THE JOURNAL OF CHEMICAL PHYSICS 128, 194901 (2008)

Phase behavior of parallel hard cylinders

José A. Capitén,a) Yuri Martinez-Raton, and José A. Cuesta

Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemdticas, Escuela Politécnica
Superior, Universidad Carlos Il de Madrid, Avenida de la Universidad 30, E-28911 Leganés,

Madrid, Spain

(Received 1 April 2008; accepted 15 April 2008; published online 22 May 2008)

We test the performance of a recently proposed fundamental measure density functional of aligned
hard cylinders by calculating the phase diagram of a monodisperse fluid of these particles. We
consider all possible liquid-crystalline symmetries, namely, nematic, smectic, and columnar, as well
as the crystalline phase. For this purpose we introduce a Gaussian parametrization of the density
profile and use it to numerically minimize the functional. We also determine, from the analytic
expression for the structure factor of the uniform fluid, the bifurcation points from the nematic to the
smectic and columnar phases. The equation of state, as obtained from functional minimization, is
compared to the available Monte Carlo simulation. The agreement is very good, nearly perfect in the
description of the inhomogeneous phases. The columnar phase is found to be metastable with
respect to the smectic or crystal phases, its free energy though being very close to that of the stable
phases. This result justifies the observation of a window of stability of the columnar phase in some
simulations, which disappears as the size of the system increases. The only important deviation
between theory and simulations shows up in the location of the nematic-smectic transition. This is
the common drawback of any fundamental measure functional of describing the uniform phase just

with the accuracy of scaled particle theory. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2920481]

I. INTRODUCTION

Monte Carlo simulations conducted on systems of hard
anisotropic particles (spherocylinders being the most para-
digmatic shape) showed that the purely entropic nature of
hard core interactions is enough to explain the stability of
different liquid-crystalline phases and phase transitions be-
tween them.'™ These phases, in decreasing order of symme-
try, are known as isotropic (I), nematic (N), smectic-A (Sm),
columnar (C), and crystal (K)—the isotropic and the crystal
not being liquid-crystalline phases properly speaking—and
some of their physical and chemical properties have been
described in detail in Refs. 4 and 5. Later, Monte Carlo simu-
lations were also employed to calculate the full phase dia-
gram of fluids of freely rotating hard spherocylinders6 and
hard-cut spheres,7 including nonuniform phases as the peri-
odic one-dimensional (Sm), two-dimensional (C), and three-
dimensional (K) phases.

Several density functional theories have been devised to
determine the phase behavior of the hard sphere (HS) fluid.
These theories can be grouped in two different sets. The first
one, the weighted-density functionals, are constructed from
the knowledge of the thermodynamical and structural prop-
erties of the uniform ﬂuid,g_10 while the second one, the fun-
damental measure functionals (FMFs), initially introduced
by Rosenfeld'"'? and later improved for an adequate descrip-
tion of the HS freezing,Bf15 are built on the geometry of the
particles alone.

The extensions of these theories to hard anisotropic par-
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ticles have not been as successful as they have been for HS.
There are two reasons to explain this difficulty: The first one
is related to the, as of today, still poor knowledge of the
structural properties of fluids composed by anisotropic par-
ticles, and the second one is the inherent complexity in deal-
ing with orientational degrees of freedom within density
functional theory. This notwithstanding, some weighted-
density functionals have been developed for the fluid of hard
spherocylindersm’17 to study both the I-Sm and the N-Sm
phase transitions as a function of the particle aspect ratio.
These functionals were constructed as modifications of a ref-
erence HS weighted-density functionals, and their predic-
tions, tested against Monte Carlo simulations, are reasonably
good. They do not allow though to properly account for the
C and K phases.

FMF are more appropriate to treat these phases as, by
construction, they are more suitable to describe highly con-
fined particles, such as they are in a solid. Unfortunately the
fundamental measure formalism has little flexibility to apply
it to arbitrary geometries. FMF have been obtained for par-
allelepipeds with restricted orientations of their principal
axes, " " and very recently for cylinders also with a parallel
alignment constraint.”’ A density functional for freely rotat-
ing anisotropic particles has been recently proposed which
interpolates between Rosenfeld’s HS functional and Onsag-
er’s functional for elongated rods.” Following the funda-
mental measure formalism, density functionals have been
also obtained for needles, infinitely thin plates, and their
mixtures,” 2® but this time the price to pay is to eliminate at
least one of the characteristic lengths of the particles. Be-
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sides, the numerical minimization of these functionals to ob-
tain the equilibrium density profiles of nonuniform phases
seems to be a very demanding task.

In this article, we aim at testing the recently proposed
FMF for parallel hard cylinderSZI by comparing its predic-
tions with Monte Carlo simulations reported in the
literature.”*® We will consider all possible nonuniform
phases, namely, N, Sm, C, and K and will depict the phase
diagram the FMF predicts. There is an interesting aspect
about this model that poses a particularly stringent test on the
theory. In Ref. 27, a window of stability of the C phase was
reported whose existence the authors of Ref. 28 could not
completely settle, although their results pointed to its being a
finite size effect because this window disappears—being pre-
empted by a K—in simulations of very large systems. We
will show that our FMF does indeed confirm this conclusion
by showing that either the Sm or the K are always more
stable than the C, although the difference in free energy is
rather small which justifies its observation in small systems.
We will also compare the resulting equations of state for the
N, Sm, and K phases with those obtained from the Monte
Carlo simulations of Ref. 28 and conclude that the perfor-
mance of our functional is almost perfect in the description
of highly nonuniform phases, even improving on the free-
volume description of the K phase.

Il. FUNDAMENTAL MEASURE DENSITY FUNCTIONAL

In Ref. 21, we obtained a fundamental-measure density
functional for mixtures of parallel hard cylinders, so we will
just gather here the formulas, specialized for the case of a
one-component fluid. The functional is constructed out of the
one for two-dimensional hard disk. There are two versions
for the latter: Rosenfeld’s original version'? and the version
of Tarazona and Rosenfeld."” The former has some important
drawbacks, for instance, the low-density limit of the func-
tional is only approximate. That of Tarazona and Rosenfeld
recovers the exact result in this limit. On the other hand, the
former is easier to implement than the latter, because it is
expressible in terms of one-particle-weighted densities, while
that of Tarazona and Rosenfeld contains a two-particle-
weighted density. Nevertheless both are amenable to numeri-
cal treatment and we will explore the results of both. So the
formulas presented here will describe the implementation of
the two versions for the functional of parallel hard cylinders.

Irrespective of the version we are using, the free-energy
density functional can always be written as

Bf[p] = ﬁj:ld[p] + Bfex[p] s (1)

where 3 is the inverse temperature in units of the Boltzmann
constant,

BFilpl= J dr f dzp(r,z)[InVp(r,z) - 1] (2)

is the functional of the ideal gas (V is the thermal volume,
irrelevant for the phase behavior), and BF,[p] is the excess
free energy due to interactions. We are using the notation r
=(x,y) for vectors perpendicular to the cylinders axes. FMFs
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are expressed in terms of an excess free-energy density
d(r,z), such that

ﬂfex[p]=fdrfdzq>(r,z). (3)

This free-energy density can be given as a function of a set
of weighted densities. The whole set of them can be written
in terms of the two densities:

po(r,2) = 3[p(r,z + L/2) + p(r,z - L12)], (4)
z+L/12

pi(r,z) = p(r,1)dt. (5)
z—L/2

Common to both versions are the weighted densities

ny(r,z) = R x po(r+R,z)dR, (6)
R|=R
nl(r7Z) = ﬁ |R‘=R pl(r + R9Z)dR, (7)
ny(r,z) = f po(r +R,z)dR, (8)
[R|<R
ns(r,z) = J p1(r+R,z)dR. 9)
|R|<R

.. .12
For Rosenfeld’s original version ~ there are also two vector
densities, namely,

1
Z)=—— +R,7)RdR, 10
vy(r,2) s JlR:Rpo(r 2) (10)
(r,2) L f (r+R,z)RdR (11)
r,z)= r+ K, .
Volr, 2 PR |R\=Rp1 V4

and the expression for the excess free-energy density is

niny+ 27TR2(flol’l1 -V V2)

(I)R()S =—n ln(l - }13) +

1- ns
2
ni—v
+ 7TR2”2—(11_ n3§2' (12)

For Tarazona—Rosenfeld’s version' there are also two two-
particle-weighted densities, namely,

N](I',Z) = f def dRZ[pl(r-'-Rl’Z)
[Ry[=R; [Ry=R,

X po(r +Ry,z) + po(r + Ry,2)p; (r + Ry, 2) ]

R, —R2|>
X K(—ZR , (13)
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FIG. 1. (Color online) Triangular (AAA) crystal. The lattice parameters a
and d are shown in the figure.

Nz(r’Z)=f dR1f dRyp(r +Ry,2)
11=R; [Ry|=R,

R, - R,
Xpl(r+R2,z)K(# , (14)
where
K(x) = ﬁ\/1 —x?sin”!x, (15)
T

and the expression for the excess free-energy density is

n1n2+N1 i’lzNz

b=- In(1 - + . 16
o Il( l’l3) 1— n; (1 _ n3)2 ( )
lll. PHASE BEHAVIOR
The Euler-Lagrange equation
OBF
= 17
3p(r.2) B (17)

provides the equilibrium density for the system when there is
no external field and the chemical potential is fixed to w
(equivalently, when the mean density is fixed to the value p
corresponding to that chemical potential). Expected phases
are nematic (no spatial ordering), smectic (one-dimensional
layering of particles), columnar (two-dimensional ordering
of liquid columns), and crystal (a combination of both order-
ings). These are the phases shown in the simulations of Veer-
man and Frenkel.”® Quite as expected, columnar phase is a
triangular ordering of columns and crystal phase is a piling
up of such triangular lattices, i.e., which is commonly re-
ferred to as an AAA crystal (see Fig. 1).

A direct solution to Eq. (17) is numerically unfeasible
so, as it is customary, we have resorted to a variational
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method. Thus, in order to account for all the above phases in
our density functional description in a unified simple way,
we have chosen the parametrization

p(r.2) = pV&ix . ()x(2), (18)

where p is the mean density (number of particles per unit
volume) and

X.(r)= “—;2 exp[— o, (r— R, (19)
k
o 12 ) ) ,
xi(2) = > exp[— oy(z — k3d)*]. (20)
ar k3

The parameter Vg?ﬁ is defined as the D-dimensional volume
of the unit cell of the corresponding phase (D=1 smectic,
D=2 columnar, D=3 crystal). Its values are

vi)=d, V3 =\3a%2, V&) =d\34%2, (21)

c cell — cell -

d being the layer spacing along the Z direction and a the
lattice parameter of the triangular lattice on the XY plane (see
Fig. 1). Finally, Ry=ka;+ka, (k;,kye?Z), with a,
=a/ 2(\/5 (=1)"), the vectors defining the two-dimensional
triangular lattice. In Appendix A, we give explicit expres-
sions for the weighted densities evaluated with the density
profile (18).

When Eq. (17), using the parametrization (18), leads to a
solution with o=, =0, the equilibrium phase is a nematic;
a smectic is the equilibrium phase if oy# 0 and o, =0; it is a
columnar if oy=0 and a | #0; and a crystal if both a;#0
and a,; #0. For the crystal phase, 1— pV(eH—V provides the
fraction of vacancies.

A. Nematic phase
When ¢y=a, =0 in Eq. (18), both Egs. (12) and (16)

provide the same free-energy density, namely,
BFv
1%

o= =D+ p(lny + 3y +y?), (22)
where ®=7In(V/v)—17, a linear term irrelevant for phase
behavior, 7=pv is the packing fraction, v=mR>L is the vol-
ume of a cylinder, and y= 7/(1 - 7). This free-energy density
is plotted in Fig. 2.

From Egq. (22), the equation of state (EOS) is readily
obtained as

1+7n
Bpv=y+3y*+2y’= T (23)

the same EOS as that of parallel hard cubes.”’

The structure factor can also be obtained from the rela-
tionship S(g.q.)=[1-pé(q,q.,)]™!, where é(g,q.) is the Fou-
rier transform of the direct correlation function of the uni-
form fluid. Its expression was given in Ref. 21 [see Egs.
(39)—(43) and Appendix B]. Specializing to the one-
component fluid and taking into account that

j dqé(u—r) =2muVy(qu), (24)
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FIG. 2. Free-energy densities ®*=®—®Dy—a,p—a, (with a;=4.8463 and
a,=-2.0555 chosen so as to amplify the differences between the different
free-energy branches) vs packing fraction % for the nematic (N), smectic
(Sm), columnar (C), and crystal (K) phases. The N-Sm bifurcation point is
shown by a filled square. The N-C and Sm-C coexisting packing fractions
are marked with open squares and open circles, respectively. The columnar
phase is metastable and hence so are these two phase transitions. Before the
smectic changes into a columnar the crystal becomes more stable. The Sm-K
phase transition is marked with full circles.

J dqO(u —r) = mu*V,(qu), (25)
f dq.®(ui2 - [2]) = uW¥y(q.ui2), (26)
where  q=(q.q,). q=lal. r=[r], Vox)=Jox), ¢(x)

=2J,(x)/x, and W,(x)=sin x/x, Jy(x) and J;(x) being the ze-
roth and first order Bessel functions, respectively, we obtain,
from the Tarazona—Rosenfeld functional (16), the following
expression for the inverse structure factor:

S(g.q.)7" = 1+8yW,(24*)W,(2q])
+4y"[2Wo(q*) V(") 5(24))
+W,(2¢%)W,(q)*]+ 2y%(1 +2y)
X[2Wo(q*)W1(g*)Ws(g.)?
+W1(g*)*Wa(2])] + y*(1 + 6y
OV (", @7)

where ¢*=Rqg and quLqZ/Z.

B. Smectic phase

When we set @, =0 in Eq. (18) and substitute this den-
sity profile into either Eq. (12) or (16), both yield the same
expression
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_ 3”3(2) n3(2)2
(D(Z) - nO(Z){_ ln[l - n3(Z)] + 1 - n3(Z) + [1 _ HS(Z)]Z}’
(28)
with
no(z) = X p(z - L12) + plz + L12)], (29)
z+L/2
ns(z) = 7R f a2 pla). (30)
z=L/2

So both theories predict the same nematic-smectic transition.
Solving Eq. (17), a solution with ¢;#0 is found for
every 7> 1n.sm=0.31 (also plotted in Fig. 2). The value of
«a approaches zero as 7 approaches this value from above.
On the other hand, the free-energy density for this smectic
phase is tangent to that of the nematic one (see Fig. 2), so the
transition is continuous. This being so, we can obtain a more
accurate value of 7y.g, as the smallest # at which the struc-
ture factor (27) diverges at some wave vector q=0, g.# 0.
Specializing Eq. (27) for such a wave vector we find

S(0,q,)7" = 1+2y(4+ 5y +2y")W¥,(24))
+Y2(9+ 14y + 6y)W,(q.). (31)

The smallest 7 for which the right-hand side of Eq. (31)

vanishes at a qj is 7n.sm=0.3143, and the value of qf at

which it happens corresponds to a smectic period d/L
&

=7lq, = 1.3015.

C. Columnar phase

At packing fraction n;_c=0.4369 the nematic loses sta-
bility against columnar ordering. This value is determined
from the divergence of the structure factor (27) at a wave
vector q # 0, g,=0, which, for the Tarazona—Rosenfeld func-
tional (16), is given by

5(g,007" =1 +4y(2+y)¥,(2¢%)
+ 4)’2(3 +2y)Wo(g™)¥(g")
+y*(3+ 10y + 6y2)\I’%(q*). (32)

In this case, however, the columnar free energy is not tangent
to the nematic one, so the transition is first order. We can
determine the N-C coexistence by the usual double tangent
construction. This yields the 7y=0.3957 and 7-=0.4425 as
the coexisting packing fractions of the nematic and the co-
lumnar phases, respectively (see Fig. 2). At the latter, the
lattice parameter is a/R=2.4744.

We can see here an important difference between this
version of the functional and that based on Rosenfeld’s origi-
nal approximation, Eq. (12). The latter leads to the following
equation for the inverse structure factor

S(¢.0)™" = 1+ 2y(2 +y)(¥3(g*) - [¥o(g"))
+2y(2+ 7y + 4y")Wo(g*) ¥ (g%)
+y%(3 + 10y + 6y>)¥i(g), (33)

where the new complex vector W(g*)=iJ,(¢*)q/q has been
introduced. The value of ”;-c which this approximation pre-
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dicts is 77;7(::0.5599. If we had to believe this value for the
N-C bifurcation, the columnar free energy would be much
too high to be consistent with the metastable columnar phase
found in simulations.>”*® For this reason, we have not pur-
sued this version of the funcional anymore.

The columnar free energy is higher than the smectic one
up to 7=0.6534, where a first order Sm-C transition occurs,
with coexisting packing fractions #g,=0.6382 and 7
=0.6697. However, at these packing fractions, the equilib-
rium phase is no more the smectic but the crystal, thus the
columnar phase is always metastable, and, in particular, so
are the N-C and the Sm-C transitions. All this can be easily
visualized in Fig. 2.

D. Crystal phase

At packing fractions around 7=0.58 a solution to Eq.
(17) with a;#0 and @, #0 renders a free energy smaller
than that of the, up to that point stable, smectic phase. The
fluid undergoes a first order Sm-K transition with coexisting
packing fractions 7g,=0.5689 and 7x=0.5936. The lattice
parameters of the coexisting crystal are a/R=2.3102 and
d/L=1.1419. With these values the fraction of vacancies can
be found to be just a mere 0.3%. The crystal is the only
stable phase for 7> 7 up to close packing (see Fig. 2).

IV. COMPARISON WITH COMPUTER
SIMULATIONS

Numerical simulations for this fluid were carried out first
by Stroobants et al”” and later by Veerman and Frenkel.”®
The former, made with 900 cylinders, showed the sequence
of stable phases N-Sm-C-K. The latter confirmed this result
but also made simulations with 1080 cylinders which
showed that the columnar phase previously found appeared
due to a finite size effect. Their conclusion was that the co-
lumnar phase is always metastable, but has a free energy
very close to that of the smectic phase, so much that the
boundary conditions may artificially render it more stable.
Our previous calculations are fully consistent with this result,
as Fig. 2 illustrates.

Besides this first qualitative agreement, we can also per-
form a more quantitative comparison with simulations by
comparing the equations of state. This is done in Fig. 3. The
simulation results are those obtained with the largest system
size.”® The figure shows that the agreement between the nu-
merical values of the pressure is excellent for all stable
phases. The values for the crystal phase are indistinguishable
from the simulations, as it is also the location of the Sm-K
transition.

The only important deviation between theory and simu-
lations concerns the location of the N-Sm transition. While
both theory and simulation predict that this transition is con-
tinuous, the theory predicts that it occurs at 7=0.3143 while
the simulations yield a value of 7=0.443. This failure of the
theory to predict the location of continuous transitions be-
tween low-density uniform and nonuniform phases is a fin-
gerprint of FMT. For instance, the FMF of parallel hard
cubes also predicts the same value of 7=0.3143 for the tran-
sition between the fluid and the smectic, columnar and crys-
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FIG. 3. EOSs (reduced pressure vs packing fraction) for all stable phases
obtained from the FMF for parallel hard cylinders. These phases are nematic
(for packing fractions up to the point indicated by a full rhombus), smectic
(from that point up to the discontinuity), and crystal (from the discontinuity
up to close packing). The open circles are the simulation results reported in
Ref. 28. The arrows mark the nematic-smectic and smectic-cystal phase
transitions as obtained from those simulations. The two insets show the
equations of state for the columnar metastable phase in the neighborhood of
the nematic-columnar (left inset) and smectic-columnar (metastable) phase
transitions. [Labels stand for nematic (N), smectic (Sm), columnar (C) and
crystal (K).]

tal phases (the later being the stable one),”* while simula-
tions provide a value of 7=0.49 for the freezing of this
fluid.*"** The reason for this drawback lies in the fact that,
by construction, FMFs provide, in the uniform limit, the SPT
EOS—which for anisotropic bodies deviates from the exact
result—while at the same time the prediction for the nonuni-
form phases significantly improves due to the dimensional
crossover properties of FMFs.> This discrepancy in the ac-
curacy with which the theory describes both type of phases
leads to inaccurate predictions of the uniform-nonuniform
phase transition points.

We end this section by comparing the EOS for the crys-
tal phase given by the FMF and that obtained by a cell ap-
proximation for the fluid of parallel hard cylinders, which is
derived in Appendix B. Figure 4 shows the results of both
theories as well as the simulation results. As it can be seen,
while the FMF results perfectly fit the simulation points, the
cell approximation, although still a rather good description,
underestimates the EOS. We can also see that, as expected,
both theories converge at high densities, a known result
which is a direct consequence of the dimensional crossover
3D— 0D of the FME.">"

V. CONCLUSIONS

There are very few examples in the literature in which
the same functional describes with accuracy all inhomoge-
neous phases of a liquid-crystalline fluid. In this article, we
have applied a FMF recently proposed for mixtures of par-
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n

FIG. 4. Comparison between the EOS of the crystal phase as obtained from
minimization of the functional (solid line), from the cell approximation
(dashed line) and from simulations (open circles) (Ref. 28).

allel hard cylinders21 to determine the phase behavior of the
one-component fluid. As usual with fundamental-measure-
based functionals, the results obtained for the uniform (nem-
atic) fluid are those provided by scaled particle theory, and so
the accuracy the functional provides for this phase is reason-
ably good but not perfect. As a consequence, the predicted
nematic-smectic phase transition significantly deviates from
the Monte Carlo simulations of Refs. 27 and 28, although the
order is correct. However, the accuracy with which the re-
maining stable phases, smectic and crystal, are obtained is
excellent, the plots being indistinguishable from the simula-
tion data, even for the smectic-crystal coexisting densities.
Results for the EOS of the crystal improve on those obtained
by a cell approximation (which we have also reported in an
appendix). Another correct prediction of the theory is that the
columnar is only a metastable phase, but its free energy is
sufficiently close to that of the stable phases so as to justify
the observation of a window of stability of that phase in the
oldest simulations®” made with the smallest system size, a
window that disappears when the size is increased.”® In sum-
mary, the proposed functional provides excellent results,
very similar to those obtained by simulations, but obtained at
a much cheaper price. They also made us confident that its
version for mixture may provide very good results as well.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR THE
WEIGHTED DENSITIES

Insertion of the parametrization (18) into the expressions
for the weighted densities (6)—(9) leads to the formulas

ny(r,2) = pViGi0 P (0) PP (2), (A1)
ni(r,2) = pViG 0P (0 H P (2), (A2)
ny(r,2) = pVi TP (0 PP (2), (A3)
n3(r,2) = pVea TP (0 HP (2), (A4)

where VieDl)l is defined in Eq. (21). The functions are given in
terms of
o\, 1 -

o) ={—] €, ena) = erf(Vaw), (A5)
erf(x) being the standard error function. To be precise,

oV =1, (A6)

0P (r) =00

=g, (A2 g, (r=R\Io(2Ra,[r-Ry]), (A7)
k

where Iy(x) stands for the zeroth-order modified Bessel func-
tion of the first kind. The rest of the expressions are similar:

7(r) = 7R?, (A8)
() =19(r)
= 2772 gaL(|r - Rk|)
k
R
XJ dttgal(t)lo(ZtaJr -Ry), (A9)
0
PP() =1, (A10)
P(2) = P(2)
= %E (80, — kd + L12) + g, (z — kd = L12)],
k
(A11)
HP () =L, (A12)
H () =H(2)
=> [eq(z—kd+L/2) - e, (z—kd - L12)].
k
(A13)

As for the two-particle-weighted densities, after a
lengthy calculation (see Ref. 21 for some details) N,(r,z)
can be expressed as
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FIG. 5. (Color online) Sketch of the triangular lattice of period a. The free
region of area Ag.. within which one particle can move appears colored.
One-sixth of this area can be obtained substracting from the area of the
triangle ABC those of the triangle ABD and of the sectors BED and ADF.

Ny(r,2) = 2(pV O PP () HP) (2)0P)(r),

cell

(A14)

with the functions Pl(lD)(x) and HﬁD)(x) defined above. The
radial contribution is

JVr) = 7R, (A15)
I =70r)

2
_ (ﬂ ) R 2RaLS) gl =Ry )P+ =Ry %)

T kyky
Xf dtt sin tIO[Bkl,kz(t,r)]» (A16)
0
where
By 1,(t.r) =2Ra, \/é’i1 + ﬁz +28, L, cos(t+ i, — ).
(A17)

denoting r—R; ={; (cos ¢ ,sin ¢ ), with v=1,2. Finally,
N,(r,z), is given by

Ny(r.2) = [pVAHP () PIP(x). (A18)

APPENDIX B: CELL APPROXIMATION FOR THE
CRYSTAL PHASE OF PARALLEL HARD CYLINDERS

This section is devoted to obtain a cell approximation for
the free energy per particle of the crystal phase of parallel
hard cylinders. To this aim we first calculate the free volume
available to one particle moving in an cell defined by the first
nearest neighbors: a prism with hexagonal base composed by
six triangular cells of period a (see sketch in Fig. 5) and
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height equal to 2d. Six hard disks (the cylinder sections) of
radii R are fixed at the vertices of the hexagon while a sev-
enth one is allowed to move within this cell, with the only
constraint of not overlapping the other six disks (which of
course do not overlap themselves). Simple geometric consid-
erations lead, for the area accessible to the center of mass of
the seventh disk, to the formula

Apee = 24R%| 3% + cos™ x—x1 —xZ—;—T , (B1)
where x=a/4R. The free volume of this cell is simply Vi,
=2ApeL(y—1) with y=d/L. If we fix the mean packing frac-
tion of the crystal, the variables x and y are related through
the equation 7=v/ Vgl, where v=mR?L and Vgl, defined in
Eq. (21), are the particle and cell volumes, respectively. Thus
y=m/8 y/g 2.

The cell theory approximates the free energy per par-
ticles as

(P=_1n<%>
V b

with ) the thermal volume of the system, which in our case
is

(B2)

TV
<p=ln<—) —ln(\3x2+cos_] x—xVl—x*— z)
48v 3

1 ( u 1)

—Inf —/——=-1).
8 \E 7x*

Once the mean packing fraction is fixed the free-energy (B3)

must be minimized with respect to x with the constraint x

=1/2 (x=1/2 represents the close packed limit), and then

the pressure is obtained as BPv = 7*d¢/ dn, with the result

(B3)

n

—_—, B4
1- 4xé7]/ Tep ( )

Bpv =

Nep="7/ \/E being the value of 7 at close packing, and x the
solution to the equation

i%(cos_l x— %T) +x(V/§x— V1=-2%)=0.

4mx (B5)
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