)

where we have inserted (2) once 1 has been substituted into it.
Our problem is now to make a sensible choice of the prior P (λ1, . . . , λT), given

the situation we want to model. To begin with, we will assume that the sequence
of frequencies is a Markov process, i.e. the frequency that the events a time t have
arrived with only depends on the frequency of arrival at the previous time step.
This is, of course, a simplification; if the process that models the frequencies has
memory, its modeling is hopeless unless we have further information on it. On
the other hand, most stochastic processes in real life are Markov processes, so
this is a reasonable assumption. Therefore,

P (λ1, . . . , λT) = P (λ1)P (λ2|λ1) · · · P (λT |λT−1). (4)

For practical purposes we will assume that frequencies can only take values from
a discrete set Λ. Then we take P (λ1) = 1/E, with E the number of frequencies
in Λ, i.e. any frequency is considered as likely to be observed initially as any
other. This reflects our lack of knowledge about the initial the state. For P (λ′|λ)

Genetic Algorithm for Burst Detection and Activity Tracking 305

we make the hypothesis that if the process has frequency λ at time t − 1, then
it will tend to have the same frequency at time t; so with probability p, λ′ = λ,
and with probability 1 − p, λ′ �= λ and will equiprobably take any other value of
the frequency. Thus,

P (λ′|λ) = p δλ′,λ +
1 − p

E − 1
(1 − δλ′,λ), (5)

where δλ′,λ = 1 if λ′ = λ and 0 otherwise. A more convenient rewriting is

P (λ′|λ) =
1 − p

E − 1
(1 − δλ′,λ + eK δλ′,λ) =

1 − p

E − 1
eKδλ′,λ , (6)

where we have introduced the new parameter K = log[p(E − 1)/(1 − p)].
If we now introduce the prior (4), with these choices, into equation (3),

P (λ1, . . . , λT |n1, . . . , nT) =
exp

{∑T
t=1(nt ln λt − λt) +

∑T
t=2 Kδλt,λt−1

}

Z(K; n1, . . . , nT)
, (7)

where

Z(K; n1, . . . , nT) = E

(
E − 1
1 − p

)T−1

P (n1, . . . , nT)
T∏

t=1

nt! (8)

is a normalizing factor and therefore can also be written

Z(K; n1, . . . , nT) =
∑

{λt∈Λ}T
t=1

exp

{
T∑

t=1

(nt ln λt − λt) +
T∑

t=2

Kδλt,λt−1

}
. (9)

Expressions (7) and (9) define the well-known Potts model of Statistical
Physics [8] in a one-dimensional lattice, with λt the Potts variable at site t,
K the coupling constant and ϕ(λt) = nt ln λt − λt, for fixed nt, an external field
acting on λt.

Once we have an expression for P (λ1, . . . , λT |n1, . . . , nT) we can obtain the
desired estimation for the sequence of frequencies {λ1, . . . , λT } as that which
maximizes this probability. Since Z(K; n1, . . . , nT) is independent on the fre-
quencies and the numerator of (7) is an exponential, maximizing this probabil-
ity is equivalent to maximizing the argument of the exponential (i.e. minus the
energy of the configuration in the Potts model), namely

f(λ1, . . . , λT) =
T∑

t=1

(nt ln λt − λt) + K

T∑

t=2

δλt,λt−1 , (10)

which turns into a well-defined fitness function for an evolutionary algorithm.
Please note that the two sums have competing effects on the frequencies: the
first one gets maximized when every λt is as close as possible to nt, while the
second one reaches its maximum when all frequencies are equal. The “coupling”
K is then a parameter that tunes the “stiffness” of the estimation, i.e. the larger

306 L. Araujo, J.A. Cuesta, and J.J. Merelo

K, the more new events will be assumed to have arrived with the same frequency
as the previous ones. Playing with K we can smooth out the intrinsic noise that
the data unavoidably contain, and at the same time capture net differences in
the frequencies.

3 Evolutionary Algorithm for Event Frequency Tracking

We propose an EA to perform the search of the sequence of event frequencies
which maximizes (10). First of all, we need to estimate the model parameters.
An estimate of the minimum, λmin, and maximum, λmax, frequencies can be
λmin = (1/2)T−1, λmax = 2M , with T the longest interval without events, and
M the maximum number of events registered in a time unit. The value of E,
i.e. the number of different frequencies (states of the automaton) considered is
then given by E = λmax/λmin. Thus the possible frequencies are λα = αλmin,
α = 1, · · · , E.

The choice of p (see 5) is rather arbitrary. However, it enters the model through
K (see 6), and this parameter is rather insensitive to the precise value of p
provided it is in the range ∼ 0.3–0.7. Thus, after checking that other choices
lead to the same results, we have taken p = 0.5.

The fitness function is directly provided by (10). In what follows we define
the remaining ingredients of the EA.

3.1 Individuals and Initial Population

The most immediate representation of the individuals of our EA would be a
sequence of T frequencies, one for each time unit. Accordingly, an individual
would be a list of T genes gt, where gt ∈ {0, · · · , E} is the frequency at time
t, αt.

However, many adjacent times can be assigned the same frequency, so the
sequence of transitions can be compacted. Thus, an individual is a variable length
list, in which each position, or gene, represents a time interval with the same
frequency. Each gene is composed of a frequency and of an identifier of the first
and the last time of the interval.

g1 g2 · · · · · · · · · gf

α1, [1, t2 − 1] αt2 , [t2, t3 − 1] · · · · · · · · · αtf
, [tf , T]

The initial population of our algorithm is composed of individuals composed
of randomly generated sequences of frequency transitions. The simplest way of
creating one such sequence is to choose a few times at random and use them
to split the whole period of time into intervals, every one of which is assigned
a random frequency. Some preliminary experiments have shown, however, that
such a naive strategy gives rise to a search space much too large for the algorithm
to be efficient. Accordingly, we propose a different strategy. We again choose a
random set of times for splitting, but remove those for which the number of

Genetic Algorithm for Burst Detection and Activity Tracking 307

events in the preceding interval differ in less than 50%. Afterwards, the first
interval is assigned a random frequency and subsequent intervals are assigned a
random higher frequency if they have more events than the preceding interval
or a random lower frequency if they have less events.

3.2 Crossover Operator

We have adopted the classic one point crossover, which creates two offsprings
by splitting two individuals at a crossover point and swapping their second bits.
Then, the best offspring replaces the worst parent (steady state, elitist strategy).

There are some details that have to be dealt with, though. The crossover point
lies in genes g and g′ of both parents, respectively. Thus after swapping, unless
both g and g′ have the same frequency, each of these genes will become two, one
on the left of the crossover point and one on the right, with different frequencies.
Several strategies have been tested, but the most efficient one is to leave them
as two genes if the number of events at the crossover instant and the preceding
instant differ more than 50%; otherwise both the left and right genes are assigned
the frequency of g or g′ at random, and thus converted back in a single gene.

3.3 Mutation Operator

We have implemented three different mutation operators and each time a mu-
tation occurs one of them is applied at random. The operators are:

1. Choose a gene at random and with equal probability increment or decrement
its frequency to the next or previous one.

2. Join two consecutive genes to produce a single one with a frequency randomly
taken from one of the original genes.

3. Split a gene in two and assign a different frequency to each piece: one of them
is given the frequency of the original gene and the other one is incremented
or decremented (depending on whether the number of events is larger or
smaller than that of the other piece) a random amount. This operator is
only applied if the resulting number of events at both sides of the partition
differ more than 50%.

4 Experimental Results

The present model relies on two assumptions: (i) that events occur with a Pois-
son distribution and (ii) that frequency changes occur with a constant proba-
bility and contiguous frequencies are uncorrelated. In order to test the Bayesian
reconstruction with our EA independently of these two assumptions we have
first tested the model against data streams artificially created using Poisson dis-
tributions of different frequencies. The sequence art poisson1 presents short
periods of constant frequency and small frequency jumps, and the sequence
art poisson2 presents long periods of constant frequency and large frequency
jumps. The outcome of our EA has been compared with that of Viterbi’s algo-
rithm (an exhaustive search algorithm for Markov chains) as well as with the

308 L. Araujo, J.A. Cuesta, and J.J. Merelo

0 50 100 150 200
time

0

5

10

15

20

fr
eq

ue
nc

y

real frequencies
generated data
fit frequencies

0 200 400 600 800 1000
time

0

5

10

15

20

25

30

fr
eq

ue
nc

y

real frequencies
generated data
fit frequencies

(a) (b)

Fig. 1. Artificial sequences created to test the EA: art poisson1 (a), and art poisson2
(b). We plot the exact sequence of frequencies (full lines), the number of events gener-
ated with this sequence along 200 (a) or 1000 (b) time steps (dots), and the result from
the EA as well as Viterbi’s algorithm (dashed line; both results are indistinguishable
in the plot).

exact sequence of frequencies. Both algorithms have been implemented in C++
and run on a Pentium IV 2.4MHz and 1Gb of memory running Linux. Results
appear in Figure 1. First of all, we can observe that Viterbi’s algorithm repro-
duces with high accuracy the sequence of frequencies, which proves the validity
of the Bayesian inference applied to this model, but the EA yields results which
are indistinguishable from them, which proves the validity of the EA —at least
for these simple sequences.

The next step taken has consisted in tuning the parameters of the EA. For
this purpose we have chosen art poisson2. Figure 2 shows the final fitness at-
tained by the EA for different population sizes (a) as well as its evolution with
time for a fixed population (b). Plotted data are averages over 5 different EA
runs. Figure 2(a) shows that fitness improves with the population size for any
setting of the remaining parameters, although beyond 103 individuals and using
intermediate values for crossover and mutation rates, no further improvement is
obtained. Figure 2(b) shows the fast increase of fitness to its maximum, which
is faster the larger the population is (although actual differences are negligi-
ble). Figure 3 shows the effect of crossover and mutation on the fitness, also
for art poisson2. It can be observed that the best results are obtained with a
crossover rate ∼ 30–60% and a mutation rate ∼ 15–25%.

4.1 Results on Real Data

We have applied our EA to real streams of events of very different nature. The
first one, shown in Figure 4, provides the daily number of earthquakes of mag-
nitude ≥ 2 which occurred in Spain in the period 2002/01/01–2004/11/221.
Figure 4(a) illustrates the fit produced by the EA with 103 individuals, a 30%
1 Data taken from the “Advance National Seismic System Catalog”, web page

www.ncedc.org/cnss/catalog-search.html.

Genetic Algorithm for Burst Detection and Activity Tracking 309

0 500 1000 1500 2000
population size

14
57

5
14

60
0

14
62

5
14

65
0

14
67

5

fi
tn

es
s

%X=30, %M=5
%X=50,%M=15
%X=40,%M=30

0 500 1000 1500 2000 2500 3000
generations

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

fi
tn

es
s

PS=200
PS=500
PS=1000
PS=2000

(a) (b)

Fig. 2. (a) Final fitness attained with different population sizes for several values
of crossover and mutation rates. (b) Evolution of the fitness along 104 generations
(crossover rate = 50%, mutation rate = 15%), for different population sizes.

0 20 40 60 80
crossover rate

14
60

0
14

62
5

14
65

0
14

67
5

14
70

0

fi
tn

es
s

PS=200
PS=500
PS=1000

0 10 20 30 40 50 60
mutation rate

14
62

0
14

63
0

14
64

0
14

65
0

14
66

0

fi
tn

es
s

PS=200
PS=500
PS=1000

(a) (b)

Fig. 3. Fitness reached with different values of the crossover rate (with a 15% of mu-
tation) (a) as well as of the mutation rate (with a 50% of crossover) (b), for several
population sizes. Total number of generations: 104.

of crossover, a 5% of mutation and run for 5 × 103 generations. Figure 4(b) is a
cumulative plot of the same results. The goodness of the fit is more evident in
this latter plot, so the remaining data are plotted using this representation. The
second and third set of data are formed by the comments on ‘blog’ and ‘Google’,
respectively, sent to all blogs hosted in Blogalia (http://blogalia.com) during the
period January 2002-January 2006. A cumulative plot of these data, as well as
the fits produced by the EA with 103 individuals, a 50% of crossover, a 15% of
mutation and run for 104 generations, appear in Figure 5. Despite being data of
a very different nature, the fit is as good as that for the earthquakes. One of the
most important aspects to remark about our experiments is the comparison of
the execution times needed by the EA and by the Viterbi’s algorithm. As it can
be seen in Table 1, Viterbi required about two orders of magnitude more time to
reach the solution than the EA. In fact, in two of the cases Viterbi was stopped

310 L. Araujo, J.A. Cuesta, and J.J. Merelo

0 500 1000 1500 2000 2500 3000
time

0

20

40

60

80

fr
eq

ue
nc

y

measurements
fit

0 500 1000 1500 2000 2500 3000
time

0
10

00
20

00
30

00
40

00

fr
eq

ue
nc

y

data cumulative sum
fit cumulative sum

(a) (b)

Fig. 4. Fit to the daily number of earthquakes of magnitude ≥ 2 which occurred in
Spain in the period 2002/01/01–2004/11/22.

0 1000 2000 3000 4000 5000
time

0
10

00
20

00
30

00
40

00

fr
eq

ue
nc

y

data cumulative sum
fit cumulative sum

0 1000 2000 3000 4000
time

0
20

0
40

0
60

0
80

0

fr
eq

ue
nc

y

data cumulative sum
fit cumulative sum

(a) (b)

Fig. 5. Time sequence of comments on ‘blog’ and ‘Google’ during the period January
2002-January 2006

without reaching a solution, and the time to get it was estimated extrapolating
from the time required to compute every time step. The main reason for such
an impressive improvement in performance is the fact that the EA conducts a
search very much guided by the heuristics on the particular problem under study
that can be implemented in the evolution operators (in our case, for instance, the
way crossover and mutation are implemented eliminates trials which assign dif-
ferent frequencies to segments with similar number of events). This dramatically
reduces the size of the search space, so much as to render feasible problems that

Table 1. Execution times required by the EA and estimated for Viterbi

Viterbi EA
earthquakes 7140862 s (> 82 days) 27514.2 s (7.64 hours)
coment blogs 697412 s (> 8 days) 25139.3 s (7.00 hours)
coment google 237800 s (> 2 days) 35609.4 s (9.89 hours)

Genetic Algorithm for Burst Detection and Activity Tracking 311

would not be so with a standard algorithm like Viterbi’s. These two elements:
the accuracy of the results, and the dramatic increase in performance, justify
the application of an EA to this problem.

5 Conclusions

In this paper we have proposed a model for detection and tracking of bursts in
data streams coming from a wide range of problems. The model applies to those
problems which are well represented by a discrete temporal series where we have
a log of the number of events every time unit (day, week, month, year. . .). We
model event occurrences by Poisson distributions and apply Bayesian inference
to find the sequence of Poisson parameters that maximizes the likelihood. The
problem is shown to be equivalent to minimizing the energy of the well-known
Potts model of Statistical Physics. We use the negative of this energy as the
fitness of a special purpose evolutionary algorithm to solve this problem, and
apply it to streams of data obtained from earthquake detection and from we-
blog comments. The results are very similar to those obtained from Viterbi’s
algorithm, which is guaranteed to find the absolute maximum of such problems.
However, execution times for the evolutionary algorithm are about two orders of
magnitude smaller than those employed by Viterbi, thus leaving the evolution-
ary algorithm as the only available tool to reach a solution in a reasonable time
for real collections of data.

References

1. James Allan. Topic Detection and Tracking: Event-Based Information Organization.
Kluwer Academic Publishers, 2002.

2. Lourdes Araujo and Juan J. Merelo. Automatic detection of trends in dynamical
text: An evolutionary approach, 2006.

3. Ella Bingham, Ata Kabán, and Mark Girolami. Topic identification in dynamical
text by complexity pursuit. Neural Process. Lett., 17(1):69–83, 2003.

4. G. D. Forney. The Viterbi algorithm. Proceedings of The IEEE, 61(3):268–278,
1973.

5. Mark Girolami and Ata Kaban. Simplicial mixtures of Markov chains: Distributed
modelling of dynamic user profiles. In Sebastian Thrun, Lawrence Saul, and Bern-
hard Schölkopf, editors, Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA, 2004.

6. J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. 8th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pages 91–101. ACM,
2002.

7. Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. In Readings in speech recognition, pages 267–296. Morgan
Kaufmann Publishers Inc., 1990.

8. F. Y. Wu. The potts model. Review of Modern Physics, 54:235–268, 1982.

	Introduction and State of the Art
	Potts Model for Event Streams
	Evolutionary Algorithm for Event Frequency Tracking
	Individuals and Initial Population
	Crossover Operator
	Mutation Operator

	Experimental Results
	Results on Real Data

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

