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Matemáticas, Universidad Carlos III de Madrid and Instituto de Ciencias
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In this article, we critically study whether social networks can explain the emergence of

cooperative behavior. We carry out an extensive simulation program in which we study

the most representative social dilemmas. For the Prisoner’s Dilemma, it turns out that

the emergence of cooperation is dependent on the microdynamics. On the other hand, net-

work clustering mostly facilitates global cooperation in the Stag Hunt game, whereas

degree heterogeneity promotes cooperation in Snowdrift dilemmas. Thus, social networks

do not promote cooperation in general, because the macro-outcome is not robust under

change of dynamics. Therefore, having specific applications of interest in mind is crucial

to include the appropriate microdetails in a good model.

Keywords: cooperation, game theory, social networks

1. INTRODUCTION

More than 30 years ago, Schelling (1978) explored the relation between the
behavior characteristics of the individuals comprising some social aggregate and
the characteristics of that aggregate. Such an analysis, as opposed to the more
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traditional perspective of determining the effects of the collective properties on
individual ones (Durkheim’s [1964] social facts and forces), can be used in two dif-
ferent ways: predicting the aggregate behavior from the knowledge of the individual
one (bottom-up) or, on the contrary, uncover the possible individual mechanisms
compatible with an observed aggregate pattern (top-down; Coleman, 1990). Both
lines of research become complicated when the behavior of individuals influences
and is influenced by other individuals and even by the whole collectivity.

A specific sociological context where the micro–macro link is particularly rel-
evant is the study of social traps or dilemmas (Platt, 1973; Dawes, 1980). According
to Kollock (1998a), ‘‘social dilemmas are situations in which individual rationality
leads to collective irrationality. That is, individually reasonable behavior leads to a
situation in which everyone is worse off than they might have been otherwise’’
(p. 183). This issue is actually at the core of long-standing problems such as the
emergence of cooperation (Pennisi, 2005). Cooperation is behavior that is costly
for the individual while ultimately benefitting other individuals or social aggregates.
Paradigmatic models of cooperation within the framework of social dilemmas are
the Public Goods game (also known as the Tragedy of the Commons [Hardin,
1968] and the Prisoner’s Dilemma [Axelrod, 1984]). Both contain the game-
theoretical ingredients of social dilemmas: a Nash equilibrium, a situation from
which no player has incentives to deviate unilaterally, that is deficient; that is, there
are other sets of strategies in which everyone is better off (i.e., the Nash equilibrium
is Rawls [1971] deficient).

One of the classical questions of social theory (Granovetter, 1985) is how beha-
vior and institutions are affected by social relations. Recently, there has been a huge
literature on the role of social networks in the diffusion of behaviors and opinions in
a society, and a variety of mechanisms through which this influence is exerted have
been identified. Examples of these mechanisms include reciprocity and territoriality
(Axelrod, 1984), reputation (Raub & Weesie, 1990; Nowak & Sigmund, 1998), the
establishment of a group identity (Brewer & Kramer, 1986; Kollock, 1998b), social
learning (Macy, 1991), trust (Buskens & Raub, 2002), projection (Kanazawa, 2007),
group reciprocity (Karp, Jin, Yamagishi, & Shinotsuka, 1993), and even group size
(Olson, 1965; Dawes, 1980; Marwell & Oliver, 1993). Other mechanisms, such as
choice of partners (Yamagishi, Hayashi, & Jin, 1994), cost-benefit analysis (Jackson
& Wolinsky, 1996), or social plasticity (Eguiluz, Zimmermann, Cela-Conde, & San
Miguel, 2005) have led to the study of dynamic social networks in which the indivi-
duals can change their links as a result of their interactions with their neighbors (see
de Vos, Smaniotto, & Elsas, 2001; Newman, Barabási, & Watts 2006; or Jackson,
2008, for reviews). Here we will restrict ourselves to the case of static networks that
provide a good framework to study the problems arising with the micro–macro link
and constitute a key step to proceed later to the dynamic problem.

This article focuses on the strategy update rule (or update rule for short): the
manner in which individuals adapt their behavior as a function of that of their neigh-
bors, that is, the microdynamics. We will consider agents with limited rationality,
who do not have memory, and whose communication with their neighbors is limited
to observing their actions and the payoffs they receive. This implies that there are no
reputation, reciprocity, or identity effects. Admittedly, these are very simple rules,
but their simplicity will allow us to gain insight on the micro–macro link in the
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context of explanations of cooperative behavior based on the existence of a social
network. In fact, in the past few years, the general belief that networks generally sup-
port cooperation has grown among researchers of different fields (Cohen, Riolo, &
Axelrod, 2001; May, 2006). Here we critically examine this issue by considering a
variety of update rules and of model networks. Our main research questions can
be posed as follows:

Question 1. Do social networks support or otherwise enhance the emergence of
cooperation among limited rationality agents?

Question 2. Does the observation of cooperation on models of social networks
depend on the type of network, the strategy update rule of the agents, or the
interplay of both?

We find it helpful to advance our main conclusion here: We will argue that the
emergence of cooperation at the macro-level (social aggregate) due to an update rule
(microdynamics) is largely dependent on the details of the network (i.e., on its micro-
structure) and that different microstructures may actually interact with the same
update rule in different directions (i.e., promoting cooperation or inhibiting it). To
support this conclusion, our article is structured as follows: After a review of the most
relevant precedents of this work, we show analytically that when there is no social sub-
strate, all the strategy update rules we consider lead to the same collective behavior.We
subsequently proceed to the situation when there is structure in the society, which we
illustrate by presenting results froman extensive simulation program inwhichwe study
the most representative social dilemmas (Prisoner’s Dilemma, Snowdrift, Stag Hunt;
Kollock, 1998a) under different microdynamics and on different model networks.
We will see that the same rule may promote or inhibit cooperation depending on the
type of network in which it acts; conversely, the same type of network may give rise
to global cooperation or not depending on the strategy update rule governing the
agents’ behavior. Hence, the answer to question 1 will be that, generally speaking, it
cannot be said that social networks support or promote cooperation. In particular
cases, networks can be a mechanism promoting the emergence of cooperation but,
and this answers question 2, such a promotion requires specifying the micro-level
dynamics, as the resulting behavior depends on the interplay of both.

2. PREVIOUS RESEARCH

Our approach to the research questions posed above originates from the pio-
neering work by Axelrod (1984). His description of the emergence of cooperation
due to assortment of cooperating individuals and subsequent spreading over a non-
cooperative population is worth quoting:

Clusters of players were examined to see how the evolution of cooperation could
have gotten started in the first place. Clusters allow a newcomer to have at least a
small chance of meeting another newcomer, even though the newcomer them-
selves are a negligible part of the whole environment of the natives. Even if most
of a newcomer’s interactions are with uncooperative natives, a small cluster of
newcomers who use reciprocity can invade a population of meanies. (Axelrod,
1984, p. 161)
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In other words, if the invaders have even a small amount of social structure, they can
prevail over noncooperative individuals. While Axelrod then goes on to study more
sophisticated social structures, including labels, reputation, regulation and territori-
ality, we will focus on social structure simply understood as a network of contacts
that governs who interacts with whom. This is reminiscent of Giddens’s (1979) social
structure conceived as a pattern of interactions. It is also interesting to note that the
emergence of cooperation in an iterated Prisoner’s Dilemma through formation of
clusters amounts to saying with Granovetter (1985),

Insofar as rational choice arguments are narrowly construed as referring to ato-
mized individuals and economic goals, they are inconsistent with the embedded-
ness position presented here. (p. 505)

The idea of the network as a promoter of cooperation was later considered by
Nowak and May (1992). They considered agents without memory and with strate-
gies ‘‘always cooperate’’ or ‘‘always defect’’ placed on a two-dimensional spatial
array. In each round, they played the game only with their neighbors: the eight nearest
ones (king’s moves on a chessboard, or Moore neighborhood) and themselves. It is
important to note that the agents used the same strategy with all their neighbors.
After the interaction, individuals updated their strategy by imitating the most succes-
ful one in their neighborhood if it yielded better payoff than their own (uncon-
ditional imitation, see below). Nowak and May simulated this system with a
Prisoner’s Dilemma with payoff matrix (payoffs for the row player are given, and
b> 1):

C D
C
D

1 0
b 0

� �
:

ð1Þ

They found high cooperation even for large values of b, the temptation payoff
received by a defector exploiting a cooperator. When cooperators prevailed, a frac-
tion of the lattice sites were anyway occupied by defectors, who thrived in the per-
imeter of the cooperator clusters as described by Axelrod (1984). Therefore, the
mechanism worked even if agents had no memory; that is, it appeared to be a direct
consequence of the existence of a network of interactions and the corresponding
possibility for cooperators to aggregate in clusters.

Another interesting work is due to Lomborg (1996). He simulated individuals
(with short but nonzero memory) that played the Prisoner’s Dilemma and evol-
ved=learned by a proportional imitation rule (to be described below) applied to a sub-
set of the population (which introduces implicitly some structure, albeit dynamical
and not spatial). A majority of agents ended up belonging to one of two clusters:
a large one of highly cooperative strategies (called nucleus by Lomborg) and a smal-
ler one of more cautious strategies (referred to as shield). Such a split of the popu-
lation was very long-lived not because of the individual success of its strategies
when considered alone but because together they were able to prevail over the other.

Subsequently, Eshel, Samuelson, and Shaked (1998) analytically confirmed
that cooperators can survive when interactions are local if they group together, so
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the benefits of cooperation are enjoyed primarily by other cooperators. They worked
on simpler structures (Prisoner’s Dilemma on one-dimensional rings) with uncon-
ditional imitation dynamics but discussed that their results also applied when muta-
tions were introduced. Note that their choice for the update rule implies abandoning
the rational agent paradigm of best response rules and substituting it by imitative
agents. Interestingly, Eshel et al. showed that high costs of cooperation can lead
to large cooperator density because for cooperation to succeed large clusters of coop-
erators are required.

Early in this century, Cohen et al. (2001) revisited this question. They studied
lattices and random networks, both fixed and dynamical, in which individuals inter-
acted with their four nearest neighbors only (von Neumann neighborhood). Their
update rule was once again unconditional imitation. From their analysis, they con-
cluded that what they called ‘‘context preservation’’ (the persistence of the interac-
tion pattern) plays a more important role in the promotion of cooperation than
‘‘clustering’’ (which, in their case, refers to correlated interaction profiles instead
of the widely accepted concept of transitivity).

Following these works, many other researchers undertook research along these
lines. Far from establishing that a network of interactions promoted cooperation, a
large number of papers have reported results which are to some extent contradictory.
Interestingly, many of these works have been carried out with a physics perspective
and appeared in physics journals, searching for a general pattern of behavior (recent
reviews withmany references on this issue are Szabó andFáth [2007] andRoca, Cuesta,
and Sánchez [2009b]). What we aim at showing here is that, for social dilemmas on spa-
tial structures or, in general, on networks, there is no such pattern and that the observa-
tions of cooperative behavior depend intrinsically and fundamentally on the details of
the model and, in particular, of the interplay of strategy update rule and network.

3. EVOLUTIONARY GAMES

3.1. Game-Theoretical Framework for Social Dilemmas

We will consider symmetric 2� 2 games, that is, games between two indivi-
duals who choose between two strategies and with no difference in role. Using the
same notation as above, the payoff matrix is:

C D
C
D

1 S
T 0

� �
:

ð2Þ

The strategies are labeled C and D for cooperate and defect, although the pre-
cise interpretation of what cooperation and defection mean depends on the specific
social dilemma we consider. Indeed, certain values of S and T undermine mutual
cooperation in different manners. To be specific, three scenarios are possible
(Kollock, 1998a; Macy & Flache, 2002):

. When S< 0, a cooperator faces the risk of losing if the other player defects, per-
forming worse than with mutual defection. In this situation, cooperation is
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dangerous and individuals are afraid of the consequences of being defected upon.
When T< 1, this is the Stag-Hunt game (see Skyrms [2003] for a thorough dis-
cussion), that has two equilibria: mutual cooperation, an optimal equilibrium
(often called Pareto-dominant equilibrium), and mutual defection, which is
deficient (often called risk-dominant equilibrium). The key issue in this dilemma
is fear, that is, whether the individuals can trust each other.

. When T> 1, a cooperator is tempted to defect and obtain a payoff larger than
that of mutual cooperation. The point is then that both individuals may then just
do nothing (defect) hoping that the other will give in and cooperate, which may
result in the worst possible outcome, mutual defection. Hence, the problem here
is greed. When S> 0, this is the Snowdrift or Chicken game (Sugden, 2004).

. Both tensions, fear and greed, are present when the two conditions are simul-
taneously satisfied, and then we are faced with the Prisoner’s Dilemma (Axelrod,
1984). On the contrary, when none of the conditions is met, we have the Harmony
game (Licht, 1999), which poses no dilemma in so far as mutual cooperation is the
best outcome and is preferred by rational players.

3.2. Model

We will consider the above family of games in the context of a social network.
In such a setting, every agent interacts with its neighbors in the network, that is, the
agents to whom it is linked. As in all previous works, the action taken by an agent is
the same for all her neighbors. The neighborhood is also the agents’ information set:
They can see the actions and payoffs of their neighbors and ignore everything about
the rest of the agents in the network. Initially, agents will cooperate or defect with
equal probability. Agents do not have memory, and therefore actions and strategies
coincide. At a simulation time step, all agents play the game simultaneously with all
their neighbors and collect the corresponding accumulated payoff (pi). After the
game stage, agents proceed to update their strategy, which they do by following a
strategy update rule (to be described in the next subsection). A time step is then com-
plete and the iteration is repeated. The network does not change during the simula-
tion. This cycle is run as many times as it takes for the system to converge to a fixed
strategy for all agents or to a stationary state in which the percentage of cooperators
fluctuates around an approximately constant value. This percentage of cooperators
is the magnitude we will monitor in our simulations.

3.3. Strategy Update/Evolutionary Rules

A detailed review of all possible update rules and their specific applications
would be beyond the scope of the present article. For our purposes, we have decided
to focus on three rules that have been widely used in previous research and in parti-
cular in the papers summarized above:

. Proportional imitation. This rule was first proposed by Helbing (1992) and Schlag
(1998) and can be described as follows: Let i¼ 1 . . .N label the individuals in the
population. Let si be the strategy of player i, pi her payoff and Ni her neighbor-
hood, with ki neighbors. One neighbor j2Ni is chosen at random, and agent i
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adopts the strategy of player j with a probability that depends on the difference
between the payoffs they obtained in the previous round through the expression

ptij � Pfstj ! stþ1
i g ¼ ðptj � ptiÞ=Uij ; ptj > pti ;

0; ptj � pti ;

�
ð3Þ

with Uij¼max(ki, kj)[max(1, T)�min(0, S)] to ensure that ptij 2 ½0; 1�. In case the
probabilistic decision turns out to be not to copy the neighbor’s strategy, the
player repeats her action in the next round. This is the rule used by Lomborg
(1996).

. Unconditional imitation. This rule makes each player choose the strategy of the
neighbor with the largest payoff, provided this payoff is greater than the player’s.
This is a deterministic rule, in contrast to the previous one, which is stochastic.
This is the rule used by Nowak and May (1992), Eshel et al. (1998), and Cohen
et al. (2001).

. Best response. This rule was introduced by Matsui (1992) and Blume (1993).
Contrary to the previous two rules, that are imitative, that is, in best response
every player chooses her strategy as a best response to what her neighbors did
in the last round with probability p or leaves it unchanged with probability
1� p (p can be set to 1 to make the rule deterministic). Thus, best response
schemes are a next step of sophistication in player capabilities as compared to sim-
ple imitation. In addition, best response is an innovative rule, as it allows extinct
strategies to be reintroduced in the system whereas imitative dynamics cannot do
that.

4. UNSTRUCTURED POPULATIONS

When there is no structure in the population, the classic framework to study
the evolution of populations of cooperators and defectors is the replicator dynamics
(Hofbauer & Sigmund, 1998; Gintis, 2000), which assumes that every individual
plays with every other (or, equivalently, that the social network of interactions is
the complete graph). Let x be the density of cooperators, and fc and fd the fitness
of a cooperator and a defector, respectively. The replicator dynamics posits that x
evolves as (Hofbauer & Sigmund, 1998; _xx stands for dx=dt):

_xx ¼ xð1� xÞðfc � fdÞ: ð4Þ

Then, if cooperators are doing better than defectors, their density rises accordingly,
and the opposite occurs if they are doing worse.

For our social dilemmas, provided that the initial density of cooperators x0 is
different from 0 and 1, the asymptotic outcome of the evolution is, for each game (x�

represents the asymptotic density of cooperators, Hofbauer & Sigmund, 1998):
Harmony, full cooperation, x� ¼ 1; Prisoner’s Dilemma, full defection, x� ¼ 0; Stag
Hunt, full cooperation if x0> xe or full defection if x0< xe; Snowdrift, mixed popu-
lation with x� ¼ xe, regardless of the initial density x0. For both Stag Hunt and
Snowdrift games the coexistence equilibrium xe, which is unstable for Stag Hunt

STRATEGY UPDATE AND COOPERATION IN SOCIAL NETWORKS 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 C
ar

lo
s 

Ii
i M

ad
ri

d]
, [

A
nx

o 
Sá

nc
he

z]
 a

t 0
8:

41
 1

1 
Ja

nu
ar

y 
20

12
 



but stable for Snowdrift games, has a value

xe ¼
S

S þ T � 1
: ð5Þ

As a reference, Figure 1 shows the outcome of evolution under replicator
dynamics for the four dilemmas presented above, depicted in the space of parameters
S and T. It also displays the lines that correspond to the game parameterizations that
will be considered below.

The replicator equation is closely related to the proportional imitation rule,
which we will use on structured populations. Proceeding as in (Lomborg, 1996; Gintis,
2000), it is straightforward to calculate the evolution with this update rule on an
unstructured population. Let n be the number of cooperators in a population ofN indi-
viduals, 0� n�N. In one time step, the variation of n will be given by the number of
defectors that become cooperators minus the number of cooperators becoming defec-
tors. Then, the expected value of the variation in the number of cooperators is1

E½Dn� ¼ ðN � nÞ n
N

ðfc � fdÞþ
U

� n
N � n

N

ðfd � fcÞþ
U

: ð6Þ

Defining dx¼Dn=N and dt¼U�1, it results

E½ _xx� ¼ xð1� xÞðfc � fdÞ; ð7Þ

which is equivalent to Eq. (4) up to a time scale factor. Notice that the use of expected
valuesmeans that, strictly speaking, this argument is only valid in the limitN!1. For
populations of finite size, the time evolution of x will differ of Eq. (7) in a stochastic

Figure 1 Standard results given by the replicator equation, Eq. (4), in infinite well-mixed populations, for

different initial conditions (cooperator densities 1=3, 1=2, 2=3). The lines in plot (b) indicate the parameter

regions that will be discussed in the remainder of the article. The regions corresponding to each of the

dilemmas are marked with initials: PD (Prisoner’s Dilemma), SD (Snowdrift), SH (Stag Hunt), the remain-

ing region corresponding to the Harmony game (HG) where no dilemma appears (color figure available

online).

1(x)þ¼ x if x� 0, and (x)þ¼ 0 if x< 0.

8 C. P. ROCA ET AL.
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term, which in practice, however, is only relevant for very small population sizes
(Traulsen, Claussen, &Hauert, 2005), specially in what concerns the asymptotic state.

To study the case of an unstructured population driven by the unconditional
imitation rule, it is enough to realize that, on a complete network, (a) all cooperators
and all defectors obtain, respectively, the same payoff, and (b) all players ‘‘scan’’ all
others to identify the player with the maximum payoff and adopt her strategy.
Hence, the population reaches a stationary state of full cooperation (full defection)
if fc> fd (fc< fd), in only one time step. Taking into account that the sign of _xx in Eq.
(7) is determined by the term (fc� fd), it is easy to conclude that this asymptotics is
the same as the one induced by replicator dynamics in the Harmony game, the Pris-
oner’s Dilemma and the Stag Hunt game. The behavior with the Snowdrift game
presents an anomaly because the population ‘‘overreacts’’ when approaching the
mixed equilibria at xe, ending up in full cooperation (full defection) if x0< xe
(x0> xe). This pathology can be formally solved introducing a probability p< 1 of
changing strategy, which slows down this extremely fast dynamics, making the
asymptotic fraction of cooperators fluctuate around xe, with an amplitude bounded
approximately by max(xe, 1� xe)p.

Considering finally the third update rule, best response, a similar reasoning
indicates that the best response for the current population state is simply the strategy
that is achieving the highest payoff. Thus, as with unconditional imitation, the popu-
lation reaches immediately a stationary state of full cooperation (full defection) if
fc> fd (fc< fd). As before, there are no differences with the asymptotics of replicator
dynamics for the Harmony game, the Prisoner’s Dilemma and the Stag Hunt game.
With the Snowdrift game, the first time step drives the population to a state of full
cooperation or full defection as in unconditional imitation, but instead of remaining
fixed there, all the population keeps switching to the other strategy once per time
step. As before, the formal solution is the introduction of a probability p of change,
which stabilizes the global fraction of cooperators around the mixed equilibrium,
with the fluctuation bounded.

Thus, we have proven that the asymptotics reached on an unstructured popu-
lation; that is, on a complete network, with all the three strategy update rules is the
same as with the replicator dynamics. Note, however, that proportional imitation is
the only rule that also recovers the temporal evolution of replicator dynamics (recall,
for instance, that for unconditional imitation we have shown above that convergence
takes just one iteration).

5. SPATIAL NETWORKS

We have run simulations (see Appendix for details of our numerical proce-
dures) on square lattices of degree k¼ 8, and our results are summarized in
Figure 2. Each panel of the figure presents results for a different region of the ST-
plane corresponding to a different game. Specifically, for the Stag Hunt game we
chose (0� r� 1)

T ¼ r; S ¼ �r; ð8Þ

for the Snowdrift game we chose

STRATEGY UPDATE AND COOPERATION IN SOCIAL NETWORKS 9
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T ¼ 1þ r; S ¼ 1� r; ð9Þ

and finally, for the Prisoner’s Dilemma, we took

T ¼ 1þ r; S ¼ �r: ð10Þ

Figure 2 Cooperation asymptotics in a regular lattice of degree k¼ 8 (Moore neighborhood), as a function

of the intensity of dilemma r, for different social dilemmas. Top panel: Stag Hunt. Middle panel: Prisoner’s

Dilemma. Bottom panel: Snowdrift. Each panel shows results for three update rules: unconditional

imitation (filled circles), proportional imitation (filled squares) and best response (empty diamonds).

The results for well-mixed populations are shown as a solid line without symbols in Stag Hunt and

Snowdrift games (for Prisoner’s Dilemma the result is x� ¼ 0 for all the range of r). Other lines are a guide

to the eye. For details on the simulations see Appendix (color figure available online).
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These parameterizations of the game correspond to the three lines depicted in
Figure 1. The rationale for exploring along those lines is to increase the tensions
in the different games by increasing the parameter r. Note that when r¼ 0, in all
three cases we are at the Harmony game and proceed to stronger tensions as we take
r! 1.

As can be seen clearly from Figure 2, the outcome of the simulations strongly
depends on the strategy update rule, in all three dilemmas. Thus, with unconditional
imitation cooperation is enhanced in all cases (compare with the dashed line, which
represents the well-mixed population, for reference; note that it overlaps with the r
axis for the Prisoner’s Dilemma as the predicted cooperation is zero in that case),
except for a minor region of large r values in the Snowdrift game. With proportional
imitation, cooperation is clearly enhanced in Stag Hunt, albeit to a lesser extent than
in the unconditional imitation dynamics. In Snowdrift, cooperation is inhibited
(except for low r) and is promoted in Prisoner’s Dilemma also only for low r. Finally,
best response dynamics leads to results which are in general similar to the well-mixed
population, with both small promotion and inhibition of cooperation in the Stag
Hunt and Snowdrift games and a slight promotion for low r in the Prisoner’s
Dilemma. Hence, we see that the effects of the microdynamics are most relevant is
the Stag Hunt game and that the promotion of cooperation in the Prisoner’s
Dilemma depends on the microdynamics being maximum under unconditional
imitation.

The reason for the sensitivity of the Stag Hunt to the dynamics is the existence
of two competing equilibria in that case. In the well-mixed population, convergence
to a specific equilibrium depends on the amount of each of the strategies present in
the initial population, and subsequently the convergence is global; that is, all agents
end up playing the same strategy. On the contrary, in the presence of spatial struc-
ture clusters converge locally to any of the two equilibria. Those regions where many
cooperators are together yield them higher payoffs (they coordinate in the efficient
equilibrium) and bring over the neighboring agents as time progresses.

The mechanism that explains the emergence of cooperation is the aggregation
of cooperators facilitated by the spatial structure of the population, which leads to
the formation and growth of clusters of cooperators. However, the key point we
want to hightlight in this work is that this aggregation is dependent on the update
rule. With unconditional imitation clusters grow deterministically one network link
each time step, and as a consequence it is easy to see analytically that planar inter-
faces determine the conditions for cluster growth almost independently of the initial
conditions. On the contrary, proportional imitation dynamics induces a much slower
cluster growth with rough interfaces that requires less tension (lower r) to develop. In
this case, the result turns out to depend on the initial density of cooperators, in con-
trast to what occurs with unconditional imitation. Finally, with the best response
rule, clusters are not stable from the start because this rule is innovative and can rein-
troduce strategies that are not present within a cluster or a neighborhood at a given
time.

Another important insight on the behavior of social dilemmas is the influence
of clustering on the emergence of cooperation, in particular for proportional imi-
tation. Indeed, the effect of this kind of regular lattices, along with imitative update
rules, is directly linked to the first order correlation in the network, that is, with the
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existence of triangles or clustering (defined as the ratio of the number of triangles
present in the network over the number of all possible triangles that could be
formed). The fact that neighbors of an individual are neighbors themselves is then
crucial. To appreciate the effects of clustering, we present results for a random net-
work of degree k¼ 8 on the top panel of Figure 3, which must be compared with the

Figure 3 Cooperation asymptotics in Stag Hunt games on random networks and square lattices. Top

panel: Random network, k¼ 8. Middle panel: Square lattice, k¼ 4. Bottom panel: Random network,

k¼ 4. Each panel shows results for three update rules: unconditional imitation (filled circles), proportional

imitation (filled squares) and best response (empty diamonds). The results for well-mixed populations are

shown as a solid line without symbols. Other lines are a guide to the eye (color figure available online).
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top panel of Figure 2. Whereas the results for unconditional imitation and best
response do not change much, for the random network the behavior under pro-
portional imitation is basically the same as for the well-mixed population. On the
contrary, when the degree of both the square lattice and the random network is
k¼ 4 (implying zero clustering for both, i.e., no common neighbors), the results
are comparable for all the dynamics (middle and bottom panels of Figure 3).

The preceding comments do not contradict Cohen et al.’s (2001) discussion
of clustering because they characterized clustering in terms of the average number
of neighbors within a certain distance in order to highlight the existence of corre-
lations within the network. They did not look at clustering understood as transi-
tivity or existence of common neighbors: As a matter of fact, all their networks
are k¼ 4 lattices or are built in a random manner with the same average degree,
and therefore they have zero clustering when measured by the density of triangles.
In general, the effect of a reduced average distance between nodes is a shorter
time of convergence to a very similar stationary state, and hence the asymptotic
outcome for every social dilemma does not change (the interested reader is
referred to Roca, Cuesta, and Sánchez [2009a] for an in-depth discussion of these
issues).

6. DEGREE-HETEROGENEOUS POPULATIONS

The work summarized in the previous section was focused on spatially struc-
tured populations (lattices) and random networks. The common feature to all these
networks is that they are degree-homogeneous, meaning that they are regular (i.e., all
nodes have exactly the same number of neighbors) or almost regular. In this section,
we address the opposite case of highly heterogeneous networks, taking scale-free net-
works (Albert & Barabási, 2002) as our working example. Recent work has pointed
out that these networks can be favorable to cooperation (Santos, Pacheco, &
Lenaerts, 2006; Poncela, Gómez-Garde~nnes, Florı́a, & Moreno, 2007) and can even
self-organize if they grow by incorporating new individuals who choose their neigh-
bors depending on the payoffs of a game (Poncela, Gómez-Garde~nnes, Florı́a, Sán-
chez, & Moreno, 2008). Therefore, analyzing the micro–macro link on degree
heterogeneous networks is an important subject that deserves attention both on its
own and for its possible applications.

We carried out simulations for the three social dilemmas with the same para-
meters as in the preceding section. We generated scale free networks using a
Barabási-Albert preferential attachment algorithm (Albert & Barabási, 2002) with
new nodes entering the network by connecting to m¼ 4 preexisting individuals
resulting on an average degree k¼ 8. Our results are collected in Figure 4. Contrary
to our observations for spatial structure, in this case the game most severely affected
is Snowdrift. On the other hand, the effect depends once again on the rule:
Cooperation levels are dramatically increased with respect to the well-mixed popu-
lation, both for unconditional imitation and for proportional imitation; the latter
leads to a smaller promotion than the former, but it is still quite large. Furthermore,
there is also a noticeable effect on the Prisoner’s Dilemma, which albeit weak, is
stronger than on Stag Hunt games. It is interesting that in this case proportional imi-
tation is the rule that leads to higher cooperation. Finally, as in degree-homogeneous
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networks, best response dynamics is the one that induces less differences with respect
to the well-mixed population.

We thus see clearly that the effect of this kind of scale-free networks is quali-
tatively very different from that of spatial lattices, but in turn very dependent on the

Figure 4 Cooperation asymptotics in a Barabási-Albert scale-free network of degree k¼ 8, as a function of

the intensity of dilemma r, for different social dilemmas. Top panel: Stag Hunt. Middle panel: Prisoner’s

Dilemma. Bottom panel: Snowdrift. Each panel shows results for three update rules: unconditional imi-

tation (filled circles), proportional imitation (filled squares) and best response (empty diamonds). The

results for well-mixed populations are shown as a solid line without symbols in Stag Hunt and Snowdrift

games (for Prisoner’s Dilemma the result is x� ¼ 0 for all the range of r). Other lines are a guide to the eye

(color figure available online).
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update rule. The reason for such a difference is the heterogeneity of degree, as we
have checked that qualitatively similar results are obtained for other degree-
heterogeneous networks. The basic microscopic mechanism that underlies this effect
is a bias induced in the transitions from cooperator to defector, and vice versa, which
are typical of Snowdrift games. In homogeneous networks these transitions happen
with equal probability. In heterogeneous networks, however, for more connected
individuals the transition from defection to cooperation becomes more probable
than the opposite transition. The final result is that more connected individuals
usually end up as the leaders of stable cooperative hubs. An important detail in this
mechanism is that Smust be positive; that is, there should not be risk in cooperation,
for this effect to take place, which explains why the influence of heterogeneous
networks is mostly concentrated on Snowdrift games. A detailed analytical study
of this issue for a toy model of cooperator and defector hubs separated by a set
of individuals and with proportional imitation dynamics has been published recently
(Florı́a, Gracia-Lazaro, Garde~nnes, & Moreno, 2009).

7. DISCUSSION AND CONCLUSIONS

The most important conclusion of this work is that macro-level outcomes
(emergence of cooperation, convergence to a given equilibrium) are very sensitive
to changes in the evolutionary dynamics in the presence of a spatial or social struc-
ture in the population. This is in contrast with what we have seen in well-mixed
populations; that is, in populations that lack social structure governing who interacts
with whom, where the outcome is independent of the dynamics. However, as soon as
the social structure is included in the model in terms of a network of interactions,
each different microdynamics leads to a specific macro-outcome. This finding has
serious implications: In particular, it challenges the belief that social or spatial
structures are in general supportive of global cooperative behavior, in so far as
any promotion of cooperation is seen to depend on the microdynamics.

Regarding imitative dynamics, we have shown that they yield different results
depending on their deterministic or stochastic nature. On degree homogenous net-
works, unconditional imitation, a deterministic rule, allows clusters of cooperators
to grow until the cooperative behavior dominates the population even in a range
of parameters of the Prisoner’s Dilemma. On the contrary, with proportional imi-
tation the promotion of cooperative behavior is clearly lower in the Prisoner’s
Dilemma and even changed to inhibition in Snowdrift. The main influence of pro-
portional imitation is then limited to the Stag Hunt game, because in this dilemma
there are two possible outcomes as discussed above.

On degree-heterogeneous (scale-free) networks, the topology does not allow
the formation of clusters, and another mechanism intervenes in the outcome of
the microdynamics: the formation of cooperative groups around highly connected
individuals or hubs. Under both imitative dynamics, these individuals end up being
cooperators and are henceforth able to bring their neighbors along to a cooperative
state. Such a mechanism allows for a large promotion of cooperation in the Snow-
drift game, reaching into a region of the Prisoner’s Dilemma, with qualitative differ-
ences depending on the imitation rule considered. Cooperation in coordination
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games such as the Stag Hunt does not benefit much from this kind of networks under
any of the imitative dynamics.

Therefore, clustering (understood as density of triangles or transitivity) and
degree heterogeneity seem to be the two more important topological features of
population structure with an impact on social dilemmas. Furthermore, these two
characteristics lead to changes in the macro-outcome which are not the same under
different update rules. This result has important consequences: If we only observe a
given macro-state (say, global cooperation in a Prisoner’s Dilemma), we cannot
know whether models based on a degree-heterogeneous network under proportional
imitation dynamics or on a degree-homogeneous network under unconditional
imitation are the correct ones to describe our observations. Further research would
then be needed to ascertain what are the individual behavior and the social structure
underlying the aggregate of individuals.

Under best response dynamics, the social structure does not seem to play much
of a role: Populations of all types tend to converge to the Nash equilibrium of the
individual game. As this does not agree with observations of real systems and with
many experiments, then we are faced with a puzzle: Either best response, with its
alleged cognitive improvement with respect to imitation, is not well suited to model
individual interactions or the models need some rethinking. The absence of network
effects under best response implies that the stability and efficiency of the two
mechanisms we have discussed for the promotion of cooperation, namely cluster for-
mation and cooperative hubs, requires imitation. This is so because innovative rules
such as best response lead to strategy changes in the inner core of the cluster or on
the hubs that eventually spread defection to the surroundings.

From the above discussion, a testable hypothesis emerges: A particular dynam-
ics at the micro-level implies a nontrivial dependence of the macro-outcome on the
kind of game and the concrete topology of the social network. Imitative update rules
are only compatible, and hence verifiable in experiments, with the following beha-
vior: Games on lattices only display a clear influence of the network in the case of
Stag Hunt games whereas games on degree-heterogeneous networks do so only in
Snowdrift games. In case experiments would provide positive evidence in this direc-
tion, then it would be possible to test the temporal evolution of the population, ver-
ifying the formation of clusters of cooperators with Stag Hunt games and the
existence of cooperative hubs for Snowdrift games. A similar testable hypothesis
can be posed for best response rules: best response as a micro-level dynamics
implies a lack of influence of social structure for most games, they being Prisoner’s
Dilemmas, Stag Hunt or Snowdrift games.

Recently, some experiments have dealt with the behavior of people playing the
Prisoner’s Dilemma on small (Kirchkamp & Nagel, 2007; Traulsen, Semmann,
Sommerfeld, Krambeck, & Milinski, 2010) and large (Grujić, Fosco, Araújo, Cuesta,
& Sánchez, 2010) lattices, yielding new insights about the microdynamics which indi-
viduals actually follow. While there is not complete agreement between the interpret-
ation of the three experiments, the fact that very low (but nonzero) levels of
cooperation are observed in all of them makes very likely that unconditional imi-
tation can be ruled out as a description of the way players update their strategies.
Experiments designed to test other games are badly needed to make progress on
this issue.
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Regarding other choices for the update rules, we believe that they will all reflect
the influence of different networks in idiosyncratic manners. For instance, work by
Buskens and Snijders (2008) shows that simulations on small networks are not very
sensible to their structure for a rule based on propensities to cooperate driven by
instantaneous best responses, in line with our results here on larger networks. How-
ever, very different update rules, with a clear learning interpretation, lead to other
outcomes. It is worth quoting work in progress by Galán, Izquierdo, Santos, and
Sánchez (2010), who elaborate on previous research on two-player games (Izquierdo,
Izquierdo, Gotts, & Polhill, 2007; Izquierdo, Izquierdo, & Gotts, 2008) with
reinforcement learning dynamics as used by Macy and Flache (2002). Using the Pris-
oner’s Dilemma as an example, they observe that the asymptotic state of a
two-player game with this dynamics is full cooperation for both players with transi-
ents around a mixed strategy equilibrium. On the contrary, the presence of a network
of players renders the fully cooperative equilibrium unreachable for practical pur-
poses. Interestingly, reinforcement learning leads to an outcome that is completely
different from those we have reported for our three rules, further supporting our
main conclusion. Research on whether other learning-type update rules, such as
belief learning (Cheung & Friedman, 1997) or experience-weighted attraction learn-
ing (Camerer & Ho, 1999), lead to different outcomes from that of reinforcement
learning would be a big step towards making a universal claim along the lines of
our conclusion. In such a context, an interesting issue would be the possibility of dis-
tinguishing between reinforcement and belief learning on a social network, in the
direction found for 2� 2 games by van der Horst, van Assen, and Snijders (2010).

In this study, the information and interaction set are the same; that is, agents
interact with a given set of neighbors and have information about their actions and
payoffs in the previous round. In general these two sets may differ. Recent work by
Ohtsuki, Nowak, and Pacheco (2007) has shown that when two different networks
are used, one for interaction (playing the game) and one for information (updating
the strategy), the results change. It is worth noting that they report that the optimum
setting for cooperation to emerge is when both graphs coincide. In the context of this
article, they use three different update rules (birth–death, death–birth, and imitation)
and once again find that the evolutionarily asymptotic state depends on the rule even
within this generalized picture, in line with our claims here. Therefore, we believe
that the fact that in this work we have only looked at the case in which the infor-
mation and interaction sets are the same does not suppose any limitation to our main
conclusion.

Finally, when model networks are substituted in the simulations of social
dilemmas by real social networks obtained from empirical data, results are different
even if the networks have the same global statistical features (Lozano, Arenas, &
Sánchez, 2008b, 2008a), a surprising result that has been shown to arise from the
existence of topological traps on the network, mesoscopic structures similar to
bottlenecks that make it difficult for successful strategies to propagate. All this
points in the direction that modelling social interactions on social networks is by
no means a straightforward task: It requires clear and specific questions and a precise
specification of the scope of applicability of the results (e.g. what type of social
aggregates, what type of dilemma involved). A promising avenue for research on
social dilemmas using evolutionary games may be to let all relevant features
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coevolve, including the update rules themselves (Moyano & Sánchez, 2009). With
such an approach one might be able to show that some of the microdynamics or
the social structures which are in principle possible do not actually appear or are
not relevant in an evolutionary context, thus narrowing down the range of choices
for the modeller. This is of course a highly speculative conjecture, but we believe
it is worth exploring it in order to shed light on the dependence of the
macro-outcomes on the micro-level.
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Newman, M., Barabási, A. László, & Watts, D. (Eds.). (2006). The structure and dynamics of
networks. Princeton, NJ: Princeton University Press.

Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359,
826–829.

Nowak, M. A., & Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring.
Nature, 393, 573–577.

Ohtsuki, H., Nowak, M. A., & Pacheco, J. M. (2007). Breaking the symmetry between inter-
action and replacement in evolutionary dynamics on graphs. Physical Review Letters, 98,
108106. doi:10.1103/PhysRevLett.98.108106

Olson, M. (1965). The logic of collective action. Cambridge, MA: Harvard University Press.
Pennisi, E. (2005). How did cooperative behavior evolve? Science, 309, 93.
Platt, J. (1973). Social traps. American Psychologist, 28, 641–651.
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APPENDIX: SIMULATION DETAILS

All the simulations were performed for a population size of N¼ 104. The initial
density of cooperators was x0¼ 0.5, and the update of strategies was done synchro-
nously. With synchronous update, all the individuals in the population play the game
once with all their neighbors, compare their payoff with them and decide the new
strategy for the next time step. Then, they all update their strategy at once, and their
payoff is set to zero before the next step. Using asynchronous updates does not
change qualitatively the results except for a minor region of parameters in the Snow-
drift game near the boundary with the Prisoner’s Dilemma (Roca et al., 2009a).

The time of convergence in the simulations was T¼ 104 rounds of the game per
individual. If the population did not reach full cooperation or defection, an average
of the cooperator density during the last tenth of the time evolution was used to
obtain the asymptotic cooperator density. We checked that this time of convergence
is enough to reach a steady state. For each choice of game parameters, 100 realiza-
tions were performed to obtain a final average value for the asymptotic density of
cooperators.

Each realization started from a newly generated population, with strategies
randomly assigned and the network, when applicable, also randomly built. The
homogeneous random networks were built directly, assigning links randomly in
the population, while ensuring an equal number of links for every individual. All
the regular lattices were built with periodic boundary conditions.
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