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We deduce an overcomplete free energy functional for D=1 particle systems
with next neighbor interactions, where the set of redundant variables are the
local block densities +i of i interacting particles. The idea is to analyze the
decomposition of a given pure system into blocks of i interacting particles by
means of a mapping onto a hard rod mixture. This mapping uses the local acti-
vity of component i of the mixture to control the local association of i particles
of the pure system. Thus it identifies the local particle density of component i of
the mixture with the local block density +i of the given system. Consequently,
our overcomplete free energy functional takes on the hard rod mixture form
with the set of block densities +i representing the sequence of partition functions
of the local aggregates of particle numbers i. The system of equations for the
local particle density + of the original system is closed via a subsidiary condition
for the block densities in terms of +. Analoguous to the uniform isothermal-
isobaric technique, all our results are expressible in terms of effective pressures.
We illustrate the theory with two standard examples, the adhesive interaction
and the square-well potential. For the uniform case, our proof of such an over-
complete format is based on the exponential boundedness of the number of
partitions of a positive integer (Hardy-Ramanujan formula) and on Varadhan’s
theorem on the asymptotics of a class of integrals.

KEY WORDS: One-dimensional; interacting particle system; next neighbor;
density functional; overcomplete description; solvable model.

1. INTRODUCTION

The era of the class of exactly solvable D=1 particle systems with next
neighbor interactions in classical density functional theory (for an overview
see, e.g., ref. 10) began in 1976, when Percus derived the free energy density
functional for hard rods in an arbitrary external potential field. (8) Soon



afterwards, he presented the inverse operator format. (9) This formalism not
only allowed him to simplify the derivation of the hard rod functional, but
also led him to the solution of the sticky core model, in which the inter-
action has a 0-range attractive component. Moreover, he showed that—
analoguous to the uniform case—the adhesive interaction is the only
potential with an attractive component, where an explicit solution is pos-
sible. The generalization of the pure hard core result to an additive mixture
of hard rods was established by Vanderlick, Davis, and Percus in 1989. (14)

Already a few years later, Brannock and Percus constructed along Wertheim’s
theory of local association (for a stringent review of Wertheim’s approach
see ref. 10) a free energy density functional for multicomponent systems
with arbitrary next neighbor interactions. (2) One of the specific examples
treated was the one-component case of the prototypical square-well inter-
action, called Herzfeld Goeppert-Mayer (HGM) system. (5) In abstracting
from this Wertheim local association free energy density functional format,
Percus invented in 1997 the overcompleteness technique. (11) In this paper,
we present a particular realization of this strategy.

The essential idea of an overcomplete description (11) of thermodynamic
functionals is to introduce a set of additional variables (over the basic local
particle density +) such that with respect to a direct evaluation the over-
complete format has a simpler formal structure and is physically more
transparent. Thus, apart from the purely mathematical problem of deriving
such a representation from first-principles, the second difficulty (11) is to give
a physical interpretation for the redundant variables.

In our approach we use an observation of Kierlik and Rosinberg (7) to
overcome the latter difficulty. Their idea, although stated originally only
for nonuniform dimerizing hard rods (for the uniform case see, e.g., ref. 5),
consists in interpreting a D=1 particle system with next neighbor interac-
tions as composed of blocks (clusters, (6) molecules, (5, 7) or superparticles (2))
of i interacting particles (monomers, dimers, trimers,...) and to use the
corresponding local block densities +i as the set of additional variables.
Here two particles are understood to interact, if in the standard decompo-
sition of the Boltzmann factor into a reference hard core and an attractive
part, (1.3), the interaction between the two particles is described by the
latter one. Since the blocks of local aggregates interact by construction via
hard core potentials, the free energy functional takes on the simple hard
rod mixture form. In such an overcomplete description the physical
significance of the redundant variables is given at the outset.

So our program is to analyze a given pure system with arbitrary next
neighbor interactions by means of a mapping onto a hard rod mixture.
This mapping uses the local activity of component i of the mixture to
represent the local aggregates of i particles of the pure system and so it
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identifies the local particle density of component i of the mixture with the
local block density +i of the original system. Consequently, with the free
energy of hard rod mixture form, the set of local block densities represents
the sequence of partition functions of the local aggregates with particle
numbers i. We close the system of equations for the local particle density
via a relation between + and the block densities inferred through a trivial
identity of functional analysis.

Thus already implicitly formulated by Kierlik and Rosinberg, (7) they
settled this general program only for the special case of dimerizing hard
rods. They argued that, although this technique can be extended to the
more general case of sticky cores, where blocks of any number of particles
coexist, the possible difficulty of this method lies in the definition of
blocks for arbitrary next neighbor interactions. So they proceeded with
Wertheim’s theory instead. They (i) showed that Wertheim’s first-order
thermodynamic perturbation theory (TPT1) is exact for dimerizing hard
rods as well as for sticky cores and (ii) derived density functionals for these
systems with the simple hard rod mixture form through TPT1. Later on,
the exactness of the TPT1 also for sticky core mixtures was established by
Brannock and Percus. (2)

Actually, already Brannock and Percus (2) used the block interpretation
of Kierlik and Rosinberg (7) to construct an overcomplete free energy func-
tional. But only formally, as a purely technical intermediate step in their
proof, because their aim was to infer density functionals that take on the
Wertheim local association form. However, in such an overcomplete
description the remarkable hard rod mixture form of the free energy is
obscured. As already stated, again Kierlik and Rosinberg (7) first revealed
that at least for dimerizing hard rods and for sticky cores, functionals of
the simple hard rod mixture form underly the Wertheim functionals.

Similarly, also with respect to the relative density format of Percus, (11)

another earlier and formally alike equivalent overcomplete description,
where the redundant variables are partition function densities, our realiza-
tion has a simpler formal characterization (in terms of a functional of hard
rod mixture form) and is physically more transparent (with the block
densities as the elements of the theory). Moreover, all our main results
possess higher dimensional analogues, so that our overcomplete description
immediately suggests D > 1 models as well.

Formally, we start from the (configurational) isothermal measure (or
the Gibbs measure thereof ) for a particle system on the line R with next
neighbor interactions, given by the density

D
n − 1

k=1
e(qk+1, qk) D

n

k=1
exp[ − bU(qk)] (1.1)
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with respect to the usual Lebesgue measure. Here, n denotes the number of
particles, their positions being qk ¥ R, U is the external potential, and the
translation-invariant interaction V is represented by the Boltzmann factor
(at reciprocal temperature b)

e(y, x)=˛exp[ − bV(y − x)] for y \ x,
0 for y < x.

(1.2)

We assume that V has a hard core of diameter a > 0. Hence if we restrict
ourselves to the next neighbor case, the range of V is 2a, i.e., V(x) — 0,
x \ 2a. Furthermore, we introduce the standard decomposition (for a
related analysis based on a different decomposition see, e.g., ref. 6)

e(y, x)=ha(y − x)+f(y, x) (1.3)

with ha the Heaviside function shifted to the right by a and f(y, x)=
ha(y − x)[e(y, x) − 1], known as the attractive part of the Boltzmann
factor.

First, we will treat for the sake of completeness the uniform case
within our overcomplete description. This will also allow us to introduce
the concept most clearly. Our account will be inductive. We are going to
develop the theory along two standard examples, the sticky core model and
the HGM system. Second, we will lift our overcomplete format to the
general nonuniform case and illustrate the results with the two examples
already examined for the uniform case.

2. UNIFORM CASE

In this section we introduce the concept of overcomplete description
for the free energy of uniform systems with arbitrary next neighbor
interactions. We derive such a representation from first-principles as n Q .

based on the exponential boundedness of the number of partitions of a
positive integer n (Hardy-Ramanujan formula, see, e.g., ref. 1) and on
Varadhan’s theorem on the asymptotic behavior of a class of measures
(see, e.g., ref. 4).

Formally, we assume U(x) — 0, x ¥ R. Then the total isothermal
measure on (0, l)n, under the condition that the particles be reflected elas-
tically at the endpoints of the interval (0, l) (the volume |(0, l)|=l is called
the length of the system), becomes

exp[ − nbfn(l)]=F
(0, l)n

D
n − 1

k=1
e(qk+1, qk) d(q1,..., qn), (2.1)
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where we have introduced fn known as the (configurational) n-particle free
energy per particle.

For the sake of explicitness and to make contact with a previous
paper, (7) we start our presentation with the sticky core model.

2.1. Adhesive Interaction

Adhesive particle systems are systems composed of hard rods with an
additional attractive interaction on the boundary of the particles, which
allows for local association. Thus an adhesive system may be represented as
a limiting case of a HGM system. In such systems, the interaction is

V(x)=3+. for x ¥ [0, a),
−Eq[0, 1)(

x − a
d ) for x ¥ [a, .),

(2.2)

where d is the width of the well (note that we have restricted ourselves to
d [ a), E the interaction strength, and qA denotes the characteristic func-
tion of the set A. Then—on inserting (2.2) into (1.3) via (1.2)—adhesive
systems are characterized by the limit

lim
EQ .

d Q 0

f(y, x)|debE
Q l=l da(y − x) (2.3)

with da=h −

a, l=ca, and c ¥ R+ being the stickiness parameter of the
interaction.

Hence, due to the 0-range attractive component (2.3), our over-
complete description for the n-particle sticky core model translates to the
decomposition into blocks (monomers, dimers, trimers,..., n-mers) of pure
hard core particles with diameters (a1,..., an), ai=ia, and to the introduc-
tion of the n block densities as the set of redundant variables. Therefore fn

is defined on an enlarged space with n additional dimensions. Conse-
quently, the free energy is calculated by means of a minimum principle,
(2.14).

Formally, upon substituting (2.3) into (2.1) via (1.3), fn can be inter-
preted as a sum over a binary tree with 2n − 1 branches. Consider the con-
tribution of an arbitrary branch, i.e., an arbitrary convolution sequence of
ha and l da, to this sum. For y, x ¥ (0, l) denote by a block (or cluster, (6)

molecule, (5, 7) or superparticle (2)) bi of i ¥ {1,..., n} interacting particles the
convolution sequence

bi(y, x)=˛ha(y − x) for i=1,
bi − 1 f l da(y − x) for 1 < i [ n

(2.4)
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with a f b(y, x)=> l
0 a(y − z) b(z − x) dz. Let ki be the number of times bi

(modulo ha at the right boundary) appears in such a branch. For each n \ 2
define the set

An=3k=(k1,..., kn) : ki ¥ {0,..., n} N C
n

i=1
iki=n4 . (2.5)

Fix k ¥ An. Then, on using the commutativity of the convolution (for
another application of this elementary property see, e.g., ref. 6), we
conclude that each of the

C(n, k)=
(;n

i=1 ki)!
k1! · · · kn!

(2.6)

branches characterized by the vector k contributes the same value to fn.
Again through the commutativity of the convolution, we can rearrange the
blocks according to their length, starting with the group of k1 particles of
length a next to the origin, so that the total isothermal measure reduces to

exp[ − nbfn(l)]= C
k ¥ An

C(n, k) lC n
i=1 (i − 1) ki exp[ − nbfn, k(l)] (2.7)

with

L{exp[ − nbfn, k(l)]}(s)=
1
s

exp(as) s D
n

i=1

5exp(−ias)
s

6ki 1
s

=
1
s

exp[ − (;n
i=1 iki − 1) as]

s;n
i=1 ki − 1

1
s

, k ¥ An, (2.8)

where L{exp[ − nbfn, k(l)]}(s) is the Laplace transform of exp[ − nbfn, k(l)]
with respect to l and we used the relative positions

x0=q1, xk=qk+1 − qk for 1 [ k < n, xn=l − qn (2.9)

as well as (2.4). On transforming back, we infer

exp[ − nbfn(l)]=h(n − 1) a(l) C
k ¥ An

C(n, k) l C n
i=1 (i − 1) ki

×
[l − (;n

i=1 iki − 1) a];n
i=1 ki

(;n
i=1 ki)!

. (2.10)

Finally, let us analyze the leading order asymptotic behavior of fn for the
nontrivial case l > (n − 1) a. Denote by p(n) the number of partitions of
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a positive integer n. Since |An |=p(n), it follows by the leading term of the
asymptotic series of the Hardy-Ramanujan formula (see, e.g., ref. 1) that as
n Q .

|An | £
1

2p `2

d
dn
rexp 1 2p

`6
=n −

1
24

2

=n −
1
24

s . (2.11)

Hence the number of terms in the sum (2.10) is exponentially bounded.
Thus one may determine the asymptotic behavior of fn by the asymptotic
behavior of the largest summand in (2.10). This is a standard argument of
large deviation theory (see, e.g., ref. 4). Therefore, if we use a weak form of
Stirling’s formula, ln(n!)=n ln n − n+O(ln n), we find as n Q .

1
n

ln C(n, k)= C
n

i=1

ki

n
ln 1 C

n

j=1

kj

n
2− C

n

i=1

ki

n
ln

ki

n
+O 1 ln n

n
2 , (2.12)

and so, on introducing the particle density r−1=l/n with r < a−1 as n Q .

by l > (n − 1) a, via (2.11) that

lim
n Q .

bfn(r)= lim
n Q .

min
k ¥ An

3 C
n

i=1

ki

n
5ln

ki

n
− 1 − ln l i − 1 − ln 1r−1 − a C

n

i=1
i

ki

n
264 .

(2.13)

By the properties of the sets {An}n \ 2, of the set A={t=(t1,...) : ti \

0 N ;.

i=1 iti=1}, and of the function on the right hand side (RHS) of
(2.13), we finally infer

lim
n Q .

bfn(r) — bf.(r)=min
c ¥ A

3 C
.

i=1
ci
5ln

ci

l i − 1 − 1 − ln(r−1 − a)64 , (2.14)

where f. is the free energy per particle. This proves (4.2)–(4.4) of ref. 7.
Fix c, a ¥ R+, r ¥ (0, a−1). The function appearing on the RHS of

(2.14) is convex. Hence it attains its minimum at the unique value
c=(c1,...) with

ci=˛
1

(1+lh)2 for i=1,

c1

11+
1

lh
2 i − 1

for i > 1. (2.15)
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Here, while it is possible to write c directly as a function of r, we preferred
to introduce for later reference the pressure p via the thermodynamic
relation

bp(r)=r2 “

“r
bf.(r) (2.16)

with h — bp(r). Thus we have by

C
.

i=1
ci=

1
1+lh

(2.17)

that

h(1+lh)=
1

r−1 − a
, (2.18)

or explicitly

h=
1
2l

1 − 1+=1+
4l

r−1 − a
2 . (2.19)

Therefore f. simplifies to

bf.(r)=−ln(1+lh) − h(r−1 − a)+ln h, (2.20)

which is the known result. Formula (2.15) is equivalent to the findings (4.5)
and (4.7) of ref. 7.

As will be shown in Section 3, the remarkable hard rod mixture form
of f. as given by (2.14), is an instance of a general result that even holds
true in the context of nonuniformity.

2.2. Arbitrary Next Neighbor Interactions

So far, we treated particle systems with adhesive interactions. Essen-
tially, the full and explicit analysis was possible because of the contact
nature of the adhesive potential. When arbitrary next neighbor interactions
are present, only the minimum of the length of a block bi of i interacting
particles is ia. The purpose of the present subsection is to establish our
overcompleteness technique for the general uniform case.
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Formally, our proof of such an overcomplete description for uniform
systems with arbitrary next neighbor interactions as n Q . is based on the
Hardy-Ramanujan formula, (2.11), and on an application of Varadhan’s
theorem on the asymptotic behavior of a class of measures (see, e.g., ref. 4).

Consider first the prototypical HGM system. Then, upon substituting
(2.2) into (1.3) via (1.2), the total isothermal measure on (0, l)n is
completely characterized by

f(y, x)=l ha, d(y − x) (2.21)

with ha, d=ha − ha+d and l=ebE− 1. Hence, as in the deduction of our
overcomplete description for the adhesive interaction, we start the proof by
analyzing an arbitrary branch of the binary tree associated with fn. Let us
again decompose such a branch into ki (modulo ha at the right boundary)
blocks bi of i ¥ {1,..., n} interacting particles, now defined by the convolu-
tion sequence [cf. (2.4)]

bi(y, x)=˛ha(y − x) for i=1,
bi − 1 f l ha, d(y − x) for 1 < i [ n.

(2.22)

Then, via (2.9) as well as (2.22) and on using the commutativity of the
convolution, we conclude that

exp[ − nbfn(l)]= C
k ¥ An

C(n, k) l C n
i=1(i − 1) ki exp[ − nbfn, k(l)] (2.23)

with

L{exp[ − nbfn, k(l)]}(s)

=
1
s

exp(as) s D
n

i=1

3exp(−ias)
s

51 − exp(−ds)
s

6 i − 14ki 1
s

=
1
s
5exp(−as)

s
6n − 1

[1 − exp(−ds)] ;n
i=1 (i − 1) ki

1
s

. (2.24)

Next, let as usual l=nr−1, and consider the asymptotic behavior of fn

for the nontrivial case r−1 > a. Since |An | is exponentially bounded as
n Q . by the Hardy-Ramanujan formula, (2.11), the asymptotics of fn is
governed by the asymptotic behavior of the largest summand in (2.23).
Thus, by the formal structure of (2.23), the analysis of fn as n Q . reduces
to an asymptotic evaluation of fn, k. If we combine such an evaluation of
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fn, k as n Q . by means of Varadhan’s theorem (see, e.g., ref. 4) with (2.12),
we finally infer for b ¥ (0, .)

bf.(r)=min
c ¥ A

1 C
.

i=1
ci ln

ci

l i − 1 ;.

j=1 cj

− min
h ¥ R+

3h(r−1 − a) − ln h+11 − C
.

i=1
ci
2 ln[1 − exp(−hd)]42 .

(2.25)

The case b=. has to be treated separately (see, e.g., ref. 6).
Fix a, r−1, E, d, b ¥ R+ such that d [ a and r−1 > a. Then the function

appearing on the RHS of (2.25) is convex. Hence the minimum is attained
at the unique value c=(c1,...) with

ci=˛ 1
{1+l[1 − exp(−hd)]}2 for i=1,

c1

31+
1

l[1 − exp(−hd)]
4 i − 1

for i > 1,
(2.26)

and thus

C
.

i=1
ci=

1
1+l[1 − exp(−hd)]

. (2.27)

Therefore f. simplifies for b ¥ (0, .) to

bf.(r)=−ln{1+l[1 − exp(−hd)]} − h(r−1 − a)+ln h, (2.28)

which is the known result. In the sticky limit EQ . N d Q 0 such that
debE

Q ca, expressions (2.28) respective (2.26) reduce to (2.20) respective
(2.15). An approximation of (2.26) was given by Herzfeld and Goeppert-
Mayer already in 1934. (5)

Moreover, through (2.16) and (2.25), we have the interpretation

h — bp(r), (2.29)
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and so, upon using (2.26) in (2.25), that the pressure for b ¥ (0, .) is
uniquely determined by

r−1 − a=
1

bp
−

d

exp(bpd) 11+
1
l
2− 1

. (2.30)

Hence, p is a differentiable function with range R+. In particular, we have
“p
“r > 0.

Finally, since Varadhan’s theorem allows us to analyze the asymptotic
behavior of a large class of total measures fn, k, our scheme of proof for the
HGM system extends directly to (in this sense) arbitrary next neighbor
interactions. This completes our presentation of the uniform case.

3. NONUNIFORM CASE

We now generalize the ideas of Section 2 to the nonuniform case. Our
approach is formal. We assume that for a sufficiently large class of pair
interactions V and external potentials U the corresponding free energy
density functional exists and is convex. In fact, Chayes and Chayes (3)

showed, that for our domain of interest of D=1 particle systems with
stable (see, e.g., ref. 13) hard core next neighbor interactions, the set of
external potentials for which a convex free energy density functional exists
is nonempty. Thus, our calculus solves indeed a well-posed inverse problem
for (in this sense) arbitrary next neighbor interactions.

We construct our overcomplete free energy functional through a
reduction of the original problem to a readily solvable multicomponent
inverse problem. The blocks of i interacting particles [cf. for the uniform
case the instances (2.4) respective (2.22)] are controlled by an effective local
activity of component i of the mixture. Hence, since the blocks interact by
definition via hard core potentials, the interaction between components i
and j of the mixture is represented by an effective pure hard core Boltz-
mann factor. Thus, we reduce the inverse problem for arbitrary next
neighbor interactions to a type of polydisperse hard rod mixture problem.
Consequently, we first extend the technique of proof of Vanderlick, Davis,
and Percus (14) for an additive mixture of pure hard cores in an external field
to our case of polydispersity. Results for the local block densities are given
next. Finally, the isomorphism between the original and our overcomplete
description is established via a trivial identity of functional analysis.

The presentation of the nonuniform case closes with the two examples
already treated at the uniform level. The especially suggestive formal struc-
ture of these results provides evidence for our conjecture on a direct non-
uniform isothermal-isobaric representation.
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3.1. Overcomplete Free Energy Functional Format

We start with the standard description of nonuniform systems in direct
form. So consider first the Gibbs measure (see, e.g., ref. 13) of (1.1) at
chemical potential m (implicitly including the momentum contributions).
Denote the local activity by z(x)=exp {b[m − U(x)]}. Then the total
Gibbs measure becomes (9) [in Dirac notation ab — ab(y, x)=>R a(y, z)
b(z, x) dz]

X=1+Iz(I − ez)−1 I, (3.1)

where I is the identity, I represents the constant I(x)=1, z refers to the
matrix with elements z(y, x)=z(x) d(y − x), and e is given by (1.2). If
limx Q ± . z(x)=0 sufficiently rapidly, then X exists. Hence, on following
Percus, (9, 11) the local particle density + can be written as

+(x)=
d ln X

d ln z(x)
=

1
X

X+
i (x) z(x) X−(x) (3.2)

with

X−=(I − ez)−1 I, X+=I(I − ze)−1, (3.3)

and thus we have by (1.2) as well as limx Q ± .z(x)=0 the boundary condi-
tions

lim
x Q − .

X−(x)= lim
x Q +.

X+(x)=1, (3.4a)

lim
x Q +.

X−(x)= lim
x Q − .

X+(x)=X, (3.4b)

lim
x Q ± .

+(x)=0. (3.4c)

The strategy is to determine z as a functional of + for (in the above sense)
arbitrary V. The main stage to settle this inverse problem is the concept of
overcomplete description, formulated next.

Consider the Gibbs measure for a nonuniform multicomponent system
on the line R, (14, 11) where the local activity of component i is given by
[henceforth a bar signifies a quantity within the overcomplete description]

w̄i(x, l)=z(fz) i − 1 (x+l
2 , x − l

2). (3.5)
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Here, x is the position of the block of i interacting particles, l+a its diam-
eter with l being the distance between the boundary particles, and f is
brought in via (1.3). Hence definition (3.5), as the total isothermal measure
of a i particle system in a box (x − l

2 , x+l
2) with fixed boundary particles

and Boltzmann factor f, controls the local aggregates. So the block
description [cf. for the uniform case the examples (2.4) respective (2.22)] is
completed by the pure hard core Boltzmann factor between components i
and j, given within the present parameterization by

ēij(x, xŒ, l, lŒ)=hl+lŒ
2 +a

(x − xŒ). (3.6)

Then, on assuming that the indices of the blocks are determined statisti-
cally, (14, 11) the total Gibbs measure for such a mixture can be written as
(cf. refs. 14 and 11)

X̄=1+ĪTw̄(I − ēw̄)−1 Ī, (3.7)

where ē is the matrix whose elements are ēij(x, xŒ, l, lŒ), w̄ represents the
matrix w̄ij(x, xŒ, l, lŒ)=w̄i(x, l) d(x − xŒ) d(l − lŒ) dij, Īi(x)=1 is the con-
stant vector, and we used the Dirac-Einstein notation ab — aikbkj(y, x)
=;.

k=1 >R aik(y, z) bkj(z, x) dz. A term by term analysis of the sums (3.1)
and (3.7) shows X̄ — X. Hence we conclude

X=1+ĪTw̄(I − ēw̄)−1 Ī, (3.8)

which is the desired overcomplete description in direct form. Similarly,
upon using ;.

i=1 (fz) i − 1=(I − fz)−1, the equivalence of (3.7) with the
Brannock-Percus format (2) can be formally established. Finally, the local
block densities are found to be

+i(x, l)=
d ln X

d ln w̄i(x, l)
=

1
X

X̄+(x, l) w̄i(x, l) X̄−(x, l) (3.9)

with

X̄−=(I − ēw̄)−1 Ī, X̄+=ĪT(I − w̄ē)−1. (3.10)

Therefore by (3.6) and again limx Q ± . z(x)=0 we have for l ¥ R

lim
x Q − .

X̄−(x, l)= lim
x Q +.

X̄+(x, l)=1, (3.11a)

lim
x Q +.

X̄−(x, l)= lim
x Q − .

X̄+(x, l)=X, (3.11b)

lim
x Q ± .

+i(x, l)=0. (3.11c)
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Now, what makes the overcomplete description (3.8) more handy than
the original formulation (3.1) is, that as for an additive hard rod mixture ē
is of rank 1 on index space (cf. ref. 11), and hence can be immediately
written as

ēij=hl+a
2

dlŒ+a
2

=dl+a
2

hlŒ+a
2

. (3.12)

Correspondingly, the technique of proof of ref. 14 for the free energy func-
tional of additive mixtures of hard rods goes indeed through, with only
minor modifications, for the case of our overcomplete free energy func-
tional for arbitrary next neighbor interactions.

The details are as follows. Introduce the one-dimensional auxiliary
functions (cf. ref. 14)

L̄−(x)= C
.

i=1
F

R
2

dlŒ+a
2

(x − xŒ) w̄i(xŒ, lŒ) X̄−(xŒ, lŒ) d(xŒ, lŒ), (3.13a)

L̄+(x)= C
.

i=1
F

R
2

X̄+(xŒ, lŒ) w̄i(xŒ, lŒ) dlŒ+a
2

(xŒ − x) d(xŒ, lŒ), (3.13b)

as well as

X̄−(x)=1+F
x

−.

L̄−(y) dy, X̄+(x)=1+F
+.

x
L̄+(y) dy. (3.14)

Then we find by (3.12) and (3.10) the reduction (cf. refs. 14 and 2)

X̄ ±(x, l)=X̄ ±(x ± l+a
2 ), (3.15)

and via (3.9) that

L̄−(x)
X

=
+−(x)
X̄+(x)

,
L̄+(x)

X
=

++(x)
X̄−(x)

(3.16)

with the densities at the boundaries of the blocks of i interacting particles

+ ±
i (x)=F

R
+i(x ± l+a

2 , l) dl (3.17)

and

+ ±(x)= C
.

i=1
+ ±

i (x). (3.18)
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Hence, on using the boundary conditions (3.11), we infer that (cf. ref. 14)

X̄+(x)
X

dX̄−(x)
dx

=+−(x), −
X̄−(x)

X

dX̄+(x)
dx

=++(x). (3.19)

If we substract these two equations, then we obtain

1
X

d[X̄−(x) X̄+(x)]
dx

=+−(x) − ++(x), (3.20)

which integrates upon using the boundary conditions (3.11) via (3.15) to

X̄−(x) X̄+(x)
X

=1+F
x

−.

[+−(y) − ++(y)] dy — w(x). (3.21)

Thus we deduce from (3.11), (3.15), (3.19), and (3.21) that (cf. refs. 14
and 2)

ln X̄−(x)=F
x

−.

+−(y)
w(y)

dy, ln
X̄+(x)

X
=−F

x

−.

++(y)
w(y)

dy, (3.22)

and so we conclude by (3.11) via (3.15) that

ln X=F
R

+−(y)
w(y)

dy=F
R

++(y)
w(y)

dy, (3.23)

or more symmetrically

ln X=
1
2

F
R

+−(y)+++(y)
w(y)

dy, (3.24)

which generalizes the results (3.10) respective (4.30) of ref. 7 for dimerizing
hard rods respective sticky cores to systems with arbitrary V.

Next, let us analyze the one-dimensional marginals + ±
i of +i. Accord-

ing to (3.17) and (3.9), we have by (3.10) and (3.6)

+−
i (x+a

2)=
1
X

X̄+(x, 0) · F
R

z(fz) i − 1 (x, x − l) X̄−(x − l
2 , l) dl, (3.25a)

++
i (x − a

2)=
1
X

F
R

X̄+(x+l
2 , l) z(fz) i − 1 (x+l, x) dl · X̄−(x, 0). (3.25b)
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Hence, on using the reparameterizations

F
R

z(fz) i − 1 (x, x − l) X̄− (x − l
2 , l) dl=F

R
z(fz) i − 1 (x, y) X̄−(y, 0) dy,

(3.26a)

F
R

X̄+(x+l
2 , l) z(fz) i − 1 (x+l, x) dl=F

R
X̄+(y, 0) (zf ) i − 1 z(y, x) dy,

(3.26b)

as well as (3.15), we infer the block densities equations

+−
i (x)=

1
X

X̄+(x) · z(x − a
2) · F

R
(fz) i − 1 (x − a

2 , y) X̄−(y − a
2) dy, (3.27a)

++
i (x)=

1
X

F
R

X̄+(y+a
2) (zf ) i − 1 (y, x+a

2) dy · z(x+a
2) · X̄−(x). (3.27b)

In particular, we find for i=1 the profile equation (cf. ref. 2)

+1(x)=+ ±
1 (x +

a
2)=

1
X

X̄+(x+a
2) z(x) X̄−(x − a

2) — z(x) k(x+a
2 , x − a

2),
(3.28)

where the two-dimensional weight function k (cf. refs. 2 and 11) evaluates
by (3.21) and (3.22) for y \ x to (cf. ref. 2)

k(y, x)=w(y) exp 5− F
y

x

+−(z)
w(z)

dz6=w(x) exp 5− F
y

x

++(z)
w(z)

dz6 (3.29)

or

k(y, x)=`w(y) w(x) exp 5−
1
2

F
y

x

+−(z)+++(z)
w(z)

dz6 . (3.30)

Thus, upon substituting (3.28) into (3.27), and since +1 is the density of the
monomers, result (3.27) characterizes blocks as conformations of mono-
mers correlated by the attractive part of the interaction. This proposition,
as the foregoing hard rod mixture form density functional (3.24), indicates
a general pattern of transition from D=1 to D > 1 (cf. Section 4).
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Finally, to close the system of equations for the local particle density,
we derive a subsidiary condition for the marginals + ±

i in terms of +. Let us
first rewrite (3.2) in the form

+(x)=
d ln X

d ln z(x)
= C

.

i=1
F

R
2

d ln X

d ln w̄i(y, l)
d ln w̄i(y, l)

d ln z(x)
d(y, l)

=F
R

2

d ln X

d ln[;.

i=1 w̄i(y, l)]
d ln[;.

i=1 w̄i(y, l)]
d ln z(x)

d(y, l). (3.31)

This yields

+(x)=
1
X

F
R

2
X̄+(y, l) (I − zf )−1 (y+l

2 , x) z(x)

× (I − fz)−1 (x, y − l
2) X̄−(y, l) d(y, l) (3.32)

via (3.8), (3.9), and (3.5). Accordingly, we have through a reparameteriza-
tion of the integral and by (3.2) as well as (3.15) that (2)

X̄−(x − a
2)=F

R
(I − fz)(x, y) X−(y) dy, (3.33a)

X̄+(x+a
2)=F

R
X+(y)(I − zf )(y, x) dy, (3.33b)

or that

X−(x)=F
R

(I − fz)−1 (x, y) X̄−(y − a
2) dy, (3.34a)

X+(x)=F
R

X̄+(y+a
2) (I − zf )−1 (y, x) dy. (3.34b)

Hence, on combining (3.34) with the block densities equations (3.27), we
obtain (2)

+−(x+a
2)=

1
X

X̄+(x+a
2) z(x) X−(x), (3.35a)

++(x − a
2)=

1
X

X+(x) z(x) X̄−(x − a
2), (3.35b)
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and so we conclude via (3.2), (3.35), and (3.28) that (cf. ref. 2)

+(x)=
++(x − a

2) +−(x+a
2)

+1(x)
, (3.36)

which is the desired closure relation. On starting from (3.31), the very
simple formal structure of (3.36) is certainly due to the D=1 next neighbor
nature of our problem. Therefore, the form (3.31) has a higher dimensional
analogue [as the result (3.27) respective (3.24)], whereas (3.36) has not.
Proposition (3.36) completes the deduction of the nonuniform case.

In passing, we point out that the main results of our analysis are
completely characterized by the pressure-like quantities, termed effective
pressures, p ±, defined as (8, 15)

bp ±(x)=
+ ±(x)
w(x)

(3.37)

with the + ± brought in via (3.18) and w by (3.21). We also introduce

bp ±(y, x)=F
y

x
bp ±(z) dz. (3.38)

Upon using definition (3.37) and the corresponding results in the form
derived so far, one can show that our overcomplete format free energy F
for D=1 particle systems with next neighbor interactions is given by

bF[U]=min
+ ¥ Dn

3F
R

+(x)[bU(x)+ln z(x)] dx − ln X4 (3.39)

with Dn={t ¥ L1(R) : t(x) \ 0 N >R t(x) dx=n}, n fixed, the profile
equation

b[m − U(x)]=ln +1(x) − 1
2 ln[k+(x) k−(x)], (3.40)

where k ±(x)=w(x +
a
2) exp[ − bp ±(x+a

2 , x − a
2)], k− — k+ by (3.29), and

the total Gibbs measure of hard rod mixture form (cf. ref. 15)

ln X=1
2 F

R
[bp−(y)+bp+(y)] dy. (3.41)
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One further finds that the block densities equations transcribe to

+−
i (x)=+−

1 (x) · F
R

1f
+1

k−
2 i − 1

(x − a
2 , y+a

2) exp[ − bp−(x − a, y)] dy,
(3.42a)

++
i (x)=F

R
exp[ − bp+(y, x+a)] 1 +1

k+ f2
i − 1

(y − a
2 , x+a

2) dy · ++
1 (x)

(3.42b)

with the subsidiary condition (3.36). These results extend—indirectly—
the well-known (see, e.g., ref. 13) isothermal-isobaric technique from the
uniform to the nonuniform case. So we are led to conjecture that a direct
nonuniform isothermal-isobaric approach should be possible as well.

3.2. Examples

We apply the theory to the adhesive respective HGM system. This
allows us to make contact with the associated results for the uniform case,
Section 2, and to provide detailed evidence for our conjecture on the non-
uniform isothermal-isobaric format.

To present the examples most adequately, we give first closed expres-
sions for the sums + ±. Again, these simplifications are only possible for the
D=1 next neighbor case. Namely, if we start with (3.35), and use (3.33) as
well as (3.28), we end up with

+(x − a
2)

+−(x)
=1+F

R
f(y+a − x) bp+(y) exp[ − bp+(y, x)] dy, (3.43a)

+(x+a
2)

++(x)
=1+F

R
f(x+a − y) bp−(y) exp[ − bp−(x, y)] dy (3.43b)

via the subsidiary condition (3.36), (3.19), and through definition (3.37).
This result is equivalent to the one-component case of formula (3.12) of
ref. 2.

3.2.1. Adhesive Interaction

Due to the contact nature of (2.3), we find by (3.43)

+(x − a
2)

+−(x)
=1+lbp+(x), (3.44a)

+(x+a
2)

++(x)
=1+lbp−(x), (3.44b)

Overcomplete Free Energy Functional for D=1 Systems 1143



which are the generalizations of (2.17) to the nonuniform case. Conse-
quently, we have that

w(x)=1 − F
x+a

2

x − a
2

+(y) dy — 1 − y(x), (3.45)

and by (3.36) also the case i=1 of (2.15) at the nonuniform level,

+1(x)=
+(x)

[1+lbp−(x − a
2)][1+lbp+(x+a

2)]
. (3.46)

Moreover, rewriting (3.44) via (3.37) and (3.45) as

+(x − a
2)

1 − y(x)
=bp−(x)[1+lbp+(x)], (3.47a)

+(x+a
2)

1 − y(x)
=bp+(x)[1+lbp−(x)] (3.47b)

gives

bp ±(x)=
1
2l

3 − 1 ±
yŒ(x)

1 − y(x)
+=1+

4ls(x)
1 − y(x)

+5 lyŒ(x)
1 − y(x)

624 (3.48)

with s(x)=1
2 [+(x+a

2)++(x − a
2)]. Hence, on substituting (3.48) into (3.41),

we arrive at formula (5.17) respective (6.16) of ref. 9. In the uniform limit,
we recover (2.18) respective (2.19).

Finally, if we specialize (3.42) to (2.3), then we obtain via (3.45) that

+−
i (x)=+−

1 (x) l i − 1 D
i − 1

j=1

+−
1 (x − ja)

1 − y(x − ja)
, (3.49a)

++
i (x)=++

1 (x) l i − 1 D
i − 1

j=1

++
1 (x+ja)

1 − y(x+ja)
, (3.49b)

which correspond immediately to (2.15) for i > 1 through (3.46) and (3.47).

3.2.2. HGM System

For an interaction characterized by (2.21), the block densities equa-
tions (3.42) are no longer analytically tractable. Thus, upon substituting
(2.21) into (3.43), we are left with
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+(x − a
2)

+−(x)
=1+l{1 − exp[ − bp+(x+d, x)]}, (3.50a)

+(x+a
2)

++(x)
=1+l{1 − exp[ − bp−(x, x − d)]}, (3.50b)

and so we have by (3.36) that

+(x)
+1(x)

=(1+l {1 − exp [ − bp− (x − a
2 , x − a

2 − d)]})

× (1+l {1 − exp [ − bp+ (x+a
2+d, x+a

2)]}). (3.51)

These results generalize (2.27) respective (2.26) for i=1 to the nonuniform
case.

Furthermore, on substituting (3.43) into (3.21), we find through (2.21),
(3.29), as well as definitions (3.37) respective (3.38)

w(x)=1 − y(x) − l F
x+d

x
++(y) 3F

x

y − d
bp−(z) exp[ − bp−(y, z)] dz4 dy,

(3.52)

yielding via definition (3.38), (3.50), (3.29), and definition (3.37)

w(x)=1 − y(x)+F
x+d

x

+(y+a
2)

exp[bp−(y, y − d)] 11+
1
l
2− 1

dy

− l F
x+d

x
bp+(y) w(x) exp[ − bp+(y, x)] dy, (3.53)

and so we conclude on using again proposition (3.50) that the effective
pressure p− is determined by [cf. for the uniform case (2.30)]

1 − y(x)=
+(x − a

2)
bp−(x)

− F
x+d

x

+(y+a
2)

exp[bp−(y, y − d)] 11+
1
l
2− 1

dy, (3.54a)

and likewise p+ by

1 − y(x)=
+(x+a

2)
bp+(x)

− F
x

x − d

+(y − a
2)

exp[bp+(y+d, y)] 11+
1
l
2− 1

dy, (3.54b)
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which is equivalent to formula (6.15) of ref. 2. This completes our discus-
sion of the nonuniform HGM system within the p ± representation.

In summary, the examples demonstrate in detail that a suggestive
formal correspondence between the usual uniform isothermal-isobaric
method and the nonuniform effective pressures format exists. This supports
the idea of an isothermal-isobaric representation for arbitrary nonuniform
D=1 particle systems.

4. CONCLUSION

We presented a realization of the overcompleteness strategy for D=1
systems with next neighbor interactions, where the supplementary variables
are the local block densities +i of i associated particles. The corresponding
free energy density functional is of the simple additive hard rod mixture
type. The isomorphism between our overcomplete format and the standard
description was established through a trivial identity of functional analysis.
The first results on this class of density functionals have been derived by
Kierlik and Rosinberg (7) for the special case of dimerizing hard rods. So we
lifted their approach to particle systems with arbitrary next neighbor
interactions. Moreover, we showed that all our main results are completely
characterized by the effective pressures p ±. This proposition in conjunction
with the detailed results for the adhesive interaction and the HGM system
support the idea of a nonuniform isothermal-isobaric representation
(analoguous to the well-known uniform isothermal-isobaric method) for
arbitrary nonuniform D=1 systems.

To introduce our concept of overcomplete description most concisely,
we started with the uniform case. We treated first the two examples of
adhesive systems and HGM systems. These results formed also the basis
for our conjecture on a nonuniform isothermal-isobaric representation. We
deduced our overcomplete description for arbitrary next neighbor interac-
tions by means of an application of large deviation techniques, accom-
panied by the Hardy-Ramanujan formula on the number of partitions of a
positive integer.

What we can learn from the D=1 case is the logic of the problem for
D > 1 systems with finite range interactions. In abstracting from the block
densities equations (3.42), (i) we decompose a given D > 1 system into
blocks of i monomers correlated by the attractive part of the interaction.
(ii) Hence, on interpreting the blocks as components of a mixture, where
the interaction between the components is given by construction by a hard
core potential, we arrive at the extension of the hard rod mixture form
density functional (3.41). (iii) Finally, we establish the isomorphism
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between our overcomplete description and the standard formalism by an
application of an identity of functional analysis as in (3.31).

Of course, it is the peculiarity of the D=1 case that space can be
disconnected by a point—see (1.2). This together with the fact that the
geometry of the blocks is known a priori allows a successful application of
our strategy. Somewhat more challenging is the question of control of the
conformations in D > 1, where the shape functions of the blocks are no
longer defined by a single real parameter l. Focusing on the first-principles
approach (i)–(iii), it may therefore be convenient to start by going over to
discrete systems (see, e.g., ref. 13). Then a natural extension of the D=1
case to higher dimensions are interacting systems with next neighbor forces
on a Cayley tree (for an overview see, e.g., ref. 10). Although such a lattice
is actually infinite-dimensional, it may still serve as a suitable starting point
for a systematic analysis of our overcomplete description in D > 1 due to
its simply connectedness (cf. ref. 12). Progress in this direction will be the
subject of a future communication.

Complementary to the reduction of the geometry of the phase space,
another possibility when trying to apply mathematical techniques is to
restrict the class of interactions. For the prominent example of systems
with strong, short range interactions, free energy models can be constructed
along these lines. We begin with the physical observation, that in such, e.g.,
D=3 systems the blocks take on predominantly elementary sphere-like or
cube-like conformations. Thus, the available analytic expressions for the
hard sphere respective hard cube mixture free energy functional can be
used to model the hard core interaction between the blocks [cf. (ii)].
Modelling of the internal block free energy [cf. (i)] and the incorporation
of the subsidiary condition [cf. (iii)] requires a more incisive approach, but
may still be amenable via the strong, short range character of the interac-
tion. Also the implementation of this program will be reported in the
future.
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