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We use an extension of fundamental measure theory to lattice hard-core fluids to study the phase
diagram of two different systems. First, two-dimensional parallel hard squares with edge-length
o=2 in a simple square lattice. This system is equivalent to the lattice gas with first and second
neighbor exclusion in the same lattice, and has the peculiarity that its close packing is degenerated
(the system orders in sliding columng\ comparison with other theories is discussed. Second, a
three-dimensional binary mixture of parallel hard cubes with=6 and og=2. Previous
simulations of this model only focused on fluid phases. Thanks to the simplicity introduced by the
discrete nature of the lattice we have been able to map out the complete phase diagtam
uniform and nonuniform phasgthrough a free minimization of the free energy functional, so the
structure of the ordered phases is obtained as a result. A zoo of entropy-driven phase transitions is
found: one-, two- and three-dimensional positional ordering, as well as fluid-ordered phase and
solid-solid demixings. ©2003 American Institute of Physic§DOI: 10.1063/1.161551]1

I. INTRODUCTION interacting ideally between members of the same species
(ocan=0gg=0) and with a hard-core interaction between
Hard-core systems are the paradigm of entropy-drivenpjike particles ¢ 5= ). They rigorously showed that the
phase transitions. The first example of an entropy-driveny stem demixes into two fluid phases with different compo-
(orientational ordering transition is given in the famous On- gjtions This can be easily understood if we notice that the

sager’s papéron the isotropic-nematic transition in a three-  Jiaple volume is more effectively filled by pure phases
dimensional system of thin hard rods. But prabably, the be an by the mixture. Another interesting example of this kind

known and discussed example of entropy-drivehree- is found in colloid-polymer mixtures. Experimentally, it is

dimensional positionalordering transition is the freezing of well known that the addition of nonadsorbing polymers to a

hard spheres. This was first devised by Kirkwasidal? us- . L . .
ing an approximate theory, but the definite evidence abou?t?"mdal suspension induces an effective attraction between
' é e colloidal particles that can induce the flocculation of the

the existence of such a purely entropic transition was th _ . . . .
purely P colloid. A simple explanation for this effect is that the clus-

numerical simulations of Alder and Wainwrighgnd Wood )  colloids(l icles] f |
and JacobsofhAs very few models can be solved exactly, tﬁ”ng? colloids( T‘Irge palrtlc e}sheaves n:ore ree volume tof
definite conclusions on the existence of phase transitions ofhe po ymerssmall particle, what translates into a gain o

ten come from numerical simulations. But in many case$€"troPy. This mechanism is known atepletion Many

these are very demanding and powerful computers argwodel§‘11 have been successfully introduced in order to il-
needed in order to reach a reliable system size. This faclstrate how this effect can induce a fluid-fluid phase sepa-

together with the inexistence of appropriate theoretical apt@tion in mixtures.
proaches, could explain that until the end of the eighties SpPecial mention merits the case of the additive binary
there were no more instances of entropy-driven orderingﬂiXture of hard spheres. The absence of a spinodal instability
transitions. At that time, a series of numerical simulatiohs 1N the Percus-Yevick solution for this syst&nted us to be-
showed that hard-core interaction can also induce one- anlifve that entropic demixing was not possible for additive
two-dimensional positional orderingmectic and columnar Mixtures. But aimost 30 years later, Biben and Harspre-
phases, respectively, in liquid crystal terminolpghis was ~ dicted such a spinodal by using a more accurate integral
a very striking fact, because it was generally believed thaequation theory. Since this result, many theoreti¢al?
the mechanism underlying these phase transitions was tigmulatiorf’=>* and experiment&t—2® results appeared sup-
decrease of internal energy rather than the gain of entropy.porting the existence of demixing in additive binary mixtures
Apart from ordering transitions, it is well known that of hard spheres when the diameter ratio is at least 5:1. Al-
binary nonadditive mixtures can demix by a pure entropicmost at the same time, it was pointed out that instead of a
effect. An extreme case of nonadditivity was studied by Wi-fluid-fluid demixing at least one of the separated phases
dom and Rowlinschin a model with two different species might be ordered®-1%?1-2426-29he actual scenario for this
system is a metastable fluid-fluid demixfigreempted by a
aE|ectronic mail: llafuent@math.uc3m.es fluid-solid coexistence dfif the mixture is sufficiently asym-
PElectronic mail: cuesta@math.uc3m.es metric) a solid-solid one. Qualitatively, this is the same situ-
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ation one finds in a binary additive mixture of parallel hard spinodal only for size ratios above 10:1, and it is always
cubes?®-31 preempted by freezing of the large componewtith the aim

From a theoretical point of view one of the first exactly of explaining this mismatch, we extended the fundamental
solvable hard-core models showing a fluid-solid transitionmeasure functional for parallel hard cubes to the lattice
was a lattice model proposed by Temperéwany other version?? With this theory we have shown in a previous
lattice hard-core models were studied in the sixties by adapwork® that the latter is the correct picturgh more detailed
ing the approximate theories developed for Ising-like modelsiccount of this work will be given hepeFFurthermore, due to
to hard body system$:** They succeeded in the prediction the discrete nature of the system it is possible to give a com-
of an order-disorder transition and mainly focused on studyplete description of the ordered phagsse below. Thus, we
ing the dependence of the nature of the transition upon thehow that lattice models, treated in a suitable manner, can
range of the hard-core and the topology of the underlyingserve as a starting point to study the structure of ordered
lattice. phases in(continuum mixtures.

For the continuum model of hard spheres, one of the There is a second benefit of this extension of FMT to
most successful theories to study the freezing has been del@ttices that we want to emphasize. These simulations, to-
sity functional theory(DFT). Many accurate functionals gether with an exactly solvable model proposed by Wittbm
have been devised for the monocomponent fffiiout when  and Frenkel and Lout§in different contexts, show that lat-
they are applied to the binary mixture some problems ariseticeé models can give accurate descriptions of demixing phe-
(i) many of the theories employed are not directly formulatedhiomena. But in spite of their historical role in the develop-
for mixtures and the extension is far from being straightfor-ment of Statistical Mechanics and their simplicity, with a few
ward: (ii) it is very difficult to study the solid phases becauseexceptions;'~*® density functional theories have only fo-
it is not trivial to determine which is the most stable structurecused on continuum models. We believe that the formulation
for the mixture, and this information is an input in most of classical density functional approaches for lattice models

approache® These difficulties have been circumvented byWill help to better understand both, the phase behavior of
mapping the binary hard-core mixture into a monocompocomplex fluids and the formal structure of the approximate
nent fluid (large particles alonewith a hard-core and an functionals.

effective short-range attractive potential. It is then possible to ~ The paper is organized as follows. A review of the lattice
use perturbation theory in order to study the phase diagfam.version of FMT is presented in Sec. Il. In Sec. lll, we use
On the other hand, the solid phase is usually assumed to BBis theory to obtain the complete phase diagram of two sys-
an fcc crystal of the large particles with the small particlestéms. First, a two-dimensional system of parallel hard
uniformly distributed. Although this approach has been ex-Squares with edge-lengtih=2 on a square latticéthis is
tensively used“?*37-3%t is only valid for low molar frac- equivalent to the two-dimensional lattice gas with first and
tions of the small particles. Besides, even in this case, th§econd neighbor exclusipnThis system has been widely
assumption that the density of small particles is uniform inStudied in the literaturésee Refs. 34 and 33 and references
the ordered phase is rather unrealistic because the ordering G¥erein and there exists a big controversy about its phase
large particles induces structure in the distribution of theP€havior so far unsettled. A detailed analysis is performed by
small ones. To the best of our knowledge, this problem ha&PPlying the new theory, and a comparison with results from
not been addressed satisfactorily yet. other theories is discussed. The lattice fundamental measure

A direct study (without resorting to an effective one- theory(LFMT) appears to be gt the same level of accuracy of
component fluilhas been carried out for a binary mixture of the other well accepted theories. Second, we have addressed

parallel hard cubes with Rosenfeld's fundamental measurf1® Problem of the binary additive mixture studied by simu-
theory?®~31 (FMT). This theory has the advantage of being lations, i.e., a plnary mlx'ture Qf parallel hard Ct{beq'(.:Z,.
naturally formulated for mixtures. A complete analysis of ?s=6) on a simple cubic lattice. Due to the simplification
fluid-fluid demixing has been performed for arbitrary sizeNtroduced by the lattice, the complete phase diagram has
ratios, but again, the lack of intuition about the distribution?€n mapped out. It shows a very rich collection of entropic

of small particles in the crystal makes impossible to studyPNase transitions. As a matter of fact, we have found one-,

freezing in this system. To solve this problem one shouldWo- and three-dimensional ordering transitions, as well as

perform a free minimization of the free energy functional fluid-ordered phase and solid-solid demixings. A free mini-

and obtain the structure of the ordered phases as an outpl']?.'zat'on of the free energy functional has been perform(_ad,
But due to the continuum nature of the system this woulds© the structure of the ordered phases has also been obtained.
require a huge amount of numerical work Finally, conclusions are discussed in Sec. IV. Notice that

The situation is more favorable for the lattice counterpartRefS' 42 and 43, contain a preliminary account of the work
of this model. Indeed, simulations of a binary mixture of presented here in full detail.
parallel hard cubeg:2) on a simple cubic lattice were per-
formed by Dijkstra, Frenkel, and Hans&t'! but their focus
was whether entropic demixing could be observed in addi- The construction of the lattice fundamental measure
tive binary mixtures and the structure of the inhomogeneoufunctional is based on the ideas of the exact zero-
phases was not considered. The results of these simulatiodimensional reductidi“®and in the exact form of the one-
(a stable fluid-fluid demixingare in contradiction with the dimensional functional. A full account of the details of the
predictions of the continuum systefit exhibits a fluid-fluid  procedure can be found in Ref. 42. In that work, the general

Il. THEORY
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form of the functional for a system of parallel hard cubes inBecause of the structure of the direct correlation function it is
a simple cubic latticefor any dimension, particle size or convenient to work with its discrete Fourier transform, which
number of componenkss presented. Basically, the idea be- takes the form

hind it is to construct a family of functionals for arbitrary (—1)d-k
dimension in such a way that they consistently satisfy the C,,(q)=— ) ?W&k)(—q)\fv(yk)(q), (7)
dimensional reduction property of the exact functionals ke{0.3} k

down to zero-dimensional caviti€ge., cavities which can where
host no more than one partigleMoreover, the prescription

chosen is inspired in the exact functional for the one- g sing| a +k|;1)

dimensional system, which is recovered with the scheme ) _H g2k “ 2 g

proposed. Wal@=11e sinqy/2 ®
Let us consider a@-dimensional additive mixture of par-

allel hypercubes with edge-lengthg = 2a,+ e lattice spac- The general expression of the functiofal adopts very

ings, wherea is the species index ane=0,1 does not de- Simple forms when particularized to specific systems. In or-
pend ona, i_e_, all the Species have7 Simu|taneou5|y, even Oder to make clear the structure of the fUnCtional, we will
odd sizes (the mixed—nonadditive—case is more introduce a diagrammatic notation which helpS VisualiZiﬂg
involved?? so we just ignored it because it will not be used its dimensional reduction properties in a simple way. For the
anywhere in this work In Ref. 42 the excess free energy sake of simplicity let us consider the lattice gas with first and

functional for this system in this approximation was found tosecond neighbor exclusion in a two-dimensional square lat-
be [cf. Eq. (3.2) of that referenck tice. This is a system of parallel hard squares with 2

lattice spacings. In diagrammatic notation the excess free
energy functionall) can be written

BFolpl= 2 2 (=) o(n®(9)), 1)
s kelod BFulp]= 2 [®o(£3)— Do) —Po(])
where k=39 .k, ®o(7)=75+(1—7)In(1—7) is the ex- se?”
cess free energy for a zero-dimensional cavity with mean +®dy(0)], 9

occupancy & =<1, B the reciprocal temperature in Boltz-
mann’s units anch¥)(s) are weighted densities defined by

the convolutions where the diagrams represent the weighted densRjeas

— (LD —
nWig=> > W&k)(s—r)pa(r), ) LZ=n"D(s)=p(s1,82) +p(s1+ 1,s5) +p(s;,5,+1)
@ rezd +p(s;+1,8,+1),
p.(S) being the one-particle distribution function for species
a and oo=n0(s)=p(s1,8,) +p(s;+1,s,),
d
K
wi(9=11 wi(s), (3 F=n(s)=p(s1,52)+p(s1,52+1),
wh(s)= 1 if-a,~k—-e<s<a,, @ o=n09(s)=p(s,,s,). (10)
“ 0 otherwise.
Notice that as weights are indexed by {0,1}¢, there are 8 What becomes apparent with this diagrammatic notation
different weighted densities. is that the excess functionél) can be regarded as a linear
The direct correlation function between speaieand y combination of contributions due to a particular set of zero-
can be obtained from this functional as dimensional cavitieg10). Furthermore, we can manipulate

the diagrams in order to prove the dimensional reduction
properties that the function&9) satisfies. To illustrate this,
we will consider the dimensional reduction to a one-
dimensional system, the hard rod lattice gas, whose exact
Then, from Eq(1), excess functional is known to have the fofh).*? To per-
form this reduction, we will apply an infinite external poten-
(—1)9k ®) tial in every site of the lattice except in an infinite linear
1-n, $ar® ®) " chain defined byL={(s,,0):s,€ 7). This implies that the
centers of mass of the particles can only occupy the sites in
where nk:Eaa‘;(oa—l)d‘kpa are the weighted densities £, the system becoming equivalent to a hard rod lattice gas

B 0"2,8-7:ex[l3]
Ipa(S)dp,(r)

Cuy(S—T)= .
uniform

Cay(s) == 2

ke{o,1d

(2) in the uniform limit ande{)(s) is the convolution with particles of sizeo=2. In terms ofp(s) this means that
p(s)=p(s1) bs,0, Where; ; is the Kronecker symbol and
gp(ak}),(s)z > wff)(r)w(yk)(rJrs). (6)  p(s) is the one-particle distribution function for the one-

rezd dimensional system. Within this constraint, the excess free-
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energy functional of the effective system can be obtained by The advantage of our approach over other theories is that

summing overs,e 7 in Eq. (9). Each contribution gives,
respectively,

EZ Do(£3)=2P(00),

Sy €4

EZ Dy(00)=Dy(co),

SzE'

EZ Do(3)=2d(0),

Sy €4

2, @) =P(o),
sreZ
where the diagrams in the r.h.s. must now be interpreted as
oo =p(s)+p(s+1) and o = p(s). Therefore, the excess
free-energy functional for the one-dimensional system so ob-
tained is

BFLOpl= 2 [@oloo)—Dy(0)],

s1eZ

(11)

which coincides with the exact resukee Egs(2.26) and
(3.1) of Ref. 42.

it provides a simple prescription to build a density functional
in closed form. Then, all the powerful tools of density func-
tional theory may be applied. The excess functional for this
system within the present theory is that of E§).

In order to pin down the phase diagram of the system we
will proceed systematically: first, studying the uniform
phases, and second, considering spatial inhomogeneities. For
a uniform density profile p(s)=p, the weighted densities
(10) become {L=4p, oo=§=2p and o = p, where 0<p
= 1/4. The excess free energy density (in kzT units) can be
calculated particularizing Eq. (9), which yields

Deu(p)=Do(4p) —2Po(2p) + Po(p). (13

Adding up the ideal gas contributiody=p(In p—1), and
taking into account the definition ab,, we obtain the fol-
lowing free energy density for the fluid

Dua(p)=pInp+(1—p)in(1-p)+(1—4p)in(1—4p)
—2(1-2p)In(1—2p). (14

From this, all the thermodynamic properties of the fluid
phase can be derived. For instance, the fugacity is given by

p(1-2p)*

Another example in three-dimensions is given in the Ap-54 the pressure takes the simple form

pendix.

Ill. APPLICATIONS

Zf|uid:(l_p)(1_4p)4’ (15)
(1-2p)?
BPswia=1In A=p)(i-2p)|" (16)

The structure of the equilibrium phase can be analyzed

In spite of the simple structure of the lattice fundamentalpy means of the direct correlation function, obtained from
measure functionals, the applications to specific systemgq. (5) particularizing ford=2 and a single component with

have proven able to describe very complex phase diagtms.;=2. In a symmetry broken continuous phase transition, for
In this section we will study in detail two particular systems: someq+ 0

first, the lattice gas with exclusion to first and second neigh-

bors on a square lattice; second, a binary mixture of parallel

hard cubes withr=2 and 6, in a simple cubic lattice.
A. Parallel hard squares
This model is defined by the interaction pair potential
o if |s—s{|<1 for bothi=1,2,

12
0 otherwise. (12

¢(ss')=

It has been previously studied employing other approximate

theories, such as finite-size scaling meth&tf®, series
expansiond >3 and clusters method&:>! All authors agree
in that the close-packed state is a columnar pHasdered
along one dimension but fluid along the othéthis notwith-

1-pE(a)=0, (17)

this condition being equivalent to the divergence of the struc-

ture factor. Since we are interested in the spatial instabilities
of the uniform phase, we have to look for the lowest value of

p which makes the conditiofl7) solvable for somej. Tak-

ing into account that the symmetry of the system enables us
to takeq=(q,0), Eq.(17) becomes

4
-2 P
_ 1-2p 1-p
cog(q/2)=— 7} 1 (18
T2, 12

Since the denominator is positive in the whole rangep,of

standing, the nature of the transition remains doubtful, thend so is the numerator for small values of the density, the

results being highly dependent on the theory u¥ad/hile

solution corresponds to the vanishing of the latter. This oc-

some authors conclude that the system exhibits a third ordeurs at the density

transition very near close packiig®->%others obtain a sec-

ond order transition at a lower densify?***and even some

5
pcritz—\/— %01910,

7 (19

of them have speculated about the lack of such a phase
change®51%* The results obtained with the present theoryand, of courseq=, implying the periodicity of the inho-
are in accordance with those of the second order phase tramogeneous phase to de=27/q=2 lattice spacings.

sition. Unfortunately, we have no concluding arguments to

umpire this dispute.

What remains to be determined is the symmetry of the
nonuniform phase at the transition point. Based on the pre-
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(a) (b) 0.5_ " T T
p
04 ; .
O
P2
0.3F B
P1 P2 a
P 0.2F Fluid e 4
FIG. 1. The unit cell for a columnar phase with periodicity equal to two 0.1+ -
lattice spacings is shown i@), and for a solid phase with the same period- | pz‘\\
icity in (b).
0 L 1 | Pl SR
0.6 0.8 1

vious results for this system and on those recently obtainellG. 2. Sublattice densities for the columnar phase. It also shows the meta-
for parallel hard cubes in the continudfwe guess that this  St0le fluid beyond the transition point.
phase must be either a columnar or a sétiddering along
the two coordinate axgsln order to determine which phase
is the stable one, we have performed a global minimization

i ' s R 1 1-2 —perit) (3= 2p—2pgi
of the functional(9) within the constraints imposed by the pSi=p+ = \/( PIP~ Pei) (37 2P~ 2peri)
symmetry and periodicity of both the columnar and the solid 2 p
phases. For a generic columnar phase with periodicity equlye have chosep® pS%=2p— pS9. This phase has a lower
to two lattice spacings, the one-particle distribution functionfree energy than the fluid phase for e, but we still have

(24)

takes the form to calculate free energy for the solid branch in order to know
py if s, is even, which one is the stable phase above the transition point.
Peol(S) = (20 For the solid phase, substituting EQ1) in Eq. (9) and

p2 otherwise, adding the ideal contribution, the total free energy density

while for a solid phase with the same periodicity we have turns out to be
p1 if s, and s, are even, Pso p1:p3:P)=Pid(p1.20=p+ ,p3) + Po(4p)
psof9)=1 p2 if s; or s, is odd, (21 —Do(2p+p_)—Do(2p—p_)

ps oOtherwise. L dy(py)+2Po(2 )+ @o(p3)]
. . o + 2 p)+ p—p+)t P31
A sketch of the unit cell for each case is shown in Fig. 1. e ’ ' o

Note that the uniform phase is included in both E@€) and (25
(21). ~where we have usedp4=p;+2p,+ p3 to eliminate the de-
For the columnar phase the total free energy dens‘%endence om,, and have define@. = (p;* ps)/2. As in
takes the form the previous case, the equilibrium density profile is the glo-
D ool(p1:p)=DPig(p1.2p— p1) + Po(4p) — Do(2p) _bal minimum of I_Eq.(25) at constanp, but now we have two
independent variablep, andp;. Thus, the Euler-Lagrange
— HDo(2p)+Do(4p—2p1)— Po(pq) equations are now the system of algebraic equations
—®o(2p—py)], (22) p1(1—2p—p )3 (1-2p+p,)
27+
where we have substituted the density profé6) in Eq. (9), (1-p1)(2p=p4)(1=2p+p_)

used the relation 2= p,+ p,, and introduced the ideal term (26)

p3(1=2p+p_)*(1-2p+p,)
Dig(p1.p2) =3Zipi(Inp—1). (13_ Y 2p—p)(1—2p— +)2: :
We can now minimize the total free energy density at p3tep—pP+ p=pP-

constanip. Note that in this case we have to minimize with The fluid phase, given by$%=pS%=p, is the solution forp

respect to a single variable. The Euler-Lagrange equation is\<pcm_ The solution forp= p.,; must be obtained numeri-

p1(1—2p1)*(1—2p+py) cally and is plotted in Fig. 3. In Fig. 4 we can see that the
Zp—p(1—4p+2p) 21— py) =1 (23)  solid b_ranch bifurcates with a free energy lower than that of

p—P1 pTep1 . the fluid phase, but larger than that of the columnar phase.

One solution corresponds to the uniform phas§€p). It The transition is then fluid-columnar.

can be easily checked that this is indeed the minimum of the It is feasible to study analytically the behavior of each

free energy foro<pi, as expected. After removing this branch at the transition point. This would give a definite

solution from EQq.(23), we obtain a quadratic polynomial conclusion about the nature of the phase change. It is

whose roots become physical fee p.,;;. Above the critical  straightforward to check the continuity dfb/dp at p.;; (for

density the uniform phase is no longer a minimum; insteadboth the solid and the columnar branchdzit a discontinu-

we have a columnar phase given (sge Fig. 2 ity is found in the second derivative at;;, so the transition
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— T 2
0.8 p, -
0.6 —
a 1 a4
0.4 -
0.2F [ .
86 07 = 0 I
’ ) 0.4 0.6 0.8 1
n
FIG. 3. Sublattice densities for the solid phase. It is also shown the metar|G, 5. Equation of state of the hard square fluid from lattice fundamental
stable fluid beyond the transition point. measure theorysolid ling) and from the cluster method of Rushbrooke and
Scoins(dashed ling
is second order. Furthermore, the stable phase beyond the
transition point is the one with lowest second derivative for 11+ 545
p— Poit- From the values BPei=IN2,  Zei=—7%—. (30)

”n + N ~
Plia(par) =2(15+75)~61.3, As mentioned at the beginning of this section, the results

O (pa=2(5+2 J5)~18.9, (27)  from this lattice fundamental measure theory are compatible
with the ones obtained by Bellemans and Nigartpgi
DLy pa) =4(5+/5)~28.9, ~0.202, BPir=0.788 andzi~17.29) through the cluster

ethod of Rushbrooke and Scoifgplotted with a dashed
ine in Fig. 5. From Fig. 5 we can see that the agreement at
bqw and high densities is very accurate, and deviations occur
only near the critical point. This can be understood if we
r{§'alize that both theories neglect correlations beyond a cer-
tain distance between the particles, so a very accurate de-
scription of the critical properties should not be expected.
This notwithstanding, as remarked by Runrélsiue to the
1 [(1-2p)%(1—-2pIH(1—4p+2p5Y degeneracy of the close-packed configuration, this system is
ﬁpcoFE'n (1—4p)2(1—pSH(1—2p+pSY difficult to study with finite-size or series expansions meth-
_ o ods, and a closed-form approximation could be superior at
The fugacity of the columnar phase is given by describing the correct phase behavior.

p5Y1—2p)4(1—2p59)?
(1-4p)*(1—pTH
At the critical point, we have

we conclude that indeed the system undergoes a second
der transition from a fluid phase to a columnar onge&t.
Besides, as it can be inferred from the density dependence
the free energy density for every bran@fig. 4), the colum-
nar phase remains the most stable phase up to close packi
We can now plot the equation of stateig. 5), with the
fluid branch given by Eq(16) and the columnar one by

. (28

(29

Zeol=
B. Multicomponent system of parallel hard cubes

Let us now consider a multicomponent hard cube lattice
gas in a simple cubic lattice. If we denots,,...,0, the
edge-lengths of the different species, then the interaction po-
tential between species and y, will be given by

- AR w ifmax|si—s/|< (o, +0,),
-0.1F jya bay(58)= =123 (31)
C 7 0 otherwise.

The lattice fundamental measure approximation for the free

-0.21 . energy functional of this system has already been reported in
Ref. 42[Egs.(3.2) and(3.3) of that referenck together with
the phase diagram for the particular case of a binary mixture
o3 L with oy =6 andos=2, but no details about the calculation
0.6 0.7 0.8 0.9 1 were given. In this subsection we will study the phase be-

n havior of the general uniform mixture and obtain the com-

FIG. 4. Free energy density of the flujdotted ling, columnar(solid line) plete bulk phase diagram., including _bOth Unifprm and or-
and solid(dashed ling phases. dered phases, for the particular case just mentioned.
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In the uniform regime, the one-particle distribution func- 1
tion no longer depends on the spatial variabjed:s)=p,,
a=1,...p. In this case, the free energy density has the

. 0.75
simple fornf?

p

P(py,--pp)= 2, Pallnpa=1)+Po(ng) = Po(ny) =08 ]
a= -
+®p(ny) —Dy(ng) (32 0.25 -
[with the densities, defined below Eq(5)]. i ]
As it is well known, the stability of the mixture is deter- ob e 1 1 . 1 . 1
. . 0 0.2 0.4 0.6 0.8 1
mined by the matrix x
9*P FIG. 6. Spinodal curves for a uniform binary mixture with the smallest
May:—' (33 component of sizeocg=2 and different values of the size ratig,
IPadpy =0 los.

In order for the system to be stable in a mixed state this
matrix must be positive definite. As this requirement is ful-
filled in the low density limit, the spinodal curve can be minimization of the functional becomes a numerically very
determined through the equation 8t 0. When the excess demanding task. Usually this minimization is performed by
free energy density of the system depends on the densitiggstricting the density profiles into a parametric class, and

only via the finite set of momentsglzzag'apa (I then minimizing with respect to one or a few parameters.
=0,...m), the spinodal can be expressed in the equivalentfhe problem for the mixture is that it is very difficult to
but more suitable forif detQ=0, where guess the appropriate class. In contrast, the situation in the
m X lattice is easier to handle because it is feasible to perform a
Doy free minimization with the only constraints imposed by the

Qij=9j +k20 Girk @i Pij symmetry of the ordered phase and its periodicity. As it was

B 9§90
shown in the analysis of the two-dimensional system, the

TEis &)S Just ogbr case, pecause thg exce;ss freehengrgy_Qensggriodicity of the ordered phase can be estimated from the
[the @, contributions in Eq(32)] depends on the densities divergence of the structure factor, in the case of a mixture the

through Fhe se{nj, and this variables can easily be ex- latter being a matrix. The analog to the conditi@n) for the
pressed in terms of the set of momef¥s,... &5} Thusthe . o ic

equation for the spinodal of our system reads

,l_" —
(14 2£5)2— (£1+ 36,) (14 269)— 3(£2— £1)(1+ £4) de(P™"~C(@)=0, (36

where P=(8,,p,), a diagonal matrix, and C(q)

+ —&))=0. - . . . .
€258, ¢)=0 (35 =(€4,(0)) is the matrix of Fourier transforms of the direct
For a binary mixture with the small component having correlation functions between all species.
os=2, it can be shown that the smallest size ratio, In the remaining of this subsection we will restrict our-

=0 log, necessary to have a spinodal instability is13.  selves to the particular case of the binary mixture with

This value is in strong disagreement with previous simula=2 and o =6, the only case for which simulations are
tion results’®** which reported a demixing phase transition available’®*! The main result of these simulations is that the
for r =3. An explanation of this mismatch has already beermixture undergoes an entropy-driven fluid-fluid demixing,

provided in Ref. 43 and will become clear later on. thus being the only known example of an athermal additive
Some spinodals for different size ratios are shown in Figmodel showing this feature.
6. It should be noticed that the continuum counterast The strategy we have adopted in order to obtain the com-

recovered in the limirs— o0, while keepingr constant. For plete phase diagram for the mixture has been the following:
that system, it was shown that the minimum valuerdab (i) First, we have calculated the phase diagram for the pure
find demixing isr =5+ /24~9.98. Therefore, we can con- component systems, both for the small and large particles;
clude that the lattice enhances the stability of the mixture(ii) then, we have obtained the curves marking spatial insta-
What this analogy with the continuum system suggests idilities for the whole mixture through the divergence of the
that we should expect fluid-fluid demixing to be preemptedstructure factor matrix, and have calculated the periodicity of
by the freezing of one of the coexisting phases also in thé¢he ordered phases arising at the bifurcation points;(and
lattice model. It must be remarked that, unlike in the con-finally, we have completed the phase diagram by calculating
tinuum case, in the lattice system the stability condition in-all the possible phase transitions compatible with the results
volves not only the size ratio, but also the edge-length of on@btained in the two previous steps, choosing those thermo-
of the components, thus making the analysis of the stabilitynamically more stable.
more complex. For the pure component systems, we will proceed as in
The discrete nature of this system provides a very suitthe two-dimensional case. For=2, the fundamental mea-
able framework to study ordering transitions. In the con-sure excess free energy functiortd) is given in diagram-
tinuum, only a partial analysis have been déhbecause the matic notation in Eq.A1). For a general one-component
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FIG. 7. Equation of statéressure vs packing fractipfor a c=2 parallel

hard cube lattice gas on a simple cubic lattice. The different symmetries arEIG('j 8. tIJEq:Jat?on of staté;)re;surle VS-bPaICki_ng ffaﬁtibdfpﬁr ao=6 parallel
denoted byF, Sm andC, meaning fluid, smectic and columnar, respec- Nard cube lattice gas on a simple cubic lattice. The different symmetries are

tively. The periodicity has been indicated by a subindex. The inset shows §€noted byF, Sm,C andS, meaning fluid, smectic, columnar and solid,
very narrow first order transition from a smectic to a columnar phase.  '€SPectively. The periodicity has been indicated by a subindex.

system with edge-length, the functional form is obtained mignt be possible. In contrast, there also exists very well
particularizing Eq(1), but the structure is the same as that of 4efined transitions which offer higher confidence, such as the
Eq. (A1). . . _ ~ C,—Cgq first order transition fc_=0.656 andzyc_ =0.827)

As it was mentioned in the previous subsection, in & .. _ ¢ system ! °
symmetry broken continuous phase transition condition Let us now consider the binary mixture with =6 and

is satisfied. Forr=2 it yields os=2. From the discussion about the uniform multicompo-
Nerit= 0 periv=0.568, (37)  nent system we can conclude that, for a size na#@ and a
small particle edge-lengthrs=2, there is no fluid-fluid de-
mixing (not even metastable Then, we have to look for
spatial instabilities. To this purpose we must study condition
Nerit= 0 Perit=0.402, (38)  (36). The direct correlation function is now ax2 matrix

and periodd=7. Notice that at close packing this system hasWhose elements are given by H§). If we characterize the

periodd=6, so we must consider both. With respect to thethErmofynamlﬁs of our_sysstem by t_hethtotal plicklr;g frtactlon
symmetry of the phases, we have considered the smecti@,~ 7L 77s: WNEIE€n, 5= 0y (5pL(s) IS € packing fraction

columnar and solid one®rdering along one, two and three of the large (smal) cubes, and by the composition
coordinate axes, respectivgly = 7./ 7, then, for every value of, we have to look for the

Now it is possible to perform a free minimization of the smallest value of; which makes the conditio(86) solvable.

functional with the above restrictions. In this case we have tJhe solution is plotted in Fig. 11Fig. 12 shows the same

proceed numerically, because the complexity of the problen‘?hase diagram witly replaced by the pressurdt should be

does not permit an analytical treatment. This notwithstand-rehm";‘rkedt mat ﬂfo_r(‘j &xs%?lzdf;tge phe_lr 'OS oghigrggged
ing, the structural form of the functional simplifies the nu- phases at the fluid spinoda » while for I=x=0.

merical work: the weighted densities are just convolutions® ha_ve fogndj=_7. .
With this guidance we can start looking for the true

which can be computed by using fast Fourier transform. To

give an idea about the degree of complexity of the problenfhase diagram. This is a very demanding numerical task, but
we will say that the simplest phase to minimize is the easible in a reasonable amount of time. For each coexistence

period-2 smectic, which involves minimization on two vari- curv.?t;r?volvmg, i‘_”‘y' phasé®, andP,, we have to solve the
ables, and the most complex one is the period-7 solid, whicffquitonum equations

with g= 7 indicating a periodicityd=27/q=2, while for
o=6 we find the value

involves minimization on twenty variables. Bp(7p,.:Xp,)=BP(7p,:Xp,),
The phase diagrams of both systerns;2 ando=6,
are shown in Figs. 7 and 8, respectively. Also, the free en-  ZL.(7pXp,) =ZL(7p, Xp,), (39

ergy density near the critical point appears in Figs. 9 and 10, B
respectively. From these figures, we can see that there exists zs( 7, Xp,) = Zs( 7P, Xp,).

a strong competition between the different phases. This regyery jteration of the procedure requires the minimization of
flects in the very narrow first order transitions observed inpq functional, at constany andx, for both phases. In the
the phase diagrams, such as the ;S@;, coexistence gimplest case this corresponds to a minimization problem
(77sm,=0.673 andc,=0.677) in theo=2 system, and the  ith four variables, but in the most complicated case we
$;—C7 (9s,=0.617 andyc,=0.631) foro=6. Since our have to deal with a forty variable minimization. Another
treatment is approximate, these phase transitions could actproblem we find is that the subtle differences between the
ally be spurious: given the small differences between the freéee energy of different phases, already encountered in the
energy densities of the phases involved, other scenariamonocomponent systems, make it very hard to discern which
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FIG. 9. Free energy density of the fluidotted ling, smectic(dashed ling X
columnar(solid line) and solid(dotted-dashed linghases, for the system of FIG. 11. Phase diagram of the binary mixture of parallel hard ciies
hard cubes withr=2 in a simple cubic lattice. ratio 6:2, = n_+ g being the total packing fraction of the large)(and

small (S) cubes, andk= 7 /7. The phases are labeldd (fluid), Sm,
(smectig, C, (columnay, and S, (solid), where «=2,6,7 stands for the

. . . periodicity of the ordered phases. The dashed lines join coexisting states.
one is the most stable phase. So, in many cases it is not Cleﬁﬁe dotted line corresponds to the spinodal of the uniform fluid. For 0.81

which coexistence is thermodynamically more stable. Insx it marks a stable continuous—S, phase transition. The circles are
these doubtful cases, we have resorted to the Gibbs free egpexisting states taken from the simulation results in Ref. 40 and 41. Finally,
ergy per particleg(p,X)=Xu,+(1—X)us, Whereu, s is ::r}gsti\;s_igrespond to the states whose density profiles are represented in
the chemical potential of each species afep /p=x/(r
+(1—-r)Xx) is the molar fraction. Wheg(p,X) is plotted at
constant pressure as a functionXfthe coexisting phases in  a fluid, while they should exhibit columnar ordering. Another
the mixture can be found through a double tangent construgnteresting result is that, at approximateBp~0.24, there
tion. appear a solid-solid phase separation between a small-
The complete phase diagram appears in Figs. 11 and JZarticle-rich and a large-particle-rich phases. Finally, it is
in two different representations. In Fig. 12, it can be ob-worth mentioning the existence of an extremely narrow
served(see the insejghat there exist very small parts on the chimney of S;—Cg coexistence. This suggests that the co-
phase diagram with a plethora of very narrow coexistenceumnar phase is very sensitive to small perturbations.
regions. As in the monocomponent case, many of them could  As concerns the density profile in the ordered phases, we
just be spurious. One of the most remarkable features is thifave chosen a few representative states of the system
there exists a wide phase separation between a smalimarked with stars in Fig. 21in order to illustrate the way
particle-rich fluid phase and a large-particle-rich columnanarge and small particles distribute in each phase. In Fig. 13
phasewhich becomes a solid phase for higher pressufes  we show the density profiles for a period-7 solid phase for
explained in the Introduction, this is the usual scenario fordifferent sections perpendicular to the directsn This size
this kind of mixtures. The revision of the simulatiof@so is one lattice spacing bigger than the size of the large par-
shown in Fig. 1] resulting from this phase behavior has ticles. We can conclude from the figure that the large par-
already been discussed in detail in Ref. 43. The main conseicles are arranged in such a way that the small ones can be
quence of this comparison is that some of the state pointsccommodated between any two of them. So, we could say
obtained in the simulations must have been misinterpreted agat the large particles in the unit cell are surrounded by the

-0.004

£ -0.008

-0.012 : : : :
0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 1 098 x 1

FIG. 10. Free energy density of the fluidotted ling, smectic(double

dotted-dashed line columnar (dotted-dashed line and solid (double FIG. 12. Phase diagrafneduced pressurggP, versus compositiorx) of
dashed-dotted linephases with periodicitg=7 and smecti¢long-dashed the same system refers in Fig. {the labels used are the same as in that
line), columnar(solid line) and solid(dashed ling phases with periodicity ~ figure). Now coexisting tie lines are horizontal. The dotted line is the same
d=6, for the same system of the previous figure but véith 6. as in the previous figure. Insets show some details of the phase diagram.
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FIG. 13. Density profiles for a solid phase with periodicity-7, corre- ~ FIG. 14. Density profiles for a solid phase with periodictty-6, corre-
sponding to=0.56, x=0.97 andBp=0.02. Different planar sections at SPOnding to7=0.989,x=0.973 and3p=0.265. Different planar sections
s3=1,2,3,4(from top to bottom and from left to rightare plotted. ats3=1,2,3,4(from top to bottom and from left to rightare plotted.

small ones. Note that the density of the latter does nogshown a systematic way of using the theory in order to per-
change very much within the unit cell. In Fig. 14 the densityform a complete calculation of the bulk phase diagrams. In
profile for a period-6 solid is shown. It is very interesting to particular, for the first system a very detailed analysis have
see that its structure is completely different to the previoudeen carried out. All the relevant thermodynamic functions
one. Now, as the unit cell is of the same size of the largecan be analytically obtained within this approach, for both
particles, the small ones can only be placed at vacant unit
cells. Thus, the unit cell is completely filled with the small
particles, which, as can be appreciated in the figure, form a
crystal. Noticeably, the value of the small particle density is
slightly higher at the contact with the large particles, which
can be interpreted as an adsorption phenomenon. Figures 15
and 16 exhibit the profile of the period-6 column and smectic
phases, respectively. From the discussion of the period-6
solid profiles we have just made, the interpretation of these
two new density profiles should be straightforward.

IV. CONCLUSIONS

In this work we have applied the extension of FMT to
lattice model#’ to study two systems already treated in the
literature: the two-dimensional lattice gas with first and sec-
ond neighbor exclusion on a square lattice, and the binary

mixture of pa_rallel hard_ CUbe_S with edge-lengths=6 and i, 15. Density profiles for a columnar phase with periodicity6, cor-
os=2 on a simple cubic lattice. For both systems we haveesponding top=0.78, x=0.96 andgp=0.04.




10842  J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 L. Lafuente and J. A. Cuesta

uniform and columnar phases. The results compare well witlfield theory, and what is even more important, at the expense
others previously obtained by different authors using widelyof no much more work.
accepted theoretical approaches. It is remarkable that, in The study of lattice gases within the framework of den-
spite of the simplicity of the treatment, the results obtainedsity functional theory can be very fruitful, as we hope to
are rather accurate, specially in the low and high densitjhave been able to transmit in this work. On the one hand,
limits. there is not loss in phenomenology or complexity of behav-

On the other hand, a very complete study has been caiers; on the other hand, the approach is considerably simpler
ried out for the three-dimensional system. The rich phas@umerically, something that allows one to tackle problems
diagram obtained is very striking, considering the simplicitywhich have so far not been solved in continuum models.
of both the system and the theory. There appear many diffeBesides, from a purely formal point of view, lattice density
ent entropy-driven phase transitions: fluid-ordered phase ddunctionals reveal some structures which may be hidden in
mixing, one-, two- and three-dimensional ordering and solid-similar developments for continuum models. So, its careful
solid phase separation. The results obtained have alsanalysis may reveal important properties of the latter in the
allowed to reinterpret the simulations restfi8! in a way  near future. For these reasons we believe that it is very im-
consistent with the general picture emerged during the lagtortant to extend this kind of work to more general lattice
decade about demixing of additive hard-core binary mix-models. We plan to report on that shortly.
tures: fluid-fluid demixing is always preempted by the order-
ing of one of the phases.

We have performed a free minimization of the functional ACKNOWLEDGMENTS
and have thus obtained the structure of all the ordered ) ) )
phases. The results we get show that the density profile of the This quk IS supported by Pro;ecf[ N,O_' BFM2000-0004
small particles is far from being uniform. In general, whenTOmM the Direccio General de Investigagio(DGI) of the
dealing with three-dimensional models, a free minimizationSp"‘m's‘h Ministerio de Ciencia y Tecnolag!
is not feasible, so the density profile must be properly param-
etrized. Since there is very little intuition about the density

profiles of mixtures, the small components are always asngES;gNill_Angﬁyp'\ﬁéﬂc NOTATION: A THREE-
sumed to be uniformly distributed over the volume. Accord-

ing to our findings, this is definitely wrong. Perhaps our re- et us consider a system of parallel hard cubes in a

sults can help to gain insight into what a propersimple cubic lattice with edge-lengtiv=2. This system is

parametrization of the density profiles looks like. equivalent to the lattice gas on a simple cubic lattice with
We would also like to emphasize that the LEMT is afirst, second and third neighbor exclusion. The excess func-

mean-field-like theory, but not a trivial one. This can be Un'tionaL in diagrammatic notation, can be written as

derstood if we realize that the direct correlation functions

have finite range, which means that at some point the corre-  BFelp]= 23 [Do(FB)— Po(12) — Po(c%) — Po( %)

lations between particles are neglected. This fact is reflected se?

in the lower accuracy of the description around critical +Dp(F)+ Dploo) +Po( 2 ) —Po(o)],

points. However, away from these regions the results are far (A1)

more accurate than those obtained from a standard meaghere the diagrams represent the weighted densities

@=n(1’1’1)(s)=' .kEOl p(51+ia52+j’53+k)a
L,J,k=Y,

i=n(°'°'1)(5)= '201 p(s1 ,52,S3+i),
=0,

TE=nOLD(s)= D p(sy,5,+i,83+)),
f 1

<.
L

o-0=nO0(s)= 3 p(sy,8,+1,83),
i=0,

C&?):n(l’l’o)(s):. 201 p(si+isr+j,83),
i,j=0,

do :n(l’O’O)(S): p(sl+i’s2’s3),
i=0,1

FIG. 16. Density profiles for a smectic phase with periodicity6, corre- gi =nLON(8)= > p(s1+i,85,831)),
sponding ton=0.92, x=0.613 andBp=0.035. 1j=0,1
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0=n(0’0’0)(s) =p(81,87,83).
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