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A B S T R A C T

A quantitative characterization of the relationship between molecular sequence and structure is essential to
improve our understanding of how function emerges. This particular genotype-phenotype map has been often
studied in the context of RNA sequences, with the folded configurations standing as a proxy for the phenotype.
Here, we count the secondary structures of circular RNAs of length n and calculate the asymptotic distributions
of different structural moieties, such as stems or hairpin loops, by means of symbolic combinatorics. Circular
RNAs differ in essential ways from their linear counterparts. From the mathematical viewpoint, the
enumeration of the corresponding secondary structures demands the use of combinatorial techniques additional
to those used for linear RNAs. The asymptotic number of secondary structures for circular RNAs grows as
a nn −5/2, with a depending on particular constraints applied to the secondary structure. As it occurs with linear
RNA, the abundance of any structural moiety is normally distributed in the limit n → ∞, with a mean and a
variance that increase linearly with n.

1. Introduction

Notwithstanding the important role that selection has traditionally
played in evolutionary theory, evolution is not possible if selection has
not variation to act upon. Thus mutations —widely understood as
imperfect replications— are the fuel to evolutionary dynamics. But
mutations act at the level of the genotype whereas selection acts at the
level of the phenotype —the physical manifestation of the genotype—,
and the translation from one to the other —the so-called genotype-
phenotype (GP) map— is far from trivial (Wagner and Zhang, 2011).
Most mutations have no effect on the phenotype (they are neutral),
whereas occasionally a mutation has a dramatic (mostly deleterious but
sometimes beneficial) phenotypic effect. Thus, evolutionary dynamics
is critically affected by the structure of the GP map (Alberch, 1991).

Understanding the GP map is a challenge for the evolutionary
community, overall because addressing this problem in real systems is
of an overwhelming complexity. Accordingly, several simplified models
have been studied to gain insights into this difficult issue (Wagner,
2011). Computationally tractable models incorporate only a few levels
among those involved in an actual GP map. They have considered
protein folding (Dill, 1985; Li et al., 1996) or protein aggregation

(Ahnert et al., 2010) at basic molecular levels, and gene-regulatory
(Ciliberti et al., 2007) or metabolic (Rodrigues and Wagner, 2009)
networks at higher functional levels. Recent models encompass differ-
ent levels at the same time (Arias et al., 2014): In contrast with simple
sequence-structure GP maps, the inclusion of different levels from
genotype to phenotype permits the emergence of properties such as
environment-dependent molecular function.

Pioneer among those models was the folding of sequences of RNA
into their secondary structure —taken as a proxy for function (Fontana
et al., 1993; Schuster et al., 1994), which likely represents the most
studied GP map to date. Folding is driven by base pair stacking mainly
and also by the formation of hydrogen bonds between CG, AU, and GU
base pairs, and the secondary structure of the molecule is determined
by its minimum free-energy configuration. Despite its apparent sim-
plicity and the inherent impossibility to capture all features of natural
GP relationships, RNA sequence-to-secondary structure maps have
properties shared by all GP maps studied to date, as the relationship
between the number of genotypes yielding the same phenotype and the
neutrality of the latter (Aguirre et al., 2011; Greenbury and Ahnert,
2015).

An important question in characterizing this GP map is how many
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different secondary structures an RNA molecule n base pairs long can
form. That problem was solved long ago, with the help of recurrence
equations and subsequent generating functions, for several variants of
the model (Waterman, 1978; Waterman and Smith, 1978; Howell
et al., 1980). Asymptotic expressions were provided when n is large
under different constraints imposed to the secondary structure —such
as having a minimum number of unpaired nucleotides in hairpin loops
or stems of a minimal given length. Another relevant question, which
represents a step forward in the relation between structure and
function, is how many secondary structures present particular struc-
tural moieties (Hofacker et al., 1998; Nebel, 2002). A prominent
example is that of short sequences with hairpin loops, which have
been shown to act as ribozymes with ligase catalytic activity under
general conditions (Fedor, 1999). This undemanding phenotype-to-
function map could have been essential in the emergence of RNA
molecules with complex activity in a prebiotic RNA world (Briones
et al., 2009). Beyond characterizing the GP map, having closed-form
expressions for the number of RNA structures with specific structural
moieties is important when comparing structure formation by natural
sequences with that of shuffled versions of the same sequence
(Seligmann, 2016a, 2016b).

The distribution of the number of different structural motifs (stems
and hairpin loops among others) has been shown to converge to a
Gaussian in the limit of large n (Reidys, 2002; Poznanović and Heitsch,
2014). Two different techniques employed to reach that goal are symbolic
methods introduced in modern combinatorics (Flajolet and Sedgewick,
2009), as in Reidys (2002), and Knudsen-Hein stochastic context-free
grammars (Knudsen and Hein, 2003), as in Poznanović and Heitsch
(2014). In an exhaustive work Reidys (2002) tackled in depth the
properties of RNA folded structures bearing a type of tertiary interactions
known as pseudoknots. The functional form of the number of structures
with pseudoknots as a function of sequence length n is of the general form
a nn b− , with a ∈ + and b ∈ + —their values depending on restrictions
put on the folded structure. An important constraint is the complexity of
pseudoknots, which conditions the mathematical description of the
problem. Specifically, folded RNA molecules are first reduced to a core
skeleton containing information only on the pseudoknot architecture of
the fold. Generating functions for the number of possible alternative core
structures with the previous architecture are derived and, subsequently,
full folds are recovered by reintroducing stems and unpaired nucleotides
in all possible compatible positions —through composition of suitably
defined generating functions. Eventually, the total number of structures
with the required pseudoknot properties and other possible structural
constraints is obtained. Further details can be found in Reidys (2002).
This tricky procedure for structures with pseudoknots is not necessary in
the case of plain secondary structures, as we show here. Application of
symbolic combinatorics to the latter case serves as an introduction to the
calculation of the number of secondary structures for circular RNA
sequences. As will be shown, particular properties of circular RNA
demand the introduction of combinatorial techniques beyond those
needed to enumerate open RNA sequences —with or without pseudo-
knots.

Circular RNAs form covalently closed continuous loops with
specific properties that distinguish them from linear RNAs. Among
others, circular RNAs are small and non-coding in most cases, and have
higher resistance to exonuclease-mediated degradation and higher
structural stability. Viroids, first described half a century ago (Diener
and Raymer, 1967), are a relevant example of circular RNA. These
pathogenic, naked RNA molecules of a few hundred nucleotides in
length infect plants, occasionally causing strong symptoms. The
mechanisms implied in cell entry, replication and propagation are still
partly unknown. Viroids present secondary structures with highly
conserved regions that fall within two structural classes: rod-like and
branched folds. The secondary structure of viroids plays an essential
role in chemical function (Flores et al., 2012) and acts as a buffer to
control the structural effect of point mutations (Manrubia and Sanjuán,

2013). Virusoids are another class of circular RNAs that depend on
helper viruses for replication and encapsidation. They are related to
viroids, though virusoids code for some proteins. Two interesting
examples in this class of hyperpathogens are Hepatitis delta virus
(Saldanha et al., 1990) and the smallest known circular RNA in the
viroid-virusoid class, with 220nt (AbouHaidar et al., 2014). As in
viroids, the secondary structure of virusoids is highly compact and
constrained by function. Circular RNAs encoded in animal genomes, on
the other hand, are currently a hot topic (Memczak et al., 2013).
Indeed, recent studies report a previously unsuspected abundance of
circular RNAs, which awakes the hunch that they must play main
functional roles in the cell (Salzman, 2016). While some of those
circular RNAs have gene regulatory activity, the function performed by
thousand of others is as yet unknown (Memczak et al., 2013; Jeck and
Sharpless, 2014). Therefore, a theoretical understanding of the struc-
tural diversity of secondary structures of circular RNAs appears as a
timely endeavor, further considering that closed RNA sequences have
folding restrictions different from those of their linear counterparts.
Formal studies on the folding properties of circular RNAs are limited,
to the best of our knowledge, to the case of symmetric sequences
(Hofacker et al., 2012), whose contribution to the total number of
sequences and folds asymptotically vanishes as n grows. As we
demonstrate here, specific properties of circular RNA entail a com-
paratively lower number of secondary structures and lead to different
asymptotic behavior.

The paper is organized as follows. Section 2 briefly introduces those
aspects of the symbolic method (Flajolet and Sedgewick, 2009) relevant
for our study. In Section 3.1 we derive the generating function for the
number of secondary structures with stems of length at least s and
hairpins with at least m unpaired nucleotides, and recover the known
expressions in the limit n → ∞. Section 3.2 contains the calculation of
the frequency of structures with a given number of base pairs and is
followed by the simultaneous count of the number of hairpins in
Section 3.3. The method extends to multivariate analysis suitable for
counting combinatorial structures with any number of constraints, in
agreement with results obtained by Poznanović and Heitsch (2014).
Though these sections mostly review results that in one or another
form can be found in the mathematics literature, we believe it is
convenient to rephrase certain aspects that are later used, in order to
convey a biological intuition of how calculations are performed and to
make this work self-contained. Section 3.4 introduces the main novelty
of this work, that is, the enumeration of secondary structures in
circular RNAs, followed by a derivation of the distributions of base
pairs and hairpins as a function of n in Section 3.5. We close with a
brief discussion.

2. Methods

A full account of symbolic methods in combinatorics can be found
in Part A of Flajolet and Sedgewick's (2009) book. We provide a very
brief account in this section. Readers familiar with this method can
safely skip this section.

A combinatorial class will be a set of elements on which a size
function |·| is defined. The counting problem is to obtain an, the
number of elements a ∈ such that a n| | = . A related problem is to
obtain the generating function

∑ ∑A z a z z( ) = =
n

n
n

a

a

∈

| |

(1)

(n runs on all possible sizes) whose coefficients yield the sequence a{ }n .
The second writing for A(z) turns out to be very useful when thinking
about these problems, because it means that every element of
contributes to the sum defining A(z) with as many factors z as its size.

If a second function is defined on the elements of , namely
φ a l( ) = (representing any other feature of a), we can introduce the
bivariate generating function
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∑ ∑ ∑A z u a z u z u( , ) = = .
n l

n l
n l

a

a φ a
,

∈

| | ( )

(2)

Clearly an l, counts the number of elements in of size n and feature
value l, and the second writing can be interpreted as every element
a ∈ adding to the generating function —besides the factor zn— as
many factors u as the value of the feature.

We can combine combinatorial classes to obtain new combinatorial
classes. We first have the combinatorial product = × , which is
the set made of the ‘composite objects’ ab, where a ∈ and b ∈
(notice that ab and ba are in general different objects). The size of the
set is defined as ab a b| | = | | + | | (the size of the composite object is the
sum of the sizes of the components). Accordingly,

∑ ∑ ∑ ∑ ∑C z z z z A z B z( ) = = = = ( ) ( ).
c

c

a b

ab

a b

a b

∈

| |

∈ ∈

| |

∈ ∈

| |+| |

(3)

Another operation is the combinatorial sum, = + , also
referred to as disjoint union. is the union of and provided the
elements of these two sets are distinguishable (in other words, it is as if
we paint the elements of these two sets with two different colors and
then make the union of them both). Therefore c ∈ is either an
element of or an element of and inherits the corresponding size.
Hence,

∑ ∑ ∑C z z z z A z B z( ) = = + = ( ) + ( ).
c

c

a

a

b

b

∈

| |

∈

| |

∈

| |

(4)

There are further more complex operations with combinatorial
classes. Thus

= SEQ( )≔ + + × + × × + …, (5)

where ε= { }, the class made of the null element alone (ε| | = 0), is
referred to as the sequence of , i.e., the combinatorial class made of
the null element, plus all elements of , plus all pairs of elements of ,
and so on. By applying the transformation rules for the sum and the
product

C z A z A z A z
A z

( ) = 1 + ( ) + ( ) + ( ) + ⋯ = 1
1 − ( )

.2 3

(6)

Sequences can be constrained to have composite elements just of
certain specific compositions. For instance, SEQ ( )≔ × × ⋯ ×k
(k times) is restricted to sequences made of exactly k elements of —its
generating function being A z( )k. Likewise

∑ ∑= SEQ ( ) = SEQ ( ), = SEQ ( ) = SEQ ( ),k k
j k

k k k
j

k

k≥ ≥
=

∞

< <
=0

−1

(7)

define sequences containing at least k and less than k elements of
respectively. Then

C z A z
A z

C z A z A z A z A z
A z

( ) = ( )
1 − ( )

,

( ) = 1 + ( ) + ( ) + ⋯ + ( ) = 1 − ( )
1 − ( )

,

k

k

k
k

k

≥

<
2 −1

(8)

are their corresponding generating functions.
Other interesting operations with combinatorial classes are power

sets (PSET), multisets (MSET), and cycles (CYC) (Flajolet and
Sedgewick, 2009).
PSET( ) is the class whose members are made of subsets of elements
of . Thus

∏ a= PSET( )≔ ( + { })
a∈ (9)

and therefore

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∏ ∏ ∑C z z z

k
A z( ) = (1 + ) = (1 + ) = exp ( − 1) ( ) .

a

a

n

n a

k

k
k

∈

| |

=1

∞

=1

∞ +1
n

(10)

(The last step follows by writing the product as the exponential of a
sum of logarithms and then Taylor-expanding those logarithms.)
MSET( ) is the class whose members are made of sequences of
arbitrary length of elements of . Thus

∏ a= MSET( )≔ SEQ({ })
a∈ (11)

and therefore

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∏ ∏ ∑C z z z

k
A z( ) = (1 − ) = (1 − ) = exp 1 ( ) .

a

a

n

n a

k

k

∈

| | −1

=1

∞
−

=1

∞
n

(12)

CYC( ) is the class whose members are made of circular sequences of
arbitrary length of elements of . The derivation of the generating
function of = CYC( ) is more involved (see Flajolet and Sedgewick
(2009), §A.4), but can be written in terms of Euler's totient function
φ k( ) as1

∑C z φ k
k

A z( ) = − ( ) log[1 − ( )].
k

k

=1

∞

(13)

One last class we will need is MSET ( ) = CYC ( )2 2 , whose members
are pairs of elements of regardless of the order (when the order matters
the class is × ). There are many ways to obtain its corresponding
generating function, but perhaps the easiest is to first introduce DIAG( ),
the class of pairs of identical elements of . Its corresponding generating
function is A z( )2 —because it contains one element per element of , but
its size is double. Then, = CYC ( )≔ [ × + DIAG( )]2

1
2 , and its

generating function will be

C z A z A z( ) = 1
2

[ ( ) + ( )].2 2
(14)

Further classes and development can be found in Flajolet and Sedgewick
(2009).

By way of illustration, consider the class of all binary trees with n
interior nodes. This class contains the tree with no interior nodes
plus all trees made of a root node = {•} from which two new trees of

hang. Thus

= + × × . (15)

The size of the tree in is zero, whereas the root node —obviously
interior— contributes z to T(z). Therefore eq. (15) translates into
T z zT z( ) = 1 + ( )2, whence

⎛
⎝⎜

⎞
⎠⎟∑T z z

z n
n
n

z( ) = 1 − 1 − 4
2

= 1
+ 1

2 ,
n

n

=0

∞

(16)

the generating function of Catalan's numbers. A nice property of
generating functions is that we do not need to know the coefficients
to obtain their asymptotic expression. For that we can resort to an
extension of Darboux's theorem (Flajolet and Sedgewick, 2009;
Hofacker et al., 1998):

Theorem 1 (Darboux). Let f z f z( ) = ∑n n
n

=0
∞ , with f ≥ 0n , be an

analytic function in the circle z ζ| | < of the form


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟f z g z h z z

ζ
O z

ζ
α( ) = ( ) + ( ) 1 − + 1 − , ∉ ,

α α+1

(17)

where g(z) and h(z) are analytic around ζ. Then, as n → ∞,

f h ζ
Γ α

n ζ O n= ( )
( − )

[1 + ( )].n
α n−1− − −1

(18)

Applied to T(z), Darboux's theorem implies t πn O n= 4 / + ( )n
n 3 −5/2 as

n → ∞.

1 φ(1) = 1, and φ k p p p p( ) = ( − 1)⋯ ( − 1)n
r
nr

r1
1−1

1
−1 if k p p= ⋯n

r
nr

1
1 is the prime factor-

ization of k > 1. Thus φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, etc.
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3. Results

3.1. Counting secondary structures in RNA

Fig. 1(a) illustrates one possible secondary structure for an RNA
molecule n=30 bases long. Some bases are complementary and can pair
up forming a hydrogen bond, some others are not and remain
unbound. Sequences of contiguous paired bases form stems; unpaired
bases form loops of different kinds (hairpins, bulges, mutiloops,
interior loops…). A description of these structures along with an
illustration of them can be found in Hofacker et al. (1998).

Determining the specific secondary structure of an RNA molecule is
a complex problem that requires not only a careful energetic mini-
mization, but also considerations on the environmental conditions and
folding kinetics, among others (Chen, 2008). However, some folding
constraints arise as a consequence of local conditions for energetic
stability. Among them, two are especially important and were taken
into account in early calculations of the number of realistic RNA
secondary structures (Schuster et al., 1994). Here we use two general
assumptions in agreement with those restrictions: (1) no stem can
contain less than s pairs, and (2) no hairpin loop can contain less than
m bases. This notwithstanding, the combinatorial calculations we will
be performing here disregard any further energetic constraints, so the
estimation provided by this method is only an upper bound to the true
number of feasible structures —because some structures are forbidden
on energetic grounds. The same holds for the circular RNA structures
that we will compute later.

We will divide our counting problem in two steps. First, we will
count those foldings starting with a stem —as the one illustrated in
Fig. 1(a). Second, we will take into account that a general folding
consists of several of the former ones joined by free chains —possibly
with chains also at the beginning and/or at the end.

A tree representation of the folding turns out to be more suitable for
the symbolic method. In this representation stems appear as chains of
filled dots (•) and loops are represented as branches containing an
empty dot (○) per unpaired base and a chain of filled dots per stem
branching off the loop (see Fig. 1(b)).

Let denote the combinatorial class of all trees representing an
RNA secondary structure starting with a stem and subject to the two
above constraints. Then

= SEQ [{•}] × (SEQ[{○} + ] − − SEQ [{○}]).s m≥ < (19)

The first factor SEQ [{•}]s≥ stands for the sequence of • from the root of
the tree to the first branching point. This sequence must have at least

s •, but its length is otherwise unlimited —hence the SEQ s≥ operator.
What one can find at the first branching event is described by the next
factor SEQ[{○} + ] − − SEQ [{○}]m< . The first SEQ operator
means that the number of branches is arbitrary and each branch can
either be a ○ or another tree from the class —hence the argument
{○} + . Finally, the term − − SEQ [{○}]m< excludes branchings that
are not allowed: there can be neither a single branch —that would
mean extending the previous stem— nor less than m ○ and nothing else
—that would mean a hairpin loop with less than m unpaired bases.

Let B z b z( ) = ∑n n
n

=0
∞ be the generating function of bn, the number of

different n-long secondary structures starting with a stem. Since every
○ (unbounded base) in (19) contributes z to B(z) and every • (pair of
bonded bases) contributes z2 to B(z), we can translate (19) as

⎛
⎝⎜

⎞
⎠⎟B z z

z z B z
B z T z( ) =

1 −
1

1 − − ( )
− ( ) − ( ) ,

s

m

2

2 (20)

where T z z z( ) = 1 + + ⋯ +m
m−1 is the generating function of

SEQ [{○}]m< .
Once we have characterized the class , the class of possible RNA

foldings can be constructed as

= SEQ[{○} + ], (21)

i.e., a sequence of arbitrary length (including n=0) each of whose
components is either an unpaired base (○) or a folded structure from
. In terms of generating functions,

R z
z B z

( ) = 1
1 − − ( )

,
(22)

where R z r z( ) = ∑n n
n

=0
∞ , rn being the number of different n-long RNA

secondary structures. Eliminating B(z) in this equation and substitut-
ing into (20) leads to the quadratic equation

z R z z z z z T z R z z z( ) − [(1 − )(1 − + ) + ( )] ( ) + 1 − + = 0,s s s
m

s2 2 2 2 2 2 2

(23)

whose solution is

R z
z z z z T z Δ z

z
( ) =

(1 − )(1 − + ) + ( ) − ( )
2

,
s s

m
s

2 2 2 1/2

2 (24)

Δ z z z z z T z z z z( )≔[(1 − )(1 − + ) + ( )] − 4 (1 − + ).s s
m

s s2 2 2 2 2 2 2 (25)

This is Eq. (43) of Ref. Hofacker et al. (1998) (beware of a missing
factor 2 in the left-hand side of that equation).

Suppose z* is the (single) root of Δ z( ) with the smallest absolute
value. Then Δ z z z Q z( ) = ( * − ) ( ) and the singular part of R(z) will have
the form

⎛
⎝⎜

⎞
⎠⎟

z Q z
z

z
z

−
[ * ( )]

2
1 −

*
.s

1/2

2

1/2

(26)

Thus, applying Darboux's theorem we can conclude

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥r

C

πn
z O

n
C

Q z
z

=
2 * 1 + 1 , ≔

( *)
2 *

.n
s n

s s3
−

1/2

2 −1/2
(27)

For s=2, m=3 we obtain z* = 0.540857… and C = 5.263602…2 , leading
to the well-known result (Hofacker et al., 1998), Table 1
r n∼ 1.48483 (1.84892)n

n−3/2 .

3.2. Asymptotic distribution of the number of base pairs

Now we aim to obtain the asymptotic behavior, when n l, → ∞, of
the distribution p r r≔ /n l n l n, , , where rn l, counts the number of RNA
secondary structures having exactly l base pairs. The symbolic method
is easily adapted to obtain pn l, . To this end we need to introduce the
bivariate generating functions

Fig. 1. Tree representation of the secondary structure of RNA sequences. (a) Secondary
structure of an RNA sequence that starts with a stem. Stems cannot contain less that two
pairs of bases, and hairpin loops cannot be made of less than three bases. (b) Tree
representation of the structure in (a). Filled circles represent paired bases; empty circles
stand for unpaired bases. For the sake of clarity, the root of the tree in (b) and the
corresponding base pair in the secondary structure (a) are colored.
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∑ ∑ ∑ ∑R z w r z w B z w b z w( , ) = , ( , ) = ,
n l

n l
n l

n l
n l

n l

=0

∞

=0

∞

,
=0

∞

=0

∞

,
(28)

where bn l, counts only secondary structures starting with a stem.
Eqs. (19) and (21) remain valid, but now every ○ contributes z

whereas every • contributes z w2 to both generating functions (a • is
both two bases and a base pair). Thus, Eqs. (20) and (22) become

⎛
⎝⎜

⎞
⎠⎟B z w z w

z w z B z w
B z w T z( , ) =

1 −
1

1 − − ( , )
− ( , ) − ( ) ,

s s

m

2

2 (29)

R z w
z B z w

( , ) = 1
1 − − ( , )

,
(30)

and we obtain the modified quadratic equation for R z w( , )

z w R z w z z w z w z w T z R z w

z w z w

( , ) − [(1 − )(1 − + ) + ( )] ( , )

+ 1 − + = 0.

s s s s s s
m

s s

2 2 2 2 2

2 2 (31)

We can interpret R z w( , ) as the generating function of the sequence
of polynomials

∑r w r w( )≔n
l

n l
l

=0

∞

,
(32)

(notice that r = 0n l, if l n> /2) and repeat the arguments of the previous
section. Thus, if z w*( ) is the root with smallest absolute value of

Δ z w z z w z w z w T z z

w z w z w

( , )≔[(1 − )(1 − + ) + ( )] − 4

(1 − + )

s s s s
m

s

s s s

2 2 2 2 2

2 2 (33)

and Δ z w z w z Q z w( , ) = ( *( ) − ) ( , ), then the singular part of R z w( , ) will
be

z w
z w z Q z w− 1

2
( *( ) − ) ( , ) ,s s2

1/2 1/2

(34)

so Darboux's theorem implies (when n → ∞)

⎡
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s s s3

−
1/2

2 −1/2
(35)

Using this information we can obtain the characteristic function of
the probability distribution pn l, , for a given n, as

∑ϕ q p e
r e
r

( )≔ =
( )
(1)

,n
l

n l
iql n

iq

n=0

∞

,
(36)

which, according to eq. (35), will behave, asymptotically in n, as
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(37)

where

⎛
⎝⎜

⎞
⎠⎟A w

w
Q z w w
Q z

( )≔ 1 ( *( ), )
( *(1), 1)

.s s

1/2

(38)

The values of r (1)n , z*(1), and Q z( *(1), 1) are those obtained in Section
3.1.

From (37) it follows
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⎛
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n iq s
iq

n
n
2

2 3
(39)

In other words, the distribution pn l, behaves, as n → ∞, as a normal

distribution in l with mean μ n μ O n= μ + + ( )n 0
−1 and standard devia-

tion σ σn σ n O n= + + ( )n
1/2

0
−1/2 −3/2 . The precise values depend on s and

m. For s=2, m=3 we obtain μ ≈ 0.286472…, μ ≈ − 0.792076…0 ,
σ ≈ 0.255103…, and σ ≈ 0.247963…0 Accordingly, the number of differ-

ent phenotypes of a sequence of length n with l paired bases is given, in
the limit n l, → ∞, by

r
r
π σ

e∼
2

,n l
n

n

l μ σ
,

−( − ) /2n n
2 2

(40)

with rn as in (27). Equivalent results were obtained in Reidys (2002)
and Poznanović and Heitsch (2014).

3.3. Counting more than one structural element

In this section we are going to count the number of secondary
structures with fixed numbers of base pairs and hairpins. Hairpins are
going to be counted with a variable u—each hairpin will contribute u to
the generating function. Hairpins are elements of SEQ [{○}]m≥ , so we
have to separate them out in (19) and reintroduce them with a mark u.
In other words, we need to replace SEQ [{○}]m< by

uSEQ[{○}] − SEQ [{○}]m≥ . Since the former gives rise to the term
Tm(z) in (29), this operation amounts to replacing Tm(z) by

T z u uz
z

( , ) = 1 −
1 −m

m

(41)

in this and subsequent equations.
Now, interpreting R z w u( , , ) as the generating function of the

bivariate polynomials

∑ ∑r w u r w u( , )≔ ,n
l k

n l k
l k

=0

∞

=0

∞

, ,
(42)

rn l k, , being the number of RNA secondary structures with l base pairs
and k hairpins, we can obtain the asymptotic behavior of the
probability distribution p r r≔ /n l k n l k n, , , , through that of its characteristic
function

ϕ q
r e e

r
q q q(→) =

( , )
(1, 1)

, →≔( , ).n
n

iq iq

n
p h

p h

(43)

Following the procedure explained in the previous section we find
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with

⎛
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⎞
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w
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(45)

z w u*( , ) being the singularity of R z w u( , , ) with smallest absolute value,
and Q z w u( , , ) defined as in (33), (34), with Tm(z) replaced by T z u( , )m
defined in Eq. (41). If we now identify

ϕ q μ iq μ iq q Σ q O qlog (→) = + − 1
2

→· ·→ + (∥ → ∥ ),n n
p

p n
h

h n
T 3

(46)

we obtain the mean vector μ μ( , )n
p

n
h and covariance matrix Σn of a

bivariate normal distribution. For instance, setting s=2, m=3 we get

μ n O n

μ n O n

Σ n O n

Σ n O n

Σ n O n

= (0.286472…) − (0.792076…) + ( ),

= (0.0378631…) + (0.308604…) + ( ),

= (0.0650779…) + (0.126513…) + ( ),

= (0.0115908…) + (0.0164609…) + ( ),

= ( − 0.00274347…) + (0.00918949…) + ( ).

n
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n
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n
pp

n
hh

n
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−1
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−1 (47)

Thus, asymptotically,
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r
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n
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, , 1/2
−1 T

(48)

Obtaining the marginal distribution of base pairs amounts to
setting qh=0 in (46). One can easily check that it correspond to the
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distribution (40). Likewise, the marginal distribution of hairpins
follows from setting qp=0 in (46). It turns out to be a normal
distribution with mean μn

h and variance Σn
hh.

New structural elements can be counted in a similar vein, and their
corresponding asymptotic distribution will be multivariate normal
distributions whose parameters can be determined as we have done
in this section. Analogous results for multivariate distributions of
structural motifs can be found in Poznanović and Heitsch (2014).

3.4. Counting secondary structures of circular RNAs

Let now denote the combinatorial class containing all secondary
structures of circular RNAs. As for open sequences, counting is better
done using the tree representation of Fig. 1. If secondary structures of
linear sequences are encoded in rooted trees, those of circular
sequences, for which any base pair can act as a root, would correspond
to unrooted trees. There is an ambiguity though when transforming the
rooted tree representation into an unrooted one. The rules to transform
structures into trees are directional, as illustrated in Fig. 2. To avoid
that we introduce a new type of node, a square, to mark the extremes of
all stems meeting at a hairpin, a multiloop, or a bulge. The square is
understood to represent a base pair for each stem meeting at it. With
this new representation each secondary structure of a circular RNA
uniquely determines a tree with two types of inner nodes —filled circles
and squares— and empty circles for leaves, regardless of the direction
we choose to read the structure.

We will need a new combinatorial class to obtain , namely

= SEQ [{•}] × (SEQ[{○} + ] − − SEQ [{○}]),k k m< (49)

the class of secondary RNA structures starting with a stem of exactly k
base pairs. Notice that (19) implies that = ∑k s k≥ , and it follows
from (19) and (49) that

B z z z B z( ) = (1 − ) ( ).k
k s2 −2 2 (50)

Counting unrooted trees is a more complicated issue than counting
rooted trees. As a matter of fact, the strategy to do it is to reduce the
problem to counting rooted trees. This is achieved thanks to a so-called
dissymetry theorem that relates both classes of trees (Bergeron et al.,
1998, §4.1). If denotes a class of rooted trees and denotes that of
their corresponding unrooted trees, then

+ = + × ,• •−• (51)

where • denotes the class of unrooted trees with a marked node, and
•−• denotes the class of unrooted trees with a marked link. In our

case, stands for , the class we want to count. As for × , an
analysis of the proof of the theorem reveals that the s involved arise
as a result of removing links in trees of . Thus, for the kind of trees we
aim at counting we need to adapt this result, because links in are

part of a stem, and stems must have at least s base pairs. Also, as leaves
(empty circles) are never the root of a tree, the argument can focus on
inner nodes and inner links.

Consider v ∈ . Removing an inner link in v yields two trees, one
belonging to j and another one belonging to k, such that j k, ≥ 1 and
j k s+ ≥ . Therefore

∑≔ × = × .s
j k s
j k

j k
+ ≥
, ≥1 (52)

Let us now mark a link of v to transform it into an element of •−•.
Two rooted trees from j and k —with the same index constraints—
hang from both sides of the marked link. Since the order of these two
trees is irrelevant,

∑= 1
2

( + ), ≔ DIAG( ),s s s
j s

j
•−•

2 ≥ (53)

using the idea behind the definition of CYC2 (Sec. 2). Finally, if we
mark a • node as root, the two hanging branches are one tree from j
and another one from k, such that j k, ≥ 1 and j k s+ ≥ − 1; but if we
mark a ■ node as root, the resulting tree is formed by a ring from
which either leaves (○) or trees hang. Thus

= {•} × 1
2

( + ) + CYC[{○} + ] − × SEQ [{○}]

− CYC [ ],

s s m
•

−1 −1 <

2 (54)

where the two last terms stand for the removal of hairpins not allowed
by the constraints ( × SEQ [{○}]m< ) and of cycles containing just two

trees and no ○ leave (CYC [ ]2 ) —which would be indistinguishable
from longer stems. Summarizing,

= 1
2

({•} × − + {•} × + ) + CYC[{○} + ]

− × SEQ [{○}] − CYC [ ].

s s s s

m

−1 −1

< 2 (55)

Now,

∑ ∑F z B z z
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l z
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( ) = ( ) (1 − ) = ( ) (1 − ) ( − 1)
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l s
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4
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2( + )
2 2 2

4
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(56)

and similarly

∑F z B z z
z

l z B z
z

s s z( ) = ( ) (1 − ) ( − 1) = ( ) [ − 2 − ( − 3) ],s s
l s

l
s−1

2 2 2

4
= −1

∞
2

2

2 +2
2

(57)

so the generating function of {•} × −s s−1 is

Fig. 2. Tree representation of the secondary structure of circular RNAs. (a) Secondary structure of a circular RNA sequence. (b) Tree representation of the structure in (a) as read
starting from the leftmost hairpin. (c) Tree representation of the same structure but read from the rightmost hairpin. (d) New tree representation in which square nodes mark the
extremes of the stems —hence leaves (empty circles) hang from these nodes. Each square counts one base pair for each stem meeting at it. (Colors are meant to help understand the
association between base pairs and square nodes.) Notice that this tree is uniquely defined by the RNA structure regardless of the way we read it.
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B z
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s s z B z
z

s s z B z
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2

2
2
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On the other hand,

∑ ∑D z B z B z z
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k s
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2 4
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and
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so the generating function of {•} × +s s−1 is
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If we take into account that the generating function of CYC [ ]2 is

B z B z1
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we finally obtain
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or using (22),
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Incidentally, B(z) is derived straight away from (22) as

B z
z z z z T z Δ z

z z
( ) =

(1 − )(1 − + ) − ( ) − ( )
2(1 − + )

.
s s

m
s

2 2 2 1/2

2 2 (65)

Table 1 lists the coefficients of V(z) up to n=39—discounting 1 for the
unfolded chain. For long chains we can obtain an asymptotic formula out
of (64). Despite its appearance —especially because of the presence of an
infinite series—, finding the singularity z* closest to the origin of V(z) is an
easy task. That singularity is to be found in the functions B(z) and R(z), as
a root of Δ z( ). We know z0 < * < 1 because all coefficients in the power
series V(z) are larger than 1 (as a matter of fact, for s=2, m=3 we already
found z* = 0.540857…). This means that the corresponding root of terms
of the form Δ z( )k , with k > 1, will be z z* > *

k1/ . In other words, all terms
B z( )2 and R z( )k with k > 1 are analytic at z*. The only possibly competing
singularity would come from a root of R(z) in R zlog ( ). But R z( ) = 0

implies z z1 − + = 0s2 2 , whose solutions for s=2 are e± iπ± /6 and therefore
their modulus is larger than z*.

From this discussion we conclude that the singular terms of V(z)
that will contribute to the asymptotic behavior of its coefficients are
those containing B(z), B z( )2 and R zlog ( ). Accordingly, V(z) can be
written, when Δ z( ) → 0, as
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where ζ z( ) is an analytic function in a circle containing z*. Now, since
z z z z T z z z z O Δ z(1 − )(1 − + ) + ( ) = 2 (1 − + ) + ( ( ))s s

m
s s2 2 2 2 2 1/2 follows

from the very definition of Δ z( ), the expression above simplifies to
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(66)

As in Section 3.1 we can write Δ z z z Q z( ) = ( * − ) ( ), so near z*
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(67)

and then Darboux's theorem yields
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For s=2, m=3 we obtain K = 3.445906…2 , so we find the asymptotic
estimate for the number of structures of circular RNA sequences
v n∼ 1.45811 (1.84892)n

n−5/2 .

3.5. Base pairs and hairpins in circular RNAs

We can introduce vn l k, , , the number of circular RNAs with l base
pairs and k hairpins, and V z w u( , , ), the generating function of the
bivariate polynomials

∑ ∑v w u v w u( , ) = .n
l k

n l k
l k

=0

∞

=0

∞

, ,
(69)

This generating function can be obtained, following the steps in
Sections 3.2 and 3.3, to be
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It follows from this equation and the asymptotic analysis in the
previous section that the characteristic function ϕ q(→)n of the probability
distribution p v v≔ /n l k n l k n, , , , is asymptotically given by
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(71)

where

Table 1
Number of secondary structures —excluding the unfolded chain— of a circular RNA
sequence of length n (we have set s=2 and m=3).

n # struct. n # struct. n # struct.

10 1 20 105 30 20423
11 1 21 166 31 35091
12 3 22 287 32 60838
13 3 23 486 33 105169
14 6 24 816 34 182728
15 7 25 1364 35 317068
16 14 26 2368 36 552059
17 20 27 4011 37 961008
18 38 28 6972 38 1677222
19 59 29 11811 39 2928607
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⎡
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As expected, the leading term is the same as in (44).
Identifying this expression with the expansion (46) we obtain, for

s=2, m=3, the probability distribution (48) with

μ n O n

μ n O n

Σ n O n

Σ n O n
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= (0.286472…) + (0.773395…) + ( ),

= (0.0378631…) + (0.681247…) + ( ),

= (0.0650779…) − (0.060170…) + ( ),

= (0.0115908…) − (0.0258221…) + ( ),

= ( − 0.00274347…) + (0.0427301…) + ( ).
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4. Discussion and conclusions

The symbolic method can be extended to the case of circular RNAs in
order to calculate the total number of closed secondary structures for
sequences of length n and the asymptotic distributions of the number of
structures with specific moieties. Circularization of RNA eliminates some
degrees of freedom that translate into a number of secondary structures n-
fold lower, as compared to the open linear counterpart. The exponent
b = 5/2 also appears in the enumeration of unrooted trees (Flajolet and
Sedgewick, 2009), of which circular RNAs are a particular case.

The relationship between structure and function in circular RNAs has to
be stronger than in linear RNAs, due at least to the non-coding nature of
most of the former. From an evolutionary viewpoint, circularization of
RNAs might be a low-cost procedure to seek new molecular functions.
Closed structures differ in essential ways from their open counterparts in
their stability properties, and may as well bind different molecules due, for
instance, to the sequences brought together when open ends are covalently
closed (Jeck and Sharpless, 2014). At the same time, the number of
available folds decreases under circularization by essentially a factor n. This
severe decrease in structural repertoire with respect to the open molecule
implies that, on average, there are n times more sequences that fold into a
closed structure than into an open structure of the same length. The
mutational robustness of closed structures is therefore very much en-
hanced.

The enumeration of circular RNA structures with pseudoknots is an
open problem with relevance, among others, to better understand the
in vivo conformations adopted by viroids (Flores et al., 2012) and other
circular RNAs encoded in genomes, and the identification of their
hypothetical interacting sites. A combination of the symbolic method
and the additional techniques here used for circular RNA might
facilitate the achievement of that goal.
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