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Abstract
We study the ratchet effect of a damped relativistic particle driven by
both asymmetric temporal bi-harmonic and time-periodic piecewise constant
forces. This system can be formally solved for any external force, providing
the ratchet velocity as a nonlinear functional of the driving force. This
allows us to explicitly illustrate the functional Taylor expansion formalism
recently proposed for this kind of systems. The Taylor expansion reveals
particularly useful to obtain the shape of the current when the force is periodic,
piecewise constant. We also illustrate the somewhat counterintuitive effect that
introducing damping may induce a ratchet effect. When the force is symmetric
under time-reversal and the system is undamped, under symmetry principles
no ratchet effect is possible. In this situation increasing damping generates
a ratchet current which, upon increasing the damping coefficient eventually
reaches a maximum and decreases toward zero. We argue that this effect is not
specific of this example and should appear in any ratchet system with tunable
damping driven by a time-reversible external force.

PACS numbers: 05.60.Cd, 05.45.Yv

1. Introduction

The ratchet effect is identified with the motion of particles or solitons induced by zero-average
periodic forces [1, 2], sometimes in the presence of thermal fluctuations. The effect arises as a
subtle interplay between nonlinearities in the system and broken symmetries. Ratchets appear
in many fields of physics, where net motion is generated either by an asymmetric, periodic,
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spatial potential [3–10], or by an asymmetric temporal forcing [10–18]. In both cases the
ratchet effect can be regarded as an application of Curie’s symmetry principle, which states
that a symmetry transformation of the cause (forces) is also a symmetry transformation of the
effect (ratchet velocity) [19, 20].

Most studies of ratchets driven by temporal forces employ a bi-harmonic forcing

f (t) = ε1 cos(qωt + φ1) + ε2 cos(pωt + φ2), (1)

where p and q are positive integers which, without loss of generality, can be taken co-
prime (otherwise common factors can be absorbed in the frequency ω) and ε1, ε2 are small
non-zero parameters. If both p and q are odd, the force (1) exhibits the shift symmetry
(S f )(t) = f (t+T/2) = − f (t), where T = 2π/ω. In systems invariant under time translations
this implies that both f (t) and − f (t) generate the same ratchet current (or velocity) defined
as [21, 22]

v = lim
t→+∞

1

t

∫ t

0
ẋ(τ ) dτ = lim

t→+∞
x(t)

t
, (2)

where x(t) is the position of the particle, soliton, or localized structure. If reversing the force
changes the sign of the current, this current must be zero. So, shift-symmetric bi-harmonic
forces cannot induce a ratchet effect. In contrast, if p and q have different parity, shift symmetry
is broken by f (t) so the force can induce a nonzero net current [23].

Many attempts have been made to determine quantitatively the dependence of the ratchet
velocity, v, on the parameters of the bi-harmonic force (1) [11, 24, 25]. Invariably, the analysis
performed in these works rests on the so-called method of moments, where it is assumed that
the average ratchet velocity can be expanded as a series of the odd moments of f (t), i.e.∑∞

k=1〈[ f (t)]2k+1〉 with 〈h(t)〉 = ∫ T
0 dt h(t). This method seemed to work for some systems

but not for others without a clear reason and with no known criterion to tell ones from the
others. We have recently shown that the moment method relies on an assumption that almost
never holds, and have provided an alternative procedure that yields the correct result regardless
of the system [23].

The aim of this paper is to provide explicit examples which illustrate this otherwise
abstract method—the functional expansion of v in terms of f —using a working example for
which an analytic solution can be found. The system represents the motion of a damped,
relativistic particle under the effect of two different forces: a bi-harmonic force such as (1),
and a time-periodic piecewise constant force such as

f (t) =
⎧⎨
⎩

ε1 if 0 < t < Tl,

0 if Tl < t < T − Tl,

−ε1 if T − Tl < t < T.

(3)

For this purpose we introduce the model as well as its analytic solution in section 2. In
section 3, we discuss the phenomenon of damping-induced ratchets. The formalism developed
in [23] is fully illustrated for this problem in section 4. For both, the biharmonic force
(section 4) and the piecewise constant force (section 5), it is also shown that the method of
moments is valid only when the dynamics of the relativistic particle is overdamped, and fails
otherwise. Conclusions are summarized in section 6.

2. Motion of a relativistic particle driven by a bi-harmonic force

The model we choose as the equation of motion of a relativistic particle with mass M > 0,
whose position and velocity at time t are denoted x(t) and u(t), respectively, is

dx

dt
= u(t), x(0) = x0, (4a)

2
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M
du

dt
= − f (t)(1 − u2)3/2 − ζu(1 − u2), u(0) = u0, (4b)

where x0 and u0 are the initial conditions, ζ > 0 represents the damping coefficient and f (t)
is a T -periodic driving force. The introduction of friction in a relativistic equation of motion is
not a straightforward issue: in general, friction depends on the velocity u in a non-trivial way
[26]. Model (4) arises when the dynamics of a soliton of a nonlinear Klein–Gordon equation
(sine-Gordon, φ4, double-sine-Gordon...) with damping and an external force is described
through collective coordinates [27, 22, 28]. Besides, as we will show immediately, the friction
term appearing in (4) implies a friction proportional to the moment (a result that can be proven
to be exact for solitons of nonlinear Klein–Gordon equations [29]). This feature renders model
(4) solvable. As our goal in this paper is to show how the formalism developed in [23] works
in an explicit example, model (4) perfectly serves our purpose. Qualitatively, the results that
we would obtain for the ratchet current would be the same had we made a different choice
for the friction term (see [23] for a proof). However, we would not be able to do the explicit
analysis that we will perform with our current model (4).

Before we proceed, note that if the force f (t) satisfied (S f )(t) = f (t + T/2) = − f (t),
then (4b) would be invariant under a combination of shift symmetry (S : t �→ t + T/2) and
the sign change x �→ −x.

Changing the variable u(t) by the momentum

P(t) = Mu(t)√
1 − u2(t)

(5)

transforms (4b) into the linear equation

dP

dt
= −μP − f (t), P(0) = P0 = Mu0√

1 − u2
0

, (6)

where μ = ζ/M. Equation (6) is easily solved to give

P(t) = P0e−μt −
∫ t

0
dz f (z) e−μ(t−z). (7)

From (5) one obtains

u(t) =
∞∑

k=0

(
−1

2

)k
(2k − 1)!!

k!

(
P(t)

M

)2k+1

. (8)

Let us now focus our attention on the T -periodic driving force f (t) given by (1) with
p = 2 and q = 1 (the most common choice of parameters [27, 22, 14, 30]). Substituting (1)
into (7) leads to

P(t) = P̃0 e−μt − ε̃1 cos(ωt + φ1 − χ1) − ε̃2 cos(2ωt + φ2 − χ2),

with

P̃0 = P0 + ε̃1 cos(φ1 − χ1) + ε̃2 cos(φ2 − χ2),

ε̃1 = ε1(μ
2 + ω2)−1/2, χ1 = tan−1 (ω/μ) ,

ε̃2 = ε2(μ
2 + 4ω2)−1/2, χ2 = tan−1 (2ω/μ) .

As t → ∞ the momentum P(t) behaves, for any μ > 0, as

P(t) ∼ −ε̃1 cos(ωt + φ1 − χ1) − ε̃2 cos(2ωt + φ2 − χ2);

3
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thus, the term P(t)2k+1 in (8) is O(εr
1ε

s
2) with r + s = 2k + 1. Since the time average of P(t)

is zero, the leading term of (2) in powers of ε1 and ε2 will be

− 1

2M3
lim

t→∞
1

t

∫ t

0
P(τ )3dτ = 3

2M3T
ε̃2

1 ε̃2

∫ T

0
cos(ωτ + φ1 − χ1)

2 cos(2ωτ + φ2 − χ2) dτ

= 3

8M3
ε̃2

1 ε̃2 cos(2φ1 − φ2 + χ2 − 2χ1).

Therefore, the rachet velocity (2), for small amplitudes ε1 and ε2, is given by

v = Bε2
1ε2 cos(2φ1 − φ2 + θ0), (9)

with

B = 3

8M3(μ2 + ω2)
√

μ2 + 4ω2
, θ0 = χ2 − 2χ1 = − tan−1

(
2ω3

μ(μ2 + 3ω2)

)
, (10)

in agreement with the result reported in [23].
Note that in the undamped limit ζ → 0 (equivalently μ → 0) the parameters (10) become

B = 3

16M3ω3
, θ0 = −π

2
,

whereas in the overdamped limit M → 0 (and therefore μ → ∞ with Mμ = ζ ) we obtain

B = 3

8ζ 3
, θ0 = 0,

both limits agree with the predictions of [23].

3. Ratchet induced by damping

The dependence of v on parameters of the system such as the damping coefficient (through
μ = ζ/M) shown in (9) and (10) reveals an interesting effect. If we take φ1 = φ2 = 0 in f (t)
and do some algebra, the ratchet velocity (for small amplitudes of the force) turns out to be

v = ε2
1ε2

ω3M3
V (μ/ω), V (x) = 3x(x2 + 3)

8(x2 + 1)2(x2 + 4)
. (11)

The function V (x) is depicted in figure 1. The most remarkable observation is that the current
increases up to a maximum with increasing damping before it begins to show the expected
decay. Intuition dictates that the current should decrease with damping because friction opposes
movement, so the fast increase it reveals for small damping is counterintuitive.

The cause of this effect is the interplay between the breaking of the time-reversal symmetry
R : t �→ −t that generates the ratchet current, and the damping that hinders it [30]. In the limit
μ → 0, the system (4a) is invariant under R and a sign change of u, because for φ1 = φ2 = 0
the force (1) satisfies f (−t) = f (t). Accordingly, v = 0 in this limit. But introducing damping
breaks the symmetry of the equation and induces a net movement of the particle. For small
damping, the higher the damping coefficient μ, the larger the v is. If we keep on increasing
μ eventually the friction it introduces in the movement of the particle causes the decay of v

as μ−3.
This argument makes it clear that in any ratchet system with a tunable damping and

undergoing the action of a time-reversible bi-harmonic force, the ratchet effect can be generated
upon increasing damping above zero.

4
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Figure 1. Plot of the current velocity v, in units of ε2
1ε2/(Mω)3, versus the damping coefficient μ,

in units of the frequency, ω, induced by a biharmonic force such as (1) with φ1 = φ2 = 0. Note
that this force is time reversible, i.e. f (−t) = f (t).

4. Ratchet velocity as a functional of the force

The starting point to obtain formula (9) for a ratchet system is to realize that v is a functional
of f (t) and that, under certain regularity assumptions, one such functional can be expanded
as a functional Taylor series [31–33] as

v[ f ] =
∑
n odd

∫ T

0

dt1
T

· · ·
∫ T

0

dtn
T

cn(t1, . . . , tn) f (t1) · · · f (tn), (12)

where the kernels cn(t1, . . . , tn) are proportional to the nth functional derivatives of the
functional v[ f ]. These kernels can be taken T -periodic in each variable and totally symmetric
under any exchange of variables. Only odd terms appear in this expansion as a consequence
of the symmetry v[− f ] = −v[ f ] that these systems have.

The fact that v is indeed a functional of f (t) in this example is obvious from equations
(2)–(7). The aim of this section is to determine explicitly expansion (12) for this exactly
solvable example.

Let us start off by rewriting the integral in (7) as∫ t

0
dz f (z) e−μ(t−z) = I1(t) + I2(t),

I1(t) =
n(t)∑
k=1

∫ T

0
dz f (z) e−μ(t−z−(k−1)T ), (13)

I2(t) =
∫ α(t)

0
dz f (z) e−μ(α(t)−z),

where α(t) = t − n(t)T and n(t) = [t/T ] ([X] denoting the integer part of X). Note that
α(t + T ) = α(t). Now, since

S(t) ≡
n(t)∑
k=1

eμ(k−1)T = eμnT − 1

eμT − 1
, (14)

5
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I1(t) = e−μt C S(t), with

C =
∫ T

0
dz f (z)[eμz − 1]. (15)

Using this form in (7) we can write

P(t) = A e−μt + P̃(t), (16)

where A = P(0) + C(eμT − 1)−1 and P̃(t) is the T -periodic function

P̃(t) = − 1

eμT − 1

∫ T

0
dy f (y) e−μα(t)[eμy − 1] −

∫ α(t)

0
dy f (y) e−μ(α(t)−y).

It is thus enough to obtain P̃(t) in the interval 0 � t < T , where it adopts the compact form

P̃(t) = −
∫ T

0
dy f (y) e−μ(t−y)χ (y, t), (17)

defining

χ(y, t) = 1 − e−μy

eμT − 1
+ �(t − y) (18)

(as it is customary, �(x) denotes the Heaviside function, which is 1 if x > 0 and 0 otherwise).
Equations (17)–(18) have a well-defined μ → 0+ limit, namely

P̃(t) = −
∫ T

0
dy f (y)χ1(y, t), χ1(y, t) = y

T
+ �(t − y). (19)

On the other hand, for zero-average forces f (t) the kernel χ(t, z) can be further simplified to

P̃(t) = −
∫ T

0
dy f (y) e−μ(t−y)χ2(y, t), χ2(y, t) = 1

eμT − 1
+ �(t − y). (20)

Whatever the form, it should be periodically extended beyond the interval [0, T ).
It is then clear that (2) and (8) reduce to

v =
∞∑

k=0

(
−1

2

)k
(2k − 1)!!

k! M2k+1

∫ T

0

dτ

T
P̃(τ )2k+1. (21)

A direct comparison of this equation with the functional Taylor series (12) yields

c2k(t1, . . . , t2k) = 0, (22a)

c2k+1(t1, . . . , t2k+1) =
(

−1

2

)k
(2k − 1)!!

k! M2k+1
T 2ka2k+1(t1, . . . , t2k+1), (22b)

where

am(t1, . . . , tm) =
∫ T

0
dτ e−μm(τ−t̄)

m∏
k=1

χ(tk, τ ), t̄ = 1

m

m∑
k=1

tk. (23)

As expected [23], functions am(t1, . . . , tm) are, by construction, T -periodic in each variable
and symmetric under any exchange of their arguments.

The integral in (23) can be performed integrating by parts and taking into account that
d

dτ
χ (y, τ ) = δ(τ − y) (a Dirac delta). The result is

am(t1, . . . , tm) = eμmt̄

μm

⎧⎨
⎩

m∏
k=1

χ(tk, 0) −
m∏

k=1

χ(tk + T, 0) +
m∑

j=1

e−μmt j

m∏
k=1, k 	= j

χ(tk, t j)

⎫⎬
⎭ ,

(24)

6



J. Phys. A: Math. Theor. 44 (2011) 425205 N R Quintero et al

where we have used the fact that χ(tk, T )e−μT = χ(tk + T, 0). As usual, empty products are
assumed to be 1 (the case of the last term for m = 1).

The limit μ → 0 of this expression is better obtained by replacing χ(y, t) by χ1(y, t) in
(23) and integrating by parts again. This results in

am(t1, . . . , tm) = T
m∏

k=1

χ1(tk, T ) −
m∑

j=1

t j

m∏
k=1, k 	= j

χ1(tk, t j). (25)

Finally, in the overdamped case (M → 0, μ → ∞), instead of (6) the evolution of P is
given by P(t) = −(1/μ) f (t), so v can be expressed simply as

v = −
∞∑

k=0

(
−1

2

)k
(2k − 1)!!

k! ζ 2k+1

1

T

∫ T

0
dt f (t)2k+1. (26)

From (12) and (26) it follows that c2k(t1, . . . , t2k) = 0 and

c2k+1(t1, . . . , t2k+1) = −
(

−T 2

2

)k
(2k − 1)!!

k! ζ 2k+1
δ(t1 − t2) · · · δ(t2k − t2k+1). (27)

5. Forcing with a time-periodic piecewise constant force

Expansion (12) with kernels (22b) and (23) turns out to be useful to analyze different types of
forcing. For instance, another standard choice in the literature (see [1] and references therein),
alongside with the bi-harmonic force (1), has been the time-periodic piecewise constant force
defined in (3). This force is shift-symmetric only for Tl = T/2, so any other value Tl < T/2
breaks this symmetry and induces a ratchet current.

In order to ascertain the effect of this force in the system (4b) for small amplitudes ε1 
 1,
we will compute the first nonzero term in expansion (12). To that purpose we need to evaluate
(cf equation (23))

Km ≡ 〈am(t1, . . . , tm) f (t1) · · · f (tm)〉 =
∫ T

0
[e−μτ I(τ )]m dτ, (28a)

I(τ ) ≡ 1

T

∫ T

0
eμtχ2(t, τ ) f (t) dt, (28b)

where the choice χ2(t, τ ) instead of χ(t, τ ) is made because f (t) in (3) has zero average.
According to (20), χ2(t, τ ) = (1 − e−μT )−1χ̄2(t, τ ), where

χ̄2(t, τ ) =
{

1 if t < τ,

e−μT if t > τ.
(29)

Substitution into (28b) yields

I(τ ) = ε1

μT

[
4

1 − e−μT
sinh2

(
μTl

2

)
+ Q(τ )

]
, (30a)

Q(τ ) =
⎧⎨
⎩

eμτ − eμTl if 0 < τ < Tl,

0 if Tl < τ < T − Tl,

eμ(T−Tl ) − eμτ if T − Tl < τ < T.

(30b)

It is straightforward to check that K1 in (28a) vanishes, so the first term that may not be
zero is K3. Lengthy calculations lead to

K3 = − 32ε3
1

μ4T 3

eμT

(eμT − 1)2
sinh2

(
μ(T − 2Tl )

2

)
sinh4

(
μTl

2

)
, (31)

7
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that is to say

v = 4ε3
1

(μM)3μT
sinh2

(
μ(T − 2Tl )

2

)
sinh4 (μTl/2)

sinh2 (μT/2)
+ o

(
ε3

1

)
. (32)

It is interesting to note that K3 = 0 if Tl = T/2 because in that case the time-periodic piecewise
constant force (3) is shift-symmetric. On the other hand, we can determine the value of Tl for
which the ratchet effect is maximum by differentiating (32). This leads to

sinh

(
μ(T − 3Tl )

2

)
sinh

(
μ(T − 2Tl )

2

)
sinh3

(
μTl

2

)
= 0. (33)

The only three solutions to this equation are Tl = 0, Tl = T/2 and Tl = T/3. The first two
do not produce any ratchet current (with Tl = 0 f = 0 whereas for Tl = T/2 the force is
shift-symmetric); therefore, the last one provides its maximum value.

As a final remark, expression (32) has well-defined overdamped (M → 0, μ → ∞, with
finite ζ = μM) and undamped (μ → 0) limits. In fact, the undamped limit of (32) yields

v = ε3
1

4(MT )3
T 4

l (T − 2Tl )
2 + o

(
ε3

1

)
, (34)

whereas the overdamped produces v = o(ε3
1 ). Indeed, since f (t)2k+1 = ε2k

1 f (t), in the
overdamped case equation (26) immediately implies v = 0. This is in marked contrast with
the overdamped deterministic dynamic of a particle in a sinusoidal potential driven by a bi-
harmonic force [34]. In this case, the zero ratchet velocity can be explained as a symmetry
effect. Indeed, note that f (t) = − f (−t) when f (t) is given by (3) (something that only happens
for the bi-harmonic force (1) for specific choices of the phases), and that the overdamped limit
of equation (4b) remains invariant under a simultaneously action of time-reversal and a sign
change of x and u (see [23] for further details).

6. Discussion

We have studied the dynamics of a damped relativistic particle under two zero-average
T -periodic forces which breaks the shift-symmetry f (t + T/2) = − f (t). This nonlinear
system can be explicitly solved through a transformation that renders it linear. Therefore, the
ratchet average velocity, v, is exactly obtained for any arbitrary force f (t). This result allows
us to show, first of all, that the ratchet velocity cannot be obtained in general by using the
method of moments (according to which v is obtained as a series of the odd moments of f (t)),
and secondly, that v is a functional of f (t), i.e. v[ f ]. Indeed, for any T -periodic force we have
explicitly found the coefficients of the functional Taylor expansion (12). In particular, this
expansion shows that the method of moments is only justified in the strict overdamped limit
(see equations (26) and (27)). Due to the symmetry v[ f ] = −v[− f ] only odd terms contribute
to the Taylor expansion. Besides, since the ratchet velocity is translationally invariant, the
kernel c1(t1) must be a constant. So the first-order term vanishes because the force has zero
average. Therefore, the first term in expansion (12) that is not necessarily zero is the third one,
irrespective of the kind of nonlinearity of the system.

We have chosen to illustrate this functional representation as the bi-harmonic force (1)
(with p = 2 and q = 1) as well as a time-periodic piecewise constant force (3). We have
obtained the leading term of the average velocity for both these forces. They are given by
equations (9)–(10) and (32), respectively. It is worth emphasizing that the method of moments
always predicts a zero ratchet velocity when the system is driven by a time-periodic piecewise
constant. This is to be compared with the result (32) obtained here. We have discussed the two
limiting dynamics: undamped and overdamped. In these two limits the system remains invariant

8
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if the driving force has the symmetries f (t) = f (−t) and f (t) = − f (−t), respectively. If the
relativistic particle is driven by a bi-harmonic force, v ∼ ε2

1ε2 cos(2φ1−φ2) in the overdamped
limit, whereas v ∼ ε2

1ε2 sin(2φ1 − φ2) in the undamped limit. In the latter case, this means no
ratchet current if we set φ1 = φ2 = 0. The unexpected consequence of this is that introducing
damping generates a ratchet current, whose intensity grows up to a maximum before it drops
to zero upon a further increase of the damping. This effect is a result of a trade-off between
symmetry effects and friction and our prediction is that it should be observed in any system
with damping and forced with a time-reversible external force.

On its side, if an overdamped relativistic particle is driven by a time-periodic piecewise
constant force such as (3), the ratchet velocity is always zero as a consequence of the symmetry
f (t) = − f (−t) exhibited by this force.

Summarizing, we hope to have illustrated the predictive power of the Taylor functional
expansion method introduced in [23]. This working example also shows that this is the only
reliable method to analyze the ratchet current as a function of the parameters of the external
force. The most widely used alternative so far, the method of moments, is shown to work
only in the overdamped limit of the dynamics of a relativistic particle driven by a periodic
force. When damping is finite and the forcing of the system is bi-harmonic, the ratchet current
predicted by the method of moments still retains some relevant features of the exact one (9).
However, it dramatically fails if the system is driven by a piecewise constant force, because it
always predicts a zero ratchet current, in marked contrast with the result (32) predicted by the
functional Taylor expansion.
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