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Abstract
We analyse the structure of the fundamental measure theory for the free
energy density functional of hard-sphere mixtures. A comparative study of
the different versions of the theory, and other density functional approaches, is
carried out in terms of their generic form for the three-point direct correlation
function, which shows clearly the main advantages and problems of the different
approximations. A recently developed version for the monocomponent case is
extended to mixtures of hard spheres with different radii, and a new prescription
is presented for obtaining the exact dimensional crossover of those mixtures
in the one-dimensional (1D) limit. Numerical results for planar wall–fluid
interfaces and for the 1D fluid are presented.

1. Introduction

In the recent developments of density functional (DF) approximations for the free energy
of hard molecules the fundamental measure theory (FMT), pioneered by Rosenfeld [1] and
explored in different directions by other authors [2–5], has a prominent position both because
of its peculiar functional structure and because of the combination of success and pitfalls
encountered with its different versions. In this paper we analyse the generic mathematical
structure of the different DF approximations and discuss its implication for the generalization
of a recent version of FMT to mixtures of hard spheres (HSs) with different radii.

The theories developed to approximate the interaction part of the free energy DF
�[ρ] ≡ β(F[ρ] − Fid[ρ]), with β = (kB T )−1, beyond the simplest local density and square
gradient approximations, are all based on a similar scheme: the non-local dependence on
the density distribution ρ(r) appears through ‘averaged’ or ‘weighted’ densities defined as
convolutions:

ρ̄k(r) =
∫

dr′ ρ(r′)wk(r − r′), (1.1)
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with several (k = 0, 1, . . .) weight functions, wk(r − r′), which depend only on the relative
positions of two points. The DF �[ρ] is then written as the volume integral of a function of
ρ(r) and/or the weighted densities ρ̄k(r). Such structure of the usual approximations for �[ρ]
contrasts with the generic exact density expansion of the free energy,

�[ρ] = 1
2

∫
dr1 ρ(r1)

∫
dr2 ρ(r2) f (r12)

+ 1
6

∫
dr1 ρ(r1)

∫
dr2 ρ(r2)

∫
dr3 ρ(r3) f (r12) f (r23) f (r31) + O(ρ4), (1.2)

in terms of the Mayer function f (r) = 1−e−βφ(r) for any pair potential energy φ(r) (we have
used the notation ri j ≡ ri −r j ). The first term in (1.2) has the simplest structure among the DF
approximations, with a basic weight function w0(r) proportional to f (r), used to convolute
ρ(r) at two different points. However, the second and following terms in (1.2) cannot be
reproduced within the generic forms used in the DF approximations. In the diagrammatic
expansion used in the theory of liquids [6], the free energy is given by irreducible diagrams
(with Mayer function links), which cannot be evaluated as single volume integrals of simpler
factors, while the generic form of the DF approximations includes only reducible diagrams
with wk(r) links.

The second and third functional derivatives of (1.2) give the exact series expansions for
the pair and triplet direct correlations functions respectively, which have the corresponding
density expansions

−c(2)(r1, r2) = δ2�[ρ]

δρ(r1) δρ(r2)
= f (r12) + f (r12)

∫
dr3 ρ(r3) f (r23) f (r31) + O(ρ2), (1.3)

and

−c(3)(r1, r2, r3) = δ3�[ρ]

δρ(r1) δρ(r2) δρ(r3)
= f (r12) f (r23) f (r31) + O(ρ), (1.4)

again made of irreducible diagrams, with two and three open (not integrated) points
respectively. The first term in (1.3) is reproduced by most DF approximations, but the first
term in (1.4), and hence the second term in (1.3) for arbitrary density distributions, cannot be
reproduced within those DF forms. This contradiction between the exact forms and the usual
choices for the mathematical structure of the DF approximations is forced by the computational
cost of evaluating irreducible terms. The inclusion of kernel functions with more than two
centres in the convolutions of ρ(r) would make it difficult to use the DF approximation for
practical purposes.

The weighted density approximation (WDA) [7, 8] gives a good example of the
compromise between accuracy and practical computability in DF approximations. Although
the advanced versions of this DF approximation use a density-dependentweight w(r, ρ̄), which
may appear to be beyond the scope of (1.1), for the present discussion it is fully equivalent to take
the zeroth-and first-order contributions in the density expansion w(r, ρ) = w0(r)+w1(r)ρ+· · ·.
Then, the approximation for �[ρ] up to third order in ρ(r) is

�WDA[ρ] = 1
2

∫
dr1 ρ(r1)

∫
dr2 ρ(r2) f (r12) + 1

6

∫
dr1 ρ(r1)

×
∫

dr2 ρ(r2)

∫
dr3 ρ(r3) f (r12)[ f (r23) + w1(r23)] + O(ρ4), (1.5)

where the first term reproduces directly the first term in (1.2), while the second term tries to
mimic the irreducible kernels as reducible combinations of Mayer function links, f (r), with
a new link function, w1(r), defined to recover the direct correlation function of a bulk fluid,
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i.e. to recover the exact expansion (1.3) up to first order in the uniform density ρ(r) = ρ0.
This requirement leads to a function w1(r) which exceeds the range of the Mayer function
with an oscillatory tail structure.

Thus, the WDA for the HS fluid may be implemented [8] to recover the direct
correlation of the bulk fluid, c(r12, ρ0) = c(2)(r1, r2)|ρ(r)=ρ0 , given by the Percus–Yevick
(PY) approximation [6, 9], with the range of a HS diameter, σ ; however, the function
c(2)(r1, r2), evaluated for a non-uniform density distribution, would exceed that range because
of the convolution of the Mayer function with the oscillatory function w1(r). Similarly,
the zeroth-order term of the triplet direct correlation c(3)(r1, r2, r3) would exceed the range
ri j = |ri − r j | � σ which the exact form (1.4) has for any combination of its variables.
This being so, the WDA and similar approximations give a blurred representation of the exact
non-local dependence of �[ρ] on ρ(r), where the sharp step-like dependence on the HS Mayer
function in (1.2)–(1.4) is replaced by functionals that are easier to compute but smoother. The
extension of this type of DF to mixtures of HS with different radii Ri (with i = 1 to m) is
difficult, because they require m(m + 1)/2 weight functions to reproduce the Mayer functions
fi j (r) for any pair of molecules, and the ‘extended’ weights required to mimic the irreducible
diagrams for any triplet (i, j, k = 1, . . . , m) proliferate into an embarrassingly large number
of possible combinations for the functional �[ρ].

The FMT also approximates �[ρ] for HS systems in terms of convolutions (1.1) of ρ(r),
but with weight functions having the range of the molecular radius, R, rather than the range
of the Mayer function, σ = 2R. The first advantage of such a choice is a natural extension
to HS mixtures, since the number of different weight functions is going to be proportional to
the number of species, and (at least in the original version) they only appear in a fixed number
of linear combinations. The first one is the local packing fraction, which for a mixture of m
species with radii Ri and density distributions ρi (r) is defined as

η(r) =
m∑

i=1

∫
dr′ ρi(r

′)�(Ri − |r − r′|), (1.6)

with the Heaviside step function �(x). This definition of η(r) is the direct extension to
inhomogeneous systems of the usual packing fraction η = (4π/3)

∑
i R3

i ρi , which plays a
most relevant role in the best approximations for the equation of state of bulk fluid HS mixtures.
Also, η(r) is a key ingredient in the exact DF for hard rods [10] in one dimension (1D), and
it has the appealing interpretation of being the probability that point r happens to be inside
a sphere. Despite these facts, the local packing fraction cannot appear in any DF based on
the Mayer function and its convolutions, such as the WDA in (1.5), because all the weight
functions have at least the range of two added molecular radii. The problem for including η(r)

in the functional dependence of �[ρ] is recovering the Mayer function in the lowest-order
terms in (1.2) and (1.3), from kernels with half the range. In the exact DF for hard rods in
1D, the function fi j (x) = �(Ri + R j − |x |) is recovered as a convolution of the ‘molecular
volume’ �(Ri − |x |) with delta functions,

fi j (x) = 1
2

∫
dx ′ [�(Ri − |x − x ′|)δ(R j − |x ′|) + �(R j − |x − x ′|)δ(Ri − |x ′|)], (1.7)

which points to the use of normalized spherical delta function shells as ‘molecular surface’
weight functions to complement η(r).

In 3D the minimal set of weight functions with range Ri and R j for recovering the Mayer
function spherical step at |r| = Ri + R j , as in (1.7) for the 1D case, requires a scalar weight
function and a vector weight function to define two sets of weighted densities [1]:

ni (r) = 1

4π R2
i

∫
dr′ δ(|r′| − Ri )ρi (r + r′), (1.8)
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and

vi (r) = 1

4π R2
i

∫
dr′ δ(|r′| − Ri )ρi (r + r′)

r′

Ri
, (1.9)

for each species. The structure of the functional �[ρ] at quadratic order in η(r), ni(r), and
vi (r) is uniquely determined to recover the leading terms in (1.2) and (1.3):

�[ρ] =
∫

dr

(
η(r)

m∑
i=1

ni (r) + 2π

m∑
i, j=1

Ri R j(Ri + R j )

× [ni (r)n j(r) − vi (r) · v j (r)]

)
+ O(ρ3). (1.10)

The original proposal [1] for the FMT is consistent with (1.10) and, with the guideline of
the scaled particle theory, recovers the full PY approximation for the direct correlation function
of a bulk HS fluid. According with a general rule emanating from the FMT structure, the free
energy DF has as many additive terms as the space dimension:

�[ρ] =
D∑

i=1

�
(D)
i [ρ]. (1.11)

For 3D HSs the three terms proposed by Rosenfeld were

�1[ρ] = −
∫

dr log[1 − η(r)]
m∑

i=1

ni (r), (1.12)

�2[ρ] = 2π

m∑
i, j=1

Ri R j(Ri + R j )

∫
dr

ni (r)n j(r) − vi (r) · v j (r)

1 − η(r)
, (1.13)

�3,o[ρ] = 8π2
m∑

i, j,k=1

R2
i R2

j R2
k

∫
dri ni (r)

1
3 n j (r)nk(r) − v j (r) · vk(r)

[1 − η(r)]2
. (1.14)

All the complexity arising from the mixture of m different HS species is reduced to the
evaluation of η(r) in (1.6) and three moments X (s)(r) = ∑

i Rs
i Xi (r), with s = 0, 1, 2,

of the averaged densities Xi = ni ,vi . Thus, the theory may be applied even to polydisperse
systems with a continuous distribution of the molecular radius [11].

For one-dimensional (1D) hard rods the exact free energy DF, as found by Percus [10], is
recovered from just the first term in (1.12), with the obvious translation of η(r) and ni(r) to
1D. For hard discs in two dimensions (2D), Rosenfeld [12] proposed two terms with structures
similar to (1.12), (1.13). The results obtained with this approximation for a monocomponent
HS system were very good (better than those obtained with any previous DF approximation)
for problems such as determining the profiles of a HS fluid against a hard wall, thus showing
that the non-local dependence obtained with the geometric measures (1.6), (1.8), and (1.9) is a
better representation of the sharp dependence of the Mayer function in the irreducible kernels
of (1.2). However, the study of the HS crystal as a density distribution made of narrow peaks at
the positions of the crystal lattice, which had been successfully achieved with the WDA [7, 8]
and other DF approximations [13], gave fully unphysical results with a negatively diverging
free energy in the limit of infinitely narrow peaks. The problem was related to the overlap of
three delta function shells in (1.14), giving rise to integrable divergences. These singularities
are harmless in the evaluation of the bulk fluid free energy and direct correlation function,
but they notoriously show up when the free energy is evaluated for delta function density
distributions. In the case of a monocomponent HS system, the pathology of the original FMT
was analysed in terms of the dimensional crossover of the DF from 3D HSs to 1D hard rods,



A density functional for hard-sphere mixtures 11969

as well as the zero-dimension (0D) limit, i.e. narrow cavities which cannot contain more than
one molecule [14, 15]. A new version of �3[ρ] was proposed to solve the problem [16], with
the new ingredient of a rank-2 tensor weighted density Ti , with Cartesian components

T (α,β)

i (r) = 1

4π R2
i

∫
dr′ δ(|r′| − Ri )ρi(r + r′)

r ′
αr ′

β

R2
i

, (1.15)

α, β = x, y, z, and where the index i is included to provide the obvious generalization to
HS mixtures. This tensor weighted density allows us to write �3[ρ] in such a way that it
vanishes for any 1D distribution of HS, i.e. for any ρ(r) = δ(x)δ(y)ρ1(z), which should be
fully equivalent to a 1D system of hard rods with density distribution ρ1(z). The combined
forms of �1[ρ] and �2[ρ] give the exact DF form in this limit, but the original term �3,o[ρ]
in (1.14) spoils the agreement. The new version of the FMT for the monocomponent HS
system reproduces the exact 1D limit and gives an excellent description of the HS crystal,
solving many of the qualitative problems of other DF approximations [16, 17].

The extension of this new version of FMT to HS mixtures amounts to taking

�3[ρ] = 12π2
m∑

i, j,k=1

R2
i R2

j R2
k

∫
dr

ϕi jk(r)

[1 − η(r)]2
, (1.16)

with

ϕi jk(r) = vi · T j · vk − n jvi · vk − Tr[TiT jTk] + n j Tr[TiTk], (1.17)

in terms of the tensorial contractions and trace of vi (r) and Ti(r), for each component.
However, such a direct extension to mixtures fails to reproduce the exact 1D limit. The

reason for this failure, the modification in the DF structure required to achieve that limit, and
the effect of such modifications in typical problems are to be analysed here. In the next section,
the origin and effects of the spurious divergences in the FMT DF are analysed in terms of the
triplet direct correlation function and a new FMT DF for HS mixtures is proposed to recover
the exact 1D limit. This new version, however, patches over this effect at the expense of
creating new weaker but potentially harmful singularities which preclude using this functional
for a free minimization. In section 3 we compare the results of this new version with those
obtained with (1.16) and (1.17), and discuss the pros and cons of using each. We conclude
in section 4 that the functional (1.16), (1.17), despite its defects, provides the best balance
between accuracy and computational simplicity, and that it seems impossible to go any further
without modifying the basic structure of FMT.

2. FMT for HS mixtures

The triplet direct correlation functions obtained for HS in three dimensions with any FMT
DF has a peculiar structure, very different from that obtained with the WDA or similar
approximations. The most relevant form appears in the contribution at zero order in a density
expansion, from the functional derivative of �3[ρ] in (1.11), which has the generic form

δ3�3[ρ]

δρi(r1) δρ j(r2) δρk(r3)
=

∫
dr δ(Ri − |r′

1|)
× δ(R j − |r′

2|)δ(Rk − |r′
3|)Ki jk(r

′
1, r′

2, r′
3) + O(ρ), (2.1)

where i, j, k = 1, . . . , m. The radii of the HS placed at r1, r2, and r3 are Ri , R j , and
Rk respectively, and for each possible choice of the three indices, i, j, k, there is a generic
function Ki jk of the relative vectors r′

l ≡ rl − r, l = 1, 2, 3, whose moduli are restricted to
being equal to the respective HS radii by the three delta function shells. Higher-order terms in
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Figure 1. Boundaries in the plane (r23, r31), for the given value of r12 = 0.4. The dash–dotted
lines give the triangle inequalities |r23 − r31| � r12 � r23 + r31, for the possible values of these
variables. The solid thick curves give the regions of common overlap between three spherical shells
placed at r1, r2, and r3 while the solid thin lines give the boundaries of the simultaneous pairwise
overlap. The HS radii are of equal size (Ri = R j = Rk = 0.5) (a) and of very different size
(Ri = R j = 0.5 and Rk = 0.1) (b).

the density expansion of c(3)
i jk, as well as the contributions to the triplet direct correlation

function from the terms �1[ρ] and �2[ρ] in (1.12) and (1.13), have one or more delta
function shells replaced by spherical step functions (i.e. �(Ri − |r′

1|), etc) coming from
the functional derivative of η(r). These contributions are always regular smooth functions,
which cannot produce spurious divergences but also cannot reproduce the exact step-like
dependence of ci jk(r1, r2, r3) = − fi j (r12) f jk(r23) fki (r31) + O(ρ), in terms of the Mayer
functions, fi j(r) = �(Ri + R j − r), and the relative distances r12 = |r1 − r2|.

It is only from the overlap of the three delta function shells in (2.1) that the c(3)
i jk-term

in a FMT may be able to reproduce such a sharp step dependence. But the same overlap
is also the origin of the spurious divergences which may invalidate the use of the FMT for
density distributions with strong inhomogeneities. The crucial point for balancing these two
aspects is the choice of the kernel function Ki jk(r

′
1, r′

2, r′
3), which is precisely the difference

between different versions of the FMT. The common aspect of all versions is that the range
of the triplet correlation function, c(3)

i jk(r1, r2, r3), is restricted to points r1, r2, and r3 such
that the three spheres of radii Ri , R j , and Rk , respectively centred at those points, have a
common overlap. This geometrical boundary is always inside the exact range imposed by the
Mayer function product (which extends as far as pairwise overlaps between the three spheres
exist) but, particularly in the case of mixtures of HS with very different sizes, it is much more
restrictive than the exact one. In figure 1 we represent the boundaries in the plane (r23, r31)

for a given value of r12, both for HSs of equal size (a) and ones of very different size (b). The
total hyper-volume obtained by integration over r2 and r3 in the region with non-zero values
for (2.1) may be obtained as a function of the HS radii as �

(3)
FMT = 4π4 R2

i R2
j R2

k , while the
equivalent integral for the exact product of Mayer functions gives

�
(3)
exact = 16π2

9

[
R3

i R3
j + R3

j R3
k + R3

k R3
i + 3R2

i R2
j R2

k

(
3 +

Ri + R j

Rk
+

R j + Rk

Ri
+

Rk + Ri

R j

)]
.

(2.2)

The difference between �
(3)
exact and �

(3)
FMT corresponds to the FMT ‘lost cases’ described in the

0D approach to the FMT [15], i.e. those configurations of three delta function peaks which
cannot give contribution to �3[ρ] in the FMT scheme, but which should give a contribution to
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Figure 2. The ratio between �
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FMT = 4π4 R2
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k and �
(3)
exact (equation (2.2)) for R j = Ri � Rk

(solid curve) and for R j = Rk � Ri (dashed curve).

the exact free energy excess. When the three HS radii are equal, the FMT contribution covers
about 74% of the exact hyper-volume, so the role of the ‘lost cases’ is relatively small, and its
effect on the overall accuracy of the DF approximation for usual applications could be reduced
by an appropriate choice of the kernel function in (2.1), which could increase the contribution
of the points inside the FMT boundary to overcome the lack of contribution of the missing
configurations. However, the ratio between �

(3)
FMT and �

(3)
exact goes to zero in a mixture of very

asymmetric HS, whenever the size of one species goes to zero while maintaining the size of
the other two. This is shown in figure 2 and corresponds to the effect which was obvious for
the particular case in figure 1 (b): the contribution of �3[ρ] associated with spheres of very
different size shrinks to a very small part of the exact contribution to the triplet direct correlation
function. If the kernel function in (2.1) is fixed to reproduce a given equation of state for the bulk
fluid mixture, the contribution of order ρiρ jρk coming from �3[ρ] would require an enormous
artificial enhancement of the weight of those configurations within the FMT boundary, in order
to compensate for the lack of contribution from the missing configurations. The use of such
an approximation for inhomogeneous density distributions could lead to quite an erroneous
evaluation of the excess free energy, with spurious sensitivity to the density distribution of the
small spheres. This could be of particular relevance in the DF study of depletion forces in
colloidal particles for strongly inhomogeneous density distributions.

Beside the problem of its reduced range, the mathematical form (2.1) leads to the most
serious problem of the FMT: the presence of spurious divergences at the boundary of non-zero
values, arising from the tangency of two or the three spherical shells. This is clear if the integral
over r is transformed into integrals over the three moduli r ′

1, r ′
2, and r ′

3, which can be directly
performed with the three delta functions in (2.1). The boundary of non-zero values is therefore
given by the existence of a triple overlap between the three spheres; since at that boundary the
vectors r′

1, r′
2, and r′

3 are geometrically fixed, integration leads to

δ3�3[ρ]

δρi (r1) δρ j(r2) δρk(r3)
= 4Ri R j Rk Ki jk(r

′
1, r′

2, r′
3)

[Z(r12, r23, r31, Ri , R j , Rk)]1/2
+ O(ρ). (2.3)

The function Z(r12, r23, r31, Ri , R j , Rk) is the polynomial

Z = (R2
i r2

23 + R2
j R2

k )(r
2
12 − r2

23 + r2
31) + (R2

j r
2
31 + R2

k R2
i )(r

2
23 − r2

31 + r2
12) + (R2

k r2
12 + R2

i R2
j )

× (r2
31 − r2

12 + r2
23) − R4

i r2
23 − R4

j r
2
31 − R4

k r2
12 − r2

12r2
23r2

31 (2.4)
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arising from the Jacobian of the transformation. This polynomial vanishes over the whole
boundary. The divergences of the terms in (2.1) and (2.3) may only be avoided if the kernel
also vanishes over the boundary. The version of the FMT based on the exact 0D limit for narrow
cavities of arbitrary shape [15] fulfils precisely such a condition with a function Ki jk(r

′
1, r′

2, r′
3)

proportional to [Z(r12, r23, r31, Ri , R j , Rk)]1/2. This removes the divergences in (2.3) while
at the same time saves the step-like dependence between the inside and the outside of the
FMT boundary. However, such a kernel function is not separable in powers of the Cartesian
components of the vectors r′

l, so the free energy cannot be evaluated in terms of simple weighted
densities, such as (1.1), making it very costly to use it for practical applications.

The original FMT version (1.14) corresponds to building a kernel function on the basis of
the bulk fluid direct correlation (from the integration of c(3)

i jk with respect to one of the positions,
as in (1.3)) and to get an easy computation of �[ρ] in terms of the scalar and vector weight
densities (1.8) and (1.9). In that case the kernel function has to be decomposable in terms
which are linear in each Cartesian component of the vector variables. Within these constraints
the unique choice was (1.14), which is equivalent to taking in (2.1) and (2.3) the kernel

Ki jk = 1

24π

(
1 − r′

1 · r′
2

Ri R j
− r′

2 · r′
3

R j Rk
− r′

3 · r′
1

Rk Ri

)
. (2.5)

However, such a choice for the kernel function does not eliminate any of the divergences at the
boundaries of the tangent spherical shells. The strongest effect appears when Ri = R j = Rk

and r1 = r2 = r3, with the result that the three spherical shells overlap in their whole surface.
In that case (2.5) takes the value −(12π)−1, and there is a diverging negative contribution to
the free energy. The divergence is integrable and it contributes to give the exact ρ3-term in
free energy (1.2) for uniform bulk fluid, but in a density distribution with narrow peaks (such
as in a 0D cavity or in a crystal phase) the negative divergence goes to �3[ρ] in (1.14) and the
approximation becomes useless. Also, in the crossover from the 3D HSs to the 1D system,
there is a spurious contribution of the divergence in �3[ρ], as given in (1.14), while the exact
1D DF would be recovered with a vanishing �3[ρ] for such density distributions.

The FMT version (1.16) and (1.17) was developed to recover the exact 1D limit for
monocomponent HS systems [16]. It corresponds to choosing the kernel

Ki jk = 1

16π

[(
1 − r′

1 · r′
2

Ri R j

)(
1 − r′

2 · r′
3

R j Rk

)(
1 − r′

3 · r′
1

Rk Ri

)
− [r′

1 · (r′
2 × r′

3)]
2

(Ri R j Rk)2

]
. (2.6)

The presence of a quadratic dependence in the Cartesian components of the vector variables
implies the need for the tensor weighted density, with rank 2, defined in (1.15), together with
the scalar and vector weighted densities (1.8) and (1.9) used in (1.14). The kernel has two
terms with different geometrical structures: one goes with the squared triple vector product
|r′

1 ·(r′
2 ×r′

3)|2 which becomes zero whenever the three vectors r′
1, r′

2, and r′
3 become coplanar.

This happens always at the boundaries of the triple overlap of the three spherical shells in (2.1),
so this contribution to the kernel alone would get rid of all the spurious divergences generated
by the vanishing of the denominator in (2.3). Unfortunately, a kernel function based only on
this term would not reproduce the correct behaviour for c(2)(r, ρ) in a homogeneous fluid.
The other contribution in (2.6) becomes zero whenever two of the three vectors r′

l become
equal, which suppresses the strongest divergences of c(3)(r1, r2, r3) produced when two delta
function shells, of equal radii, overlap their full surfaces. In the monocomponent case, this is
enough to make the full contribution of �3[ρ] vanish in the 1D limit, because three spherical
shells of equal radii and with the centres along a straight line cannot have a triple overlap unless
two of them share the same centre.

Thus, in a monocomponent HS system the FMT version with (1.16) is free of the strongest
divergences in c(3)(r1, r2, r3), produced when rl = rm and when the three points r1, r2, r3
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r’
r’3

2

r’1

Figure 3. Three coaxial spheres of different radii overlapping along a circumference. This situation
is impossible for spheres of the same radius, unless two of them overlap over their whole surfaces.

are along a straight line (with the result that the spherical shells have a common axis).
However, there are still weak divergences at the boundary points between overlapping and
non-overlapping shells. These divergences would appear in �[ρ] for very peculiar density
distributions, with three delta function peaks, normalized to contain less than one molecule
among the three, and separated by distances such that the surfaces of molecules centred at the
three sites would intersect in a single point. Of course such a density distribution would be
very unlikely to appear unless the external potential acting on the system had been tailored
purposely, and in that case the error made by this FMT version would be of the opposite sign
to the error made by (1.14) in the 0D limit. Instead of a negative divergence of the free energy
(from the negative sign of the kernel (2.5) in such a limit), there would be a positive divergence
of the free energy because the kernel (2.6) is always equal to or larger than zero for coplanar
vectors. A positive divergence in �3[ρ] for a very peculiar density distribution would cause
little harm because the process of minimization of the free energy in the DF formalism would
just avoid such distribution functions. The problem is much more innocuous than a negative
divergence of the free energy, which would invalidate the formal use of �[ρ] to minimize with
respect to any possible function ρ(r).

In the case of HS mixtures with different radii, the kernel (2.6) is less efficient than in the
monocomponent case in the regularization of the FMT. The exact 1D limit would still require
that �3[ρ] vanishes whenever all the points with non-zero density are along a straight line,
but the kernel (2.6) does not vanish in the case of three coaxial spheres with a triple overlap
along a circumference (as illustrated in figure 3). To recover the exact 1D DF from a mixture
of 3D HSs confined along a straight line requires a kernel Ki jk(r

′
1, r′

2, r′
3) which vanishes

whenever the three vectors (with respective moduli Ri , R j , and Rk) go from a common origin
to three points along a straight line. This requirement has to be achieved by a dimensionless
combination, invariant under rigid rotations and permutations of the three vector variables with
fixed moduli. Moreover, the kernel has to have a finite expansion in powers of their Cartesian
components (to be computed in terms of separate scalar, vector, and tensor measures for each
species), and it has to recover the exact contribution of order ρk (triangle diagram) to the direct
correlation function ci j(r12, ρk) in a bulk fluid. The later condition implies that the integral
over the orientations of r′

3 gives

∫
d2r̂′

3 Ki jk(r
′
1, r′

2, Rk r̂
′
3) = 1

6

(
1 − r′

1 · r′
2

Ri R j

)
. (2.7)

It is easy to check that all these requirements, except the cancellation for the 1D limit, are
fulfilled by the kernels (2.5) and (2.6). The simplest geometrical construction which cancels
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whenever the three vectors r′
1, r′

2, r′
3 go from a common origin to a straight line is

(r′
1 − r′

2) × (r′
2 − r′

3) = r′
1 × r′

2 + r′
2 × r′

3 + r′
3 × r′

1. (2.8)

To get a scalar we take the scalar product either with the vectors r′
l , leading to the triple product

form r′
1·(r′

2×r′
3) already used in (2.6), or with a symmetric combination of the vector products,

leading to the generic form

Ki jk = (r′
1 × r′

2 + r′
2 × r′

3 + r′
3 × r′

1) · [ f1(r
′
3 × r′

2) + f2(r
′
1 × r′

3) + f3(r
′
2 × r′

1)],

where f1, f2, and f3 are arbitrary scalar coefficients. It may be directly checked that the correct
behaviour in the bulk fluid (2.7) cannot be obtained if these coefficients are just functions of
the radii, so we have to include at least a linear dependence on the dot products of the vectors.
In that case the requirement (2.7) leads to the unique form

Ki jk = (r′
1 × r′

2 + r′
2 × r′

3 + r′
3 × r′

1)

16π Ri R j Rk
·
[(

r′
1 · r′

2

Ri + R j
+

r′
1 · r′

3

Ri + Rk

)
(r′

3 × r′
2)

Rk R j

+

(
r′

2 · r′
3

R j + Rk
+

r′
2 · r′

1

R j + Ri

)
(r′

1 × r′
3)

Ri Rk
+

(
r′

3 · r′
1

Rk + Ri
+

r′
3 · r′

2

Rk + R j

)
(r′

2 × r′
1)

R j Ri

]
.

(2.9)

The expansion of this kernel in terms of the Cartesian components of the vector variables
includes cubic terms, which imply the use of a new rank-3 tensor measure, namely Mi , whose
Cartesian components are given by

M (α,β,γ )

i (r) = 1

4π R2
i

∫
dr′ δ(|r′| − Ri )ρi (r + r′)

r ′
αr ′

βr ′
γ

R3
i

. (2.10)

In terms of this and the former measures, �3[ρ] will have the same shape as in (1.16), but with
ϕi jk(r) in (1.17) replaced by ϕi jk(r) + �ϕi jk(r), where

�ϕi jk(r) = 2R2
j (Ri − Rk)

Ri(Ri + R j )(R j + Rk)
(vi · M j : Tk − vi · Tk · v j), (2.11)

the symbol ‘:’ denoting the contraction of two indices. For monocomponent HS systems
�ϕi jk(r) vanishes, the contribution from the rank-3 tensor disappears, and the kernel (2.9)
recovers the simpler form (2.6). The new contribution �ϕi jk(r) also vanishes for any bulk
fluid mixture, since both vi and Mi become zero in homogeneous regions. However, in
inhomogeneous regions of HS mixtures the FMT with the correct reduction to the 1D limit
is qualitatively different from the direct extension of the monocomponent case. Besides the
presence of the rank-3 tensor weighted density, the coefficients multiplying the measures are
no longer a product of powers of the radii, but more general rational functions of them. This
has the computational disadvantage of not allowing one to express the functional in terms
of a finite number of moments of the weighted densities, as in any previous FMT version.
This is particularly important in applications to polydisperse systems, where having moment-
dependent functionals dramatically simplifies the calculations [11].

The other drawback of the new kernel is that it cancels the most singular terms in the former
kernel (those that preclude it from recovering the one-dimensional functional for aligned
configurations of the HS) at the expense of changing the sign of the weak divergences for
some non-aligned configurations, at the boundary between overlapping and non-overlapping
shells. These divergences were always of positive sign for the kernel (2.6), but for some
configurations they become negative with the kernel (2.9). This can be explicitly seen if we
write the kernel (2.9) as

Ki jk = [(r′
3 − r′

2) × (r′
1 − r′

2)] · Vi jk(r
′
1, r′

2, r′
3), (2.12)
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Figure 4. The maximum, with respect to the radii ratio Rl/Rs , and the relative packing fraction of
the small segments, xs ≡ ηs/η, of the relative error ��/�1D of the one-dimensional reduction of
functional (1.16) and (1.17) for a binary mixture, versus the total packing fraction, η, of the fluid.
The values of the pair (xs , Rl/Rs ) are given for three points of the curve. It can be seen that the
maximum error occurs for xs ≈ 0.2 and Rl/Rs ≈ 4 for most values of η.

and now rotate r′
2 slightly away of coaxiality while maintaining the three vectors in the same

plane and with common origin (see figure 3). If the displacement is given by the vector ε
(|ε| � R j ), then R2

j = |r′
2 + ε|2 = R2

j + 2r′
2 · ε + O(|ε|2), i.e.

r′
2 · ε = O(|ε|2). (2.13)

Replacing r′
2 by r′

2 + ε in (2.12) yields (remember that Ki jk = 0 for coaxial vectors)

Ki jk = [(r′
3 − r′

1) × ε] · Vi jk(r
′
1, r′

2, r′
3) + O(|ε|2). (2.14)

Clearly, if ε fulfils (2.13) and the r.h.s. of (2.14) does not vanish (which happens, for instance,
if r′

2 and ε are coplanar), so does −ε, so the kernel may have either sign, as stated.
A negative singularity is formally the worst defect that a free energy DF can have, because

it implies that the absolute minimum of the free energy functional is minus infinity, and
it is reached for very singular density distributions. In practice, however, this defect can
be overcome with a restricted minimization of the free energy within a functional family
which does not include those singular distributions. Thus, the strong negative divergence
of the original FMT proposal (1.11)–(1.14) for delta function density distributions, which
precluded its use for crystals and narrow 0D cavities, does not interfere with its use (and
produces very good results indeed) for systems with planar symmetry, when the free energy is
minimized with respect to planar density profiles ρi(r) = ρi (z), independent of x and y. The
remaining negative divergences in our new version (2.14) are far weaker than those in (1.14),
and they would be harmless for almost any virtual application of DF theory with the variational
minimization of the free energy constrained to families of functions (uniform in one or two
variables, such as in the adsorption at walls or in pores; periodic, such as in freezing; etc).
This notwithstanding, we will show in the next section that the actual quantitative difference
between this new functional and the former one (equations (1.16) and (1.17)) in applications
to standard problems is negligible, the former functional being far simpler and easier to apply
to polydisperse mixtures.
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Figure 5. The relative error ��/�1D of the one-dimensional reduction of functional (1.16)
and (1.17) for a binary mixture at total packing fraction η = 0.5, versus the relative packing
fraction of the small segments, xs ≡ ηs/η, for a radii ratio Rl/Rs = 4.22 (a) as well as versus the
radii ratio, Rl/Rs , for a value of xs = 0.211 (b).

3. Results

As stated in the previous section, the functional (1.16) and (1.17) does not recover the exact
free energy of a uniform hard-rod mixture when it is reduced to a one-dimensional density
profile. The expression of the reduced functional is rather cumbersome, but in order to estimate
this deviation we will simply evaluate the difference with respect to the exact value for a 1D
homogeneous binary mixture. Let us denote respectively by � and �1D the reduced free energy
density (in units of kB T ) and the exact free energy density, and define �� = �1D − �. The
relative error ��/�1D has, for any packing fraction η, an absolute maximum as a function
of the relative packing fraction of the small segments, xs ≡ ηs/η, and the radii ratio, RL/Rs .
This maximum value is plotted versus η in figure 4. In figure 5 we also plot the relative error
��/�1D corresponding to η = 0.5 both versus xs at fixed RL/Rs (a) and versus RL/Rs at
fixed xs (b), for the values corresponding to the maximum relative error. Notice that this error
remains smaller than 2% up to η = 0.8, and it is never larger than 10% even for packing
fractions as high as η = 0.95.

The conclusion that we extract from these figures is that, despite having an incorrect
dimensional crossover to 1D, the functional (1.16), (1.17) produces results of high accuracy
in this limit. A second test can be obtained by applying this functional and the one with the
correction (2.11) to obtain the density profiles of a binary mixture of HSs, both near a hard
wall and within a slit. The parameters of the system have been chosen in order to obtain the
most prominent differences. The results are shown in figure 6, for the case of the hard wall,
and figure 7, for the case of the slit. We see again that the differences are nearly negligible.

In view of these numerical tests, we conclude that functional (1.16), (1.17) is preferable
to the corrected one, despite its inability to recover the one-dimensional free energy exactly,
simply because its structure is far simpler and more suitable for application to polydisperse
mixtures (see for instance [11]).

4. Conclusions

The main conclusion of the analysis that we have performed on the construction of a
fundamental measure functional for mixtures of HSs is that, as stated in the title, we appear to
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Figure 6. Density profiles of a binary mixture of HSs of radii Rs = 1 and Rl = 5 near a hard wall,
as obtained both with functional (1.16), (1.17) only (dashed curve) and with the correction (2.11)
(solid curve). The densities for the large (a) and small (b) particles are multiplied by the volume of
each type of particle. The bulk packing fractions of the small and large spheres are, respectively,
ηs = 0.2 and ηl = 0.3. The difference between the results for the two functionals can hardly be
seen with this plotting scale.

0 5 10 15 20
z

0

0.1

0.2

η

Figure 7. As figure 6, but for a slit of length 20Rs . The system is in chemical equilibrium with
a reservoir with packing fractions ηs = 0.2 and ηl = 0.2. Although the difference is now more
visible, it is still negligible.

be ‘close to the edge’ of FMT, in the sense that its internal structure seems almost exhausted.
There are two main drawbacks that seem unavoidable within the present scheme, both related
to the structure of the third term �3[ρ] in (1.11). The first problem is common to all the
FMT versions and it concerns the existence of ‘lost cases’, i.e. the fact that configurations of
three spheres with pairwise overlap but no triple overlap do not make any contribution to the
functional. This reflects in the lowest order of c3 being incorrectly predicted (it vanishes for
the lost cases, where it should still be 1). The obvious way to repair this fault is to introduce
two point measures joining two ‘halves’ of Mayer functions. This would be a qualitative
departure from the FMT structure, which would recover the exact c3 at low density, but the
increase in computational complexity would be considerable. Another way to circumvent this
problem, while keeping the FMT structure and low computational cost, would be to replace
the delta functions in the definition of �3[ρ] by some other functions having a ‘tail’ extending
beyond the radii of the particles (and presumably vanishing when particles no longer overlap).



11978 J A Cuesta et al

Although we cannot definitely exclude this possibility, we have tried several functional forms
without success. This seems to be a too drastic change within the fundamental measure scheme,
so much so that adding such tails would ‘break down’ the functional at some other point. In
particular, the dimensional crossover (to the exact 1D limit and to 0D cavities, strongly related
to the density distribution in crystals) is a very stringent, and hence fragile, requirement for an
approximate functional, so virtually any modification can spoil it.

The existence of these lost cases forces one to overweight the other configurations in order
to compensate for the non-existent ones and guarantee a reasonable equation of state. But as
figures 1 and 2 show, this compensation introduces a dramatic bias in the case of mixtures of
very dissimilar spheres. This may, at least in principle, have important consequences for the
depletion effect in these systems and thus may affect phase behaviour, at least in its use to
describe crystalline phases—although in the application to planar density profiles, the effect
would be strongly reduced by the averaging over the transverse directions.

The problem of the lost cases seems to be inherent to the fundamental measure structure
with a notable exception: parallel hard parallelepipeds [4]. The peculiar shape of these bodies
makes pairwise overlap and triple overlap equivalent conditions, so there are no lost cases for
this particular form of particles, and hence the lowest order in c3 is exactly recovered.

The second problem,also associated to �3[ρ], depends on the choice of the kernel function
Ki jk(r

′
1, r′

2, r′
3) in (2.1), which marks the difference between the FMT versions proposed in

the literature. The balance here comes between the computational cost and the existence
of spurious divergences (of positive or negative sign) in the free energy. The original form
proposed by Rosenfeld factorizes in terms of the scalar and vector weighted densities, but
the negative divergences show up in the reduction to 1D and 0D distributions. Simpler
versions (for the monocomponent case) using no kernel function and only the scalar weighted
density [3] give much stronger divergences (showing up even in the bulk fluid direct correlation
function c(r, ρ0)) but always with positive sign, so in the minimization of the free energy those
configurations contributing to the divergences are avoided, e.g. creating spurious kinks in
the density profiles of a wall–fluid interface, but without the qualitative breakdown of (2.5)
and (1.14) for strongly confined systems.

In contrast, the FMT version based on the exact reduction to the 0D limit [15] would
have no divergences of the free energy at all, but it has a non-separable kernel with enormous
computational cost (implying the multiple integrals over the densities at three different points).
The proposal made in [15] and used by Groh and Mulder [18] of taking Ki jk ∼ [r′

1 ·(r′
2 ×r′

3)]
2

would also kill all the divergences at the boundary between overlapping and non-overlapping
spheres, and be separable in terms of the scalar, vector, and a rank-2 tensor weighted densities.
However, this form gives a too smooth boundary behaviour for (2.1), since the kernel vanishes
as the function Z in the square root of the denominator in (2.3), while the step-like dependence
would require a non-separable kernel proportional to Ki jk ∼ |r′

1 · (r′
2 × r′

3)|. The alternative
kernel (2.6) and DF (1.16), proposed and successfully used [16] for monocomponent HS
systems, achieved the separability (in terms of the same set of weighted densities) and the
sharpness (with the exact contribution to the triangle diagram for the bulk fluid), at the price
of unleashing some weak divergences of positive sign of the free energy for some peculiar
configurations of non-aligned molecules. The effect of those divergences would be extremely
difficult to observe and the quality of that DF approximation seems to be limited mainly by
the quality of the PY equation of state for the bulk HS fluid, and the associated condition of
having a direct correlation function with the range of the hard-core diameter [17], which is
also intrinsic to the FMT.

The extension to HS mixtures imposes more severe restrictions, since the form (2.6)
for HSs of unequal size has (positive) divergences for peculiar aligned configurations which
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were not present for equal-sized HSs and which give stronger contributions than those of
non-aligned configurations. Their main drawback is that they spoil the exact reduction to
the 1D limit, which was one of the most remarkable achievements for the monocomponent
case. We have introduced here a new kernel form (2.9) which would recover that dimensional
reduction for HS mixtures, at the price of introducing a new rank-3 tensorial weighted density
and creating some weak negative divergences for some non-aligned configurations. Also, the
radii-dependent coefficients of this new kernel are not simply products of powers of the radii,
but more complicated rational functions, so it turns out to be computationally more involved in
applications to, for instance, polydisperse mixtures. Other possibilities remain for a candidate
kernel, such as squaring the term (2.8), conveniently adjusting the coefficients to recover the
1D case; however, this forces the introduction of very high-rank tensor weights and removes
the discontinuity of c3, thus creating both computational and structural problems.

Altogether, the systematic improvement of the free energy DF within the FMT seems to
be frustrated by incompatible requirements, deeply rooted in the structure of the theory. Thus,
one has to choose a functional form on the basis of its performance for the required practical
use. The original proposal by Rosenfeld is quite accurate for systems with planar symmetry,
for which the improvement obtained with the newer versions is purely marginal. The FMT
version (1.16), with a moderate increase of the computational cost due to the presence of the
tensorial weighted density (1.15), would give similar results to (1.14) for planar systems but it
is also good for crystalline phases or other strongly confined density distributions. In the 1D
limit it does not recover the exact DF for arbitrary distributions, but makes a rather small error
unless the 1D system is very close to the close-packing limit. The extra computational cost of
the FMT version (2.11), with a rank-3 tensor and non-additivity of the weighted densities in
terms of a few moments of the radii, would only be worth it for problems in which the exact
1D reduction is crucial and the spurious negative divergences of this free energy DF are made
innocuous by the parametrization of the density distribution. It seems very unlikely for these
two constraints to appear in a practical problem, so probably (1.16) is the best practical choice.

To conclude, we have to point out that the problems and limitations of the FMT DFs,
which we have explored here, should be considered in the right perspective, as we are asking
the FMT functionals to perform well in problems whose tackling would be out of question
for any other type of DF approximation. The exact (or nearly exact) reduction from three-
dimensional density distributions to the 1D limit, and the accurate behaviour in very narrow
cavities, which opens the way to description of crystalline phases with unconstrained density
distributions, are fully beyond the scope of the WDA and other DF approximations. The
presence of spurious divergences in the FMT is the price to be paid for the sharpness of its
non-local dependence, compared with the blurred dependence of the other DF approaches. The
taming of those divergences to make them innocuous has been the ‘holy grail’ of the workers
in the field, starting from Rosenfeld’s choice for the combinations of ni (r) and vi (r) in (1.13)
and (1.14). The ‘Earthly’ requirements of practical computability make that grail unreachable,
but the new versions explored here seem to be close enough to it for most practical purposes,
providing by far the best DF approximations for systems of HS mixtures.
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