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Phase behavior of hard-core lattice gases: A fundamental
measure approach

Luis Lafuentea) and José A. Cuestab)

Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matema´ticas, Universidad Carlos
III de Madrid, Avda. de la Universidad 30, 28911-Legane´s, Madrid, Spain

~Received 10 June 2003; accepted 11 August 2003!

We use an extension of fundamental measure theory to lattice hard-core fluids to study the phase
diagram of two different systems. First, two-dimensional parallel hard squares with edge-length
s52 in a simple square lattice. This system is equivalent to the lattice gas with first and second
neighbor exclusion in the same lattice, and has the peculiarity that its close packing is degenerated
~the system orders in sliding columns!. A comparison with other theories is discussed. Second, a
three-dimensional binary mixture of parallel hard cubes withsL56 and sS52. Previous
simulations of this model only focused on fluid phases. Thanks to the simplicity introduced by the
discrete nature of the lattice we have been able to map out the complete phase diagram~both
uniform and nonuniform phases! through a free minimization of the free energy functional, so the
structure of the ordered phases is obtained as a result. A zoo of entropy-driven phase transitions is
found: one-, two- and three-dimensional positional ordering, as well as fluid-ordered phase and
solid-solid demixings. ©2003 American Institute of Physics.@DOI: 10.1063/1.1615511#
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I. INTRODUCTION

Hard-core systems are the paradigm of entropy-dri
phase transitions. The first example of an entropy-driv
~orientational! ordering transition is given in the famous O
sager’s paper1 on the isotropic-nematic transition in a thre
dimensional system of thin hard rods. But probably, the b
known and discussed example of entropy-driven~three-
dimensional positional! ordering transition is the freezing o
hard spheres. This was first devised by Kirkwoodet al.2 us-
ing an approximate theory, but the definite evidence ab
the existence of such a purely entropic transition was
numerical simulations of Alder and Wainwright,3 and Wood
and Jacobson.4 As very few models can be solved exact
definite conclusions on the existence of phase transitions
ten come from numerical simulations. But in many cas
these are very demanding and powerful computers
needed in order to reach a reliable system size. This f
together with the inexistence of appropriate theoretical
proaches, could explain that until the end of the eight
there were no more instances of entropy-driven order
transitions. At that time, a series of numerical simulations5–7

showed that hard-core interaction can also induce one-
two-dimensional positional ordering~smectic and columna
phases, respectively, in liquid crystal terminology!. This was
a very striking fact, because it was generally believed t
the mechanism underlying these phase transitions was
decrease of internal energy rather than the gain of entro

Apart from ordering transitions, it is well known tha
binary nonadditive mixtures can demix by a pure entro
effect. An extreme case of nonadditivity was studied by W
dom and Rowlinson8 in a model with two different specie

a!Electronic mail: llafuent@math.uc3m.es
b!Electronic mail: cuesta@math.uc3m.es
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interacting ideally between members of the same spe
(sAA5sBB50) and with a hard-core interaction betwee
unlike particles (sAB5s). They rigorously showed that th
system demixes into two fluid phases with different comp
sitions. This can be easily understood if we notice that
available volume is more effectively filled by pure phas
than by the mixture. Another interesting example of this ki
is found in colloid-polymer mixtures. Experimentally, it i
well known that the addition of nonadsorbing polymers to
colloidal suspension induces an effective attraction betw
the colloidal particles that can induce the flocculation of t
colloid. A simple explanation for this effect is that the clu
tering of colloids~large particles! leaves more free volume to
the polymers~small particles!, what translates into a gain o
entropy. This mechanism is known asdepletion. Many
models9–11 have been successfully introduced in order to
lustrate how this effect can induce a fluid-fluid phase se
ration in mixtures.

Special mention merits the case of the additive bin
mixture of hard spheres. The absence of a spinodal instab
in the Percus-Yevick solution for this system12 led us to be-
lieve that entropic demixing was not possible for additi
mixtures. But almost 30 years later, Biben and Hansen13 pre-
dicted such a spinodal by using a more accurate inte
equation theory. Since this result, many theoretical,14–19

simulation20–24 and experimental25–28 results appeared sup
porting the existence of demixing in additive binary mixtur
of hard spheres when the diameter ratio is at least 5:1.
most at the same time, it was pointed out that instead o
fluid-fluid demixing at least one of the separated pha
might be ordered.16–19,21–24,26–28The actual scenario for this
system is a metastable fluid-fluid demixing23 preempted by a
fluid-solid coexistence or~if the mixture is sufficiently asym-
metric! a solid-solid one. Qualitatively, this is the same sit
2 © 2003 American Institute of Physics
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10833J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Phase behavior of lattice gases
ation one finds in a binary additive mixture of parallel ha
cubes.29–31

From a theoretical point of view one of the first exac
solvable hard-core models showing a fluid-solid transit
was a lattice model proposed by Temperley.32 Many other
lattice hard-core models were studied in the sixties by ad
ing the approximate theories developed for Ising-like mod
to hard body systems.33,34 They succeeded in the predictio
of an order-disorder transition and mainly focused on stu
ing the dependence of the nature of the transition upon
range of the hard-core and the topology of the underly
lattice.

For the continuum model of hard spheres, one of
most successful theories to study the freezing has been
sity functional theory~DFT!. Many accurate functionals
have been devised for the monocomponent fluid,35 but when
they are applied to the binary mixture some problems ar
~i! many of the theories employed are not directly formula
for mixtures and the extension is far from being straightf
ward; ~ii ! it is very difficult to study the solid phases becau
it is not trivial to determine which is the most stable structu
for the mixture, and this information is an input in mo
approaches.36 These difficulties have been circumvented
mapping the binary hard-core mixture into a monocom
nent fluid ~large particles alone! with a hard-core and an
effective short-range attractive potential. It is then possible
use perturbation theory in order to study the phase diagra19

On the other hand, the solid phase is usually assumed t
an fcc crystal of the large particles with the small partic
uniformly distributed. Although this approach has been
tensively used,21,24,37–39it is only valid for low molar frac-
tions of the small particles. Besides, even in this case,
assumption that the density of small particles is uniform
the ordered phase is rather unrealistic because the orderi
large particles induces structure in the distribution of
small ones. To the best of our knowledge, this problem
not been addressed satisfactorily yet.

A direct study ~without resorting to an effective one
component fluid! has been carried out for a binary mixture
parallel hard cubes with Rosenfeld’s fundamental meas
theory29–31 ~FMT!. This theory has the advantage of bei
naturally formulated for mixtures. A complete analysis
fluid-fluid demixing has been performed for arbitrary si
ratios, but again, the lack of intuition about the distributi
of small particles in the crystal makes impossible to stu
freezing in this system. To solve this problem one sho
perform a free minimization of the free energy function
and obtain the structure of the ordered phases as an ou
But due to the continuum nature of the system this wo
require a huge amount of numerical work.

The situation is more favorable for the lattice counterp
of this model. Indeed, simulations of a binary mixture
parallel hard cubes~6:2! on a simple cubic lattice were pe
formed by Dijkstra, Frenkel, and Hansen,40,41 but their focus
was whether entropic demixing could be observed in ad
tive binary mixtures and the structure of the inhomogene
phases was not considered. The results of these simula
~a stable fluid-fluid demixing! are in contradiction with the
predictions of the continuum system~it exhibits a fluid-fluid
n
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spinodal only for size ratios above 10:1, and it is alwa
preempted by freezing of the large component!. With the aim
of explaining this mismatch, we extended the fundamen
measure functional for parallel hard cubes to the latt
version.42 With this theory we have shown in a previou
work43 that the latter is the correct picture.~A more detailed
account of this work will be given here.! Furthermore, due to
the discrete nature of the system it is possible to give a c
plete description of the ordered phases~see below!. Thus, we
show that lattice models, treated in a suitable manner,
serve as a starting point to study the structure of orde
phases in~continuum! mixtures.

There is a second benefit of this extension of FMT
lattices that we want to emphasize. These simulations,
gether with an exactly solvable model proposed by Widom10

and Frenkel and Louis11 in different contexts, show that lat
tice models can give accurate descriptions of demixing p
nomena. But in spite of their historical role in the develo
ment of Statistical Mechanics and their simplicity, with a fe
exceptions,44–46 density functional theories have only fo
cused on continuum models. We believe that the formulat
of classical density functional approaches for lattice mod
will help to better understand both, the phase behavior
complex fluids and the formal structure of the approxim
functionals.

The paper is organized as follows. A review of the latti
version of FMT is presented in Sec. II. In Sec. III, we u
this theory to obtain the complete phase diagram of two s
tems. First, a two-dimensional system of parallel ha
squares with edge-lengths52 on a square lattice~this is
equivalent to the two-dimensional lattice gas with first a
second neighbor exclusion!. This system has been widel
studied in the literature~see Refs. 34 and 33 and referenc
therein! and there exists a big controversy about its ph
behavior so far unsettled. A detailed analysis is performed
applying the new theory, and a comparison with results fr
other theories is discussed. The lattice fundamental mea
theory~LFMT! appears to be at the same level of accuracy
the other well accepted theories. Second, we have addre
the problem of the binary additive mixture studied by sim
lations, i.e., a binary mixture of parallel hard cubes (sL52,
sS56) on a simple cubic lattice. Due to the simplificatio
introduced by the lattice, the complete phase diagram
been mapped out. It shows a very rich collection of entro
phase transitions. As a matter of fact, we have found on
two- and three-dimensional ordering transitions, as well
fluid-ordered phase and solid-solid demixings. A free mi
mization of the free energy functional has been perform
so the structure of the ordered phases has also been obta
Finally, conclusions are discussed in Sec. IV. Notice t
Refs. 42 and 43 contain a preliminary account of the wo
presented here in full detail.

II. THEORY

The construction of the lattice fundamental meas
functional is based on the ideas of the exact ze
dimensional reduction47,48 and in the exact form of the one
dimensional functional. A full account of the details of th
procedure can be found in Ref. 42. In that work, the gene
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form of the functional for a system of parallel hard cubes
a simple cubic lattice~for any dimension, particle size o
number of components! is presented. Basically, the idea b
hind it is to construct a family of functionals for arbitrar
dimension in such a way that they consistently satisfy
dimensional reduction property of the exact function
down to zero-dimensional cavities~i.e., cavities which can
host no more than one particle!. Moreover, the prescription
chosen is inspired in the exact functional for the on
dimensional system, which is recovered with the sche
proposed.

Let us consider ad-dimensional additive mixture of par
allel hypercubes with edge-lengthssa52aa1e lattice spac-
ings, wherea is the species index ande50,1 does not de-
pend ona, i.e., all the species have, simultaneously, even
odd sizes ~the mixed—nonadditive—case is mo
involved,42 so we just ignored it because it will not be us
anywhere in this work!. In Ref. 42 the excess free energ
functional for this system in this approximation was found
be @cf. Eq. ~3.2! of that reference#

bFex@r#5 (
sPZd

(
kP$0,1%d

~21!d2kF0~n(k)~s!!, ~1!

where k5( l 51
d kl , F0(h)5h1(12h)ln(12h) is the ex-

cess free energy for a zero-dimensional cavity with me
occupancy 0<h<1, b the reciprocal temperature in Boltz
mann’s units andn(k)(s) are weighted densities defined b
the convolutions

n(k)~s!5(
a

(
rPZd

wa
(k)~s2r !ra~r !, ~2!

ra(s) being the one-particle distribution function for speci
a and

wa
(k)~s!5)

l 51

d

wa
(kl )~sl !, ~3!

wa
(k)~s!5H 1 if2aa2k2e,s,aa ,

0 otherwise.
~4!

Notice that as weights are indexed bykP$0,1%d, there are 2d

different weighted densities.
The direct correlation function between speciesa andg

can be obtained from this functional as

cag~s2r !52
]2bFex@r#

]ra~s!]rg~r !
U

uniform

.

Then, from Eq.~1!,

cag~s!52 (
kP$0,1%d

~21!d2k

12nk
wag

(k)~s!, ~5!

where nk5(asa
k (sa21)d2kra are the weighted densitie

~2! in the uniform limit andwag
(k)(s) is the convolution

wag
(k)~s![ (

rPZd
wa

(k)~r !wg
(k)~r1s!. ~6!
e
s

-
e

r

n

Because of the structure of the direct correlation function i
convenient to work with its discrete Fourier transform, whi
takes the form

ĉag~q!52 (
kP$0,1%d

~21!d2k

12nk
ŵa

(k)~2q!ŵg
(k)~q!, ~7!

where

ŵa
(k)~q!5)

l 51

d

e2 i ql /2 kl

sinql S aa1
kl21

2 D
sinql /2

. ~8!

The general expression of the functional~1! adopts very
simple forms when particularized to specific systems. In
der to make clear the structure of the functional, we w
introduce a diagrammatic notation which helps visualizi
its dimensional reduction properties in a simple way. For
sake of simplicity let us consider the lattice gas with first a
second neighbor exclusion in a two-dimensional square
tice. This is a system of parallel hard squares withs52
lattice spacings. In diagrammatic notation the excess
energy functional~1! can be written

~9!

where the diagrams represent the weighted densities~2! as

~10!

What becomes apparent with this diagrammatic notat
is that the excess functional~1! can be regarded as a linea
combination of contributions due to a particular set of ze
dimensional cavities~10!. Furthermore, we can manipulat
the diagrams in order to prove the dimensional reduct
properties that the functional~9! satisfies. To illustrate this
we will consider the dimensional reduction to a on
dimensional system, the hard rod lattice gas, whose e
excess functional is known to have the form~1!.42 To per-
form this reduction, we will apply an infinite external pote
tial in every site of the lattice except in an infinite line
chain defined byL5$(s1,0):s1PZ%. This implies that the
centers of mass of the particles can only occupy the site
L, the system becoming equivalent to a hard rod lattice
with particles of sizes52. In terms ofr~s! this means that
r(s)5r(s1)ds2,0 , whered i , j is the Kronecker symbol and
r(s) is the one-particle distribution function for the on
dimensional system. Within this constraint, the excess fr
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energy functional of the effective system can be obtained
summing overs2PZ in Eq. ~9!. Each contribution gives
respectively,

~11!

which coincides with the exact result@see Eqs.~2.26! and
~3.1! of Ref. 42#.

Another example in three-dimensions is given in the A
pendix.

III. APPLICATIONS

In spite of the simple structure of the lattice fundamen
measure functionals, the applications to specific syste
have proven able to describe very complex phase diagram43

In this section we will study in detail two particular system
first, the lattice gas with exclusion to first and second nei
bors on a square lattice; second, a binary mixture of para
hard cubes withs52 and 6, in a simple cubic lattice.

A. Parallel hard squares

This model is defined by the interaction pair potentia

f~s,s8!5H ` if usi2si8u<1 for both i 51,2,

0 otherwise.
~12!

It has been previously studied employing other approxim
theories, such as finite-size scaling methods,49,50 series
expansions51–53 and clusters methods.33,51 All authors agree
in that the close-packed state is a columnar phase~ordered
along one dimension but fluid along the other!. This notwith-
standing, the nature of the transition remains doubtful,
results being highly dependent on the theory used.34 While
some authors conclude that the system exhibits a third o
transition very near close packing,49,51–53others obtain a sec
ond order transition at a lower density,33,51,54and even some
of them have speculated about the lack of such a ph
change.50,51,54 The results obtained with the present theo
are in accordance with those of the second order phase
sition. Unfortunately, we have no concluding arguments
umpire this dispute.
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The advantage of our approach over other theories is
it provides a simple prescription to build a density function
in closed form. Then, all the powerful tools of density fun
tional theory may be applied. The excess functional for t
system within the present theory is that of Eq.~9!.

Fex~r!5F0~4r!22F0~2r!1F0~r!. ~13!

Adding up the ideal gas contribution,F id5r(ln r21), and
taking into account the definition ofF0 , we obtain the fol-
lowing free energy density for the fluid

Ffluid~r!5r ln r1~12r!ln~12r!1~124r!ln~124r!

22~122r!ln~122r!. ~14!

From this, all the thermodynamic properties of the flu
phase can be derived. For instance, the fugacity is given

zfluid5
r~122r!4

~12r!~124r!4 , ~15!

and the pressure takes the simple form

bpfluid5 lnF ~122r!2

~12r!~124r!G . ~16!

The structure of the equilibrium phase can be analy
by means of the direct correlation function, obtained fro
Eq. ~5! particularizing ford52 and a single component wit
s52. In a symmetry broken continuous phase transition,
someqÞ0

12r ĉ~q!50, ~17!

this condition being equivalent to the divergence of the str
ture factor. Since we are interested in the spatial instabili
of the uniform phase, we have to look for the lowest value
r which makes the condition~17! solvable for someq. Tak-
ing into account that the symmetry of the system enables
to takeq5(q,0), Eq.~17! becomes

cos2~q/2!52

12
4r

122r
1

r

12r

4rS 4

124r
2

1

122r D . ~18!

Since the denominator is positive in the whole range ofr,
and so is the numerator for small values of the density,
solution corresponds to the vanishing of the latter. This
curs at the density

rcrit5
32A5

4
'0.1910, ~19!

and, of course,q5p, implying the periodicity of the inho-
mogeneous phase to bed52p/q52 lattice spacings.

What remains to be determined is the symmetry of
nonuniform phase at the transition point. Based on the p
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vious results for this system and on those recently obtai
for parallel hard cubes in the continuum,55 we guess that this
phase must be either a columnar or a solid~ordering along
the two coordinate axes!. In order to determine which phas
is the stable one, we have performed a global minimizat
of the functional~9! within the constraints imposed by th
symmetry and periodicity of both the columnar and the so
phases. For a generic columnar phase with periodicity eq
to two lattice spacings, the one-particle distribution functi
takes the form

rcol~s!5H r1 if s1 is even,

r2 otherwise,
~20!

while for a solid phase with the same periodicity we hav

rsol~s!5H r1 if s1 and s2 are even,

r2 if s1 or s2 is odd,

r3 otherwise.

~21!

A sketch of the unit cell for each case is shown in Fig.
Note that the uniform phase is included in both Eqs.~20! and
~21!.

For the columnar phase the total free energy den
takes the form

Fcol~r1 ;r!5F id~r1,2r2r1!1F0~4r!2F0~2r!

2 1
2 @F0~2r1!1F0~4r22r1!2F0~r1!

2F0~2r2r1!#, ~22!

where we have substituted the density profile~20! in Eq. ~9!,
used the relation 2r5r11r2 , and introduced the ideal term
F id(r1 ,r2)5 1

2( ir i(ln ri21).
We can now minimize the total free energy density

constantr. Note that in this case we have to minimize wi
respect to a single variable. The Euler-Lagrange equatio

r1~122r1!2~122r1r1!

~2r2r1!~124r12r1!2~12r1!
51. ~23!

One solution corresponds to the uniform phase (r1
eq5r). It

can be easily checked that this is indeed the minimum of
free energy forr,rcrit , as expected. After removing thi
solution from Eq.~23!, we obtain a quadratic polynomia
whose roots become physical forr>rcrit . Above the critical
density the uniform phase is no longer a minimum; inste
we have a columnar phase given by~see Fig. 2!

FIG. 1. The unit cell for a columnar phase with periodicity equal to t
lattice spacings is shown in~a!, and for a solid phase with the same perio
icity in ~b!.
d

n

d
al

.

ty

t

is

e

,

r1
eq5r1

1

2
A~122r!~r2rcrit!~322r22rcrit!

r
~24!

~we have chosenr1
eq.r2

eq52r2r1
eq). This phase has a lowe

free energy than the fluid phase forr.rcrit , but we still have
to calculate free energy for the solid branch in order to kn
which one is the stable phase above the transition point.

For the solid phase, substituting Eq.~21! in Eq. ~9! and
adding the ideal contribution, the total free energy dens
turns out to be

Fsol~r1 ,r3 ;r!5F id~r1 ,2r2r1 ,r3!1F0~4r!

2F0~2r1r2!2F0~2r2r2!

1 1
4 @F0~r1!12F0~2r2r1!1F0~r3!#,

~25!

where we have used 4r5r112r21r3 to eliminate the de-
pendence onr2 , and have definedr65(r16r3)/2. As in
the previous case, the equilibrium density profile is the g
bal minimum of Eq.~25! at constantr, but now we have two
independent variables,r1 andr3 . Thus, the Euler-Lagrange
equations are now the system of algebraic equations

r1~122r2r2!2~122r1r1!

~12r1!~2r2r1!~122r1r2!2 51,

~26!
r3~122r1r2!2~122r1r1!

~12r3!~2r2r1!~122r2r2!2 51.

The fluid phase, given byr1
eq5r3

eq5r, is the solution forr
<rcrit . The solution forr>rcrit must be obtained numeri
cally and is plotted in Fig. 3. In Fig. 4 we can see that t
solid branch bifurcates with a free energy lower than that
the fluid phase, but larger than that of the columnar pha
The transition is then fluid-columnar.

It is feasible to study analytically the behavior of ea
branch at the transition point. This would give a defin
conclusion about the nature of the phase change. I
straightforward to check the continuity ofdF/dr at rcrit ~for
both the solid and the columnar branches!, but a discontinu-
ity is found in the second derivative atrcrit , so the transition

FIG. 2. Sublattice densities for the columnar phase. It also shows the m
stable fluid beyond the transition point.



fo

d

e

k

lts
ible

r

t at
cur
e

cer-
de-

ed.

m is
th-
r at

ice

po-

ree
d in

ure
n
be-
m-
or-

et ntal
nd

10837J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Phase behavior of lattice gases
is second order. Furthermore, the stable phase beyond
transition point is the one with lowest second derivative
r→rcrit

1 . From the values

Ffluid9 ~rcrit
1 !52~1517A5!'61.3,

Fcol9 ~rcrit
1 !52~512A5!'18.9, ~27!

Fsol9 ~rcrit
1 !54~51A5!'28.9,

we conclude that indeed the system undergoes a secon
der transition from a fluid phase to a columnar one atrcrit .
Besides, as it can be inferred from the density dependenc
the free energy density for every branch~Fig. 4!, the colum-
nar phase remains the most stable phase up to close pac

We can now plot the equation of state~Fig. 5!, with the
fluid branch given by Eq.~16! and the columnar one by

bpcol5
1

2
lnF ~122r!2~122r1

eq!~124r12r1
eq!

~124r!2~12r1
eq!~122r1r1

eq! G . ~28!

The fugacity of the columnar phase is given by

zcol5
r1

eq~122r!2~122r1
eq!2

~124r!4~12r1
eq!

. ~29!

At the critical point, we have

FIG. 3. Sublattice densities for the solid phase. It is also shown the m
stable fluid beyond the transition point.

FIG. 4. Free energy density of the fluid~dotted line!, columnar~solid line!
and solid~dashed line! phases.
the
r

or-

of

ing.

bpcrit5 ln 2, zcrit5
1115A5

2
. ~30!

As mentioned at the beginning of this section, the resu
from this lattice fundamental measure theory are compat
with the ones obtained by Bellemans and Nigam51 (rcrit

'0.202, bpcrit'0.788 andzcrit'17.29) through the cluste
method of Rushbrooke and Scoins56 ~plotted with a dashed
line in Fig. 5!. From Fig. 5 we can see that the agreemen
low and high densities is very accurate, and deviations oc
only near the critical point. This can be understood if w
realize that both theories neglect correlations beyond a
tain distance between the particles, so a very accurate
scription of the critical properties should not be expect
This notwithstanding, as remarked by Runnels,34 due to the
degeneracy of the close-packed configuration, this syste
difficult to study with finite-size or series expansions me
ods, and a closed-form approximation could be superio
describing the correct phase behavior.

B. Multicomponent system of parallel hard cubes

Let us now consider a multicomponent hard cube latt
gas in a simple cubic lattice. If we denotes1 ,...,sp the
edge-lengths of the different species, then the interaction
tential between speciesa andg, will be given by

fag~s,s8!5H ` if max
i 51,2,3

usi2si8u<
1
2 ~sa1sg!,

0 otherwise.
~31!

The lattice fundamental measure approximation for the f
energy functional of this system has already been reporte
Ref. 42@Eqs.~3.2! and~3.3! of that reference#, together with
the phase diagram for the particular case of a binary mixt
with sL56 andsS52, but no details about the calculatio
were given. In this subsection we will study the phase
havior of the general uniform mixture and obtain the co
plete bulk phase diagram, including both uniform and
dered phases, for the particular case just mentioned.

a-FIG. 5. Equation of state of the hard square fluid from lattice fundame
measure theory~solid line! and from the cluster method of Rushbrooke a
Scoins~dashed line!.
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In the uniform regime, the one-particle distribution fun
tion no longer depends on the spatial variables:ra(s)5ra ,
a51,...,p. In this case, the free energy density has
simple form42

F~r1 ,...,rp!5 (
a51

p

ra~ ln ra21!1F0~n3!2F0~n2!

1F0~n1!2F0~n0! ~32!

@with the densitiesnk defined below Eq.~5!#.
As it is well known, the stability of the mixture is dete

mined by the matrix

Mag5
]2F

]ra]rg
. ~33!

In order for the system to be stable in a mixed state
matrix must be positive definite. As this requirement is f
filled in the low density limit, the spinodal curve can b
determined through the equation detM50. When the excess
free energy density of the system depends on the dens
only via the finite set of momentsj l5(asa

l ra ( l
50,...,m), the spinodal can be expressed in the equival
but more suitable form57 detQ50, where

Qi j 5d i j 1 (
k50

m

j i 1kFk j , F i j 5
]2Fex

]j i]j j
. ~34!

This is just our case, because the excess free energy de
@the F0 contributions in Eq.~32!# depends on the densitie
through the set$nk%, and this variables can easily be e
pressed in terms of the set of moments$j0 ,...,j3%. Thus the
equation for the spinodal of our system reads

~112j3!22~j113j2!~112j3!23~j22j1!~11j4!

1j2~5j22j1!50. ~35!

For a binary mixture with the small component havi
sS52, it can be shown that the smallest size ratio,r
5sL /sS , necessary to have a spinodal instability isr 513.
This value is in strong disagreement with previous simu
tion results,40,41 which reported a demixing phase transitio
for r 53. An explanation of this mismatch has already be
provided in Ref. 43 and will become clear later on.

Some spinodals for different size ratios are shown in F
6. It should be noticed that the continuum counterpart31 is
recovered in the limitsS→`, while keepingr constant. For
that system, it was shown that the minimum value ofr to
find demixing isr 551A24'9.98. Therefore, we can con
clude that the lattice enhances the stability of the mixtu
What this analogy with the continuum system suggests
that we should expect fluid-fluid demixing to be preemp
by the freezing of one of the coexisting phases also in
lattice model. It must be remarked that, unlike in the co
tinuum case, in the lattice system the stability condition
volves not only the size ratio, but also the edge-length of
of the components, thus making the analysis of the stab
more complex.

The discrete nature of this system provides a very s
able framework to study ordering transitions. In the co
tinuum, only a partial analysis have been done,31 because the
e
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.

.
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e
-
-
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minimization of the functional becomes a numerically ve
demanding task. Usually this minimization is performed
restricting the density profiles into a parametric class, a
then minimizing with respect to one or a few paramete
The problem for the mixture is that it is very difficult t
guess the appropriate class. In contrast, the situation in
lattice is easier to handle because it is feasible to perfor
free minimization with the only constraints imposed by t
symmetry of the ordered phase and its periodicity. As it w
shown in the analysis of the two-dimensional system,
periodicity of the ordered phase can be estimated from
divergence of the structure factor, in the case of a mixture
latter being a matrix. The analog to the condition~17! for the
mixture is

det~P212Ĉ~q!!50, ~36!

where P5(dagra), a diagonal matrix, and Ĉ(q)
5( ĉag(q)) is the matrix of Fourier transforms of the dire
correlation functions between all species.

In the remaining of this subsection we will restrict ou
selves to the particular case of the binary mixture withsS

52 and sL56, the only case for which simulations ar
available.40,41The main result of these simulations is that t
mixture undergoes an entropy-driven fluid-fluid demixin
thus being the only known example of an athermal addit
model showing this feature.

The strategy we have adopted in order to obtain the co
plete phase diagram for the mixture has been the followi
~i! First, we have calculated the phase diagram for the p
component systems, both for the small and large partic
~ii ! then, we have obtained the curves marking spatial in
bilities for the whole mixture through the divergence of t
structure factor matrix, and have calculated the periodicity
the ordered phases arising at the bifurcation points; and~iii !
finally, we have completed the phase diagram by calcula
all the possible phase transitions compatible with the res
obtained in the two previous steps, choosing those ther
dynamically more stable.

For the pure component systems, we will proceed as
the two-dimensional case. Fors52, the fundamental mea
sure excess free energy functional~1! is given in diagram-
matic notation in Eq.~A1!. For a general one-componen

FIG. 6. Spinodal curves for a uniform binary mixture with the smalle
component of sizesS52 and different values of the size ratio,r
5sL /sS .
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system with edge-lengths, the functional form is obtained
particularizing Eq.~1!, but the structure is the same as that
Eq. ~A1!.

As it was mentioned in the previous subsection, in
symmetry broken continuous phase transition condition~17!
is satisfied. Fors52 it yields

hcrit5s3rcrit50.568, ~37!

with q5p indicating a periodicityd52p/q52, while for
s56 we find the value

hcrit5s3rcrit50.402, ~38!

and periodd57. Notice that at close packing this system h
periodd56, so we must consider both. With respect to t
symmetry of the phases, we have considered the sme
columnar and solid ones~ordering along one, two and thre
coordinate axes, respectively!.

Now it is possible to perform a free minimization of th
functional with the above restrictions. In this case we have
proceed numerically, because the complexity of the prob
does not permit an analytical treatment. This notwithsta
ing, the structural form of the functional simplifies the n
merical work: the weighted densities are just convolutio
which can be computed by using fast Fourier transform.
give an idea about the degree of complexity of the probl
we will say that the simplest phase to minimize is t
period-2 smectic, which involves minimization on two va
ables, and the most complex one is the period-7 solid, wh
involves minimization on twenty variables.

The phase diagrams of both systems,s52 and s56,
are shown in Figs. 7 and 8, respectively. Also, the free
ergy density near the critical point appears in Figs. 9 and
respectively. From these figures, we can see that there e
a strong competition between the different phases. This
flects in the very narrow first order transitions observed
the phase diagrams, such as the Sm2–C2 coexistence
(hSm2

50.673 andhC2
50.677) in thes52 system, and the

S7–C7 (hS7
50.617 andhC7

50.631) for s56. Since our
treatment is approximate, these phase transitions could a
ally be spurious: given the small differences between the
energy densities of the phases involved, other scena

FIG. 7. Equation of state~pressure vs packing fraction! for a s52 parallel
hard cube lattice gas on a simple cubic lattice. The different symmetries
denoted byF, Sm andC, meaning fluid, smectic and columnar, respe
tively. The periodicity has been indicated by a subindex. The inset sho
very narrow first order transition from a smectic to a columnar phase.
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might be possible. In contrast, there also exists very w
defined transitions which offer higher confidence, such as
C7–C6 first order transition (hC7

50.656 andhC6
50.827)

in the s56 system.
Let us now consider the binary mixture withsL56 and

sS52. From the discussion about the uniform multicomp
nent system we can conclude that, for a size ratior 53 and a
small particle edge-lengthsS52, there is no fluid-fluid de-
mixing ~not even metastable!. Then, we have to look for
spatial instabilities. To this purpose we must study condit
~36!. The direct correlation function is now a 232 matrix
whose elements are given by Eq.~5!. If we characterize the
thermodynamics of our system by the total packing fract
h5hL1hS , wherehL(S)5sL(S)

3 rL(S) is the packing fraction
of the large ~small! cubes, and by the compositionx
5hL /h, then, for every value ofx, we have to look for the
smallest value ofh which makes the condition~36! solvable.
The solution is plotted in Fig. 11.~Fig. 12 shows the same
phase diagram withh replaced by the pressure.! It should be
remarked that for 0<x<0.728 the period of the ordere
phases at the fluid spinodal isd52, while for 1>x>0.728
we have foundd57.

With this guidance we can start looking for the tru
phase diagram. This is a very demanding numerical task,
feasible in a reasonable amount of time. For each coexiste
curve involving, say, phasesP1 andP2 , we have to solve the
equilibrium equations

bp~hP1
,xP1

!5bp~hP2
,xP2

!,

zL~hP1
,xP1

!5zL~hP2
,xP2

!, ~39!

zS~hP1
,xP1

!5zS~hP2
,xP2

!.

Every iteration of the procedure requires the minimization
the functional, at constanth and x, for both phases. In the
simplest case this corresponds to a minimization prob
with four variables, but in the most complicated case
have to deal with a forty variable minimization. Anothe
problem we find is that the subtle differences between
free energy of different phases, already encountered in
monocomponent systems, make it very hard to discern wh

re

a

FIG. 8. Equation of state~pressure vs. packing fraction! for a s56 parallel
hard cube lattice gas on a simple cubic lattice. The different symmetries
denoted byF, Sm, C and S, meaning fluid, smectic, columnar and solid
respectively. The periodicity has been indicated by a subindex.
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one is the most stable phase. So, in many cases it is not
which coexistence is thermodynamically more stable.
these doubtful cases, we have resorted to the Gibbs free
ergy per particle,g(p,X)5XmL1(12X)mS , wheremL,S is
the chemical potential of each species andX[rL /r5x/(r
1(12r )x) is the molar fraction. Wheng(p,X) is plotted at
constant pressure as a function ofX, the coexisting phases i
the mixture can be found through a double tangent const
tion.

The complete phase diagram appears in Figs. 11 an
in two different representations. In Fig. 12, it can be o
served~see the insets! that there exist very small parts on th
phase diagram with a plethora of very narrow coexiste
regions. As in the monocomponent case, many of them co
just be spurious. One of the most remarkable features is
there exists a wide phase separation between a sm
particle-rich fluid phase and a large-particle-rich column
phase~which becomes a solid phase for higher pressures!. As
explained in the Introduction, this is the usual scenario
this kind of mixtures. The revision of the simulations~also
shown in Fig. 11! resulting from this phase behavior ha
already been discussed in detail in Ref. 43. The main co
quence of this comparison is that some of the state po
obtained in the simulations must have been misinterprete

FIG. 9. Free energy density of the fluid~dotted line!, smectic~dashed line!,
columnar~solid line! and solid~dotted-dashed line! phases, for the system o
hard cubes withs52 in a simple cubic lattice.

FIG. 10. Free energy density of the fluid~dotted line!, smectic ~double
dotted-dashed line!, columnar ~dotted-dashed line! and solid ~double
dashed-dotted line! phases with periodicityd57 and smectic~long-dashed
line!, columnar~solid line! and solid~dashed line! phases with periodicity
d56, for the same system of the previous figure but withs56.
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a fluid, while they should exhibit columnar ordering. Anoth
interesting result is that, at approximatelybp'0.24, there
appear a solid-solid phase separation between a sm
particle-rich and a large-particle-rich phases. Finally, it
worth mentioning the existence of an extremely narr
chimney of S6–C6 coexistence. This suggests that the c
lumnar phase is very sensitive to small perturbations.

As concerns the density profile in the ordered phases
have chosen a few representative states of the sys
~marked with stars in Fig. 11! in order to illustrate the way
large and small particles distribute in each phase. In Fig.
we show the density profiles for a period-7 solid phase
different sections perpendicular to the directions3 . This size
is one lattice spacing bigger than the size of the large p
ticles. We can conclude from the figure that the large p
ticles are arranged in such a way that the small ones ca
accommodated between any two of them. So, we could
that the large particles in the unit cell are surrounded by

FIG. 11. Phase diagram of the binary mixture of parallel hard cubes~size
ratio 6:2!, h5hL1hS being the total packing fraction of the large (L) and
small (S) cubes, andx5hL /h. The phases are labeledF ~fluid!, Sma

~smectic!, Ca ~columnar!, and Sa ~solid!, where a52,6,7 stands for the
periodicity of the ordered phases. The dashed lines join coexisting st
The dotted line corresponds to the spinodal of the uniform fluid. For 0
&x it marks a stable continuousF –S7 phase transition. The circles ar
coexisting states taken from the simulation results in Ref. 40 and 41. Fin
the stars correspond to the states whose density profiles are represen
Figs. 13–16.

FIG. 12. Phase diagram~reduced pressure,bP, versus composition,x) of
the same system refers in Fig. 11~the labels used are the same as in th
figure!. Now coexisting tie lines are horizontal. The dotted line is the sa
as in the previous figure. Insets show some details of the phase diagra
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small ones. Note that the density of the latter does
change very much within the unit cell. In Fig. 14 the dens
profile for a period-6 solid is shown. It is very interesting
see that its structure is completely different to the previo
one. Now, as the unit cell is of the same size of the la
particles, the small ones can only be placed at vacant
cells. Thus, the unit cell is completely filled with the sma
particles, which, as can be appreciated in the figure, for
crystal. Noticeably, the value of the small particle density
slightly higher at the contact with the large particles, whi
can be interpreted as an adsorption phenomenon. Figure
and 16 exhibit the profile of the period-6 column and smec
phases, respectively. From the discussion of the perio
solid profiles we have just made, the interpretation of th
two new density profiles should be straightforward.

IV. CONCLUSIONS

In this work we have applied the extension of FMT
lattice models42 to study two systems already treated in t
literature: the two-dimensional lattice gas with first and s
ond neighbor exclusion on a square lattice, and the bin
mixture of parallel hard cubes with edge-lengthssL56 and
sS52 on a simple cubic lattice. For both systems we ha

FIG. 13. Density profiles for a solid phase with periodicityd57, corre-
sponding toh50.56, x50.97 andbp50.02. Different planar sections a
s351,2,3,4~from top to bottom and from left to right! are plotted.
t
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it
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15
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e

shown a systematic way of using the theory in order to p
form a complete calculation of the bulk phase diagrams
particular, for the first system a very detailed analysis ha
been carried out. All the relevant thermodynamic functio
can be analytically obtained within this approach, for bo

FIG. 14. Density profiles for a solid phase with periodicityd56, corre-
sponding toh50.989, x50.973 andbp50.265. Different planar sections
at s351,2,3,4~from top to bottom and from left to right! are plotted.

FIG. 15. Density profiles for a columnar phase with periodicityd56, cor-
responding toh50.78, x50.96 andbp50.04.
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uniform and columnar phases. The results compare well w
others previously obtained by different authors using wid
accepted theoretical approaches. It is remarkable tha
spite of the simplicity of the treatment, the results obtain
are rather accurate, specially in the low and high den
limits.

On the other hand, a very complete study has been
ried out for the three-dimensional system. The rich ph
diagram obtained is very striking, considering the simplic
of both the system and the theory. There appear many di
ent entropy-driven phase transitions: fluid-ordered phase
mixing, one-, two- and three-dimensional ordering and so
solid phase separation. The results obtained have
allowed to reinterpret the simulations results40,41 in a way
consistent with the general picture emerged during the
decade about demixing of additive hard-core binary m
tures: fluid-fluid demixing is always preempted by the ord
ing of one of the phases.

We have performed a free minimization of the function
and have thus obtained the structure of all the orde
phases. The results we get show that the density profile o
small particles is far from being uniform. In general, wh
dealing with three-dimensional models, a free minimizat
is not feasible, so the density profile must be properly para
etrized. Since there is very little intuition about the dens
profiles of mixtures, the small components are always
sumed to be uniformly distributed over the volume. Acco
ing to our findings, this is definitely wrong. Perhaps our
sults can help to gain insight into what a prop
parametrization of the density profiles looks like.

We would also like to emphasize that the LFMT is
mean-field-like theory, but not a trivial one. This can be u
derstood if we realize that the direct correlation functio
have finite range, which means that at some point the co
lations between particles are neglected. This fact is refle
in the lower accuracy of the description around critic
points. However, away from these regions the results are
more accurate than those obtained from a standard m

FIG. 16. Density profiles for a smectic phase with periodicityd56, corre-
sponding toh50.92, x50.613 andbp50.035.
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field theory, and what is even more important, at the expe
of no much more work.

The study of lattice gases within the framework of de
sity functional theory can be very fruitful, as we hope
have been able to transmit in this work. On the one ha
there is not loss in phenomenology or complexity of beh
iors; on the other hand, the approach is considerably sim
numerically, something that allows one to tackle proble
which have so far not been solved in continuum mode
Besides, from a purely formal point of view, lattice dens
functionals reveal some structures which may be hidden
similar developments for continuum models. So, its care
analysis may reveal important properties of the latter in
near future. For these reasons we believe that it is very
portant to extend this kind of work to more general latti
models. We plan to report on that shortly.
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APPENDIX: DIAGRAMMATIC NOTATION: A THREE-
DIMENSIONAL EXAMPLE

Let us consider a system of parallel hard cubes in
simple cubic lattice with edge-lengths52. This system is
equivalent to the lattice gas on a simple cubic lattice w
first, second and third neighbor exclusion. The excess fu
tional, in diagrammatic notation, can be written as

~A1!

where the diagrams represent the weighted densities
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In Ref. 42 it was pointed out that the family of approx
mate functionals constructed after the prescription of the
tice fundamental measure theory consistently satisfied
dimensional reduction property of the exact functiona
Hence, the functional~9! must be recovered from the func
tional ~A1!. To show it we can apply an infinite extern
potential in every site on the tridimensional lattice, excep
the sites laying on the planeP5$(0,s2 ,s3):s2 ,s3PZ%. Then
the different contributions to the effective excess functio
become

and therefore Eq.~A1! reduces to Eq.~9!.
This diagrammatic notation can also be extended to m

ticomponent systems, although for more than two com
nents it becomes too cumbersome.
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