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Phase diagrams of Zwanzig models: The effect of polydispersity
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The first goal of this article is to study the validity of the Zwanzig model for liquid crystals to predict
transitions to inhomogeneous phaflde smectic and columnaand the way polydispersity affects
these transitions. The second goal is to analyze the extension of the Zwanzig model to a binary
mixture of rods and plates. The mixture is symmetric in that all particles have equal volume and
length-to-breadth ratiox. The phase diagram containing the homogeneous phases as well as the
spinodals of the transitions to inhomogeneous phases is determined for thecedsesd 15 in

order to compare with previous results obtained in the Onsager approximation. We then study the
effect of polydispersity on these phase diagrams, emphasizing the enhancement of the stability of
the biaxial nematic phase it induces. ZD03 American Institute of Physics.
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I. INTRODUCTION The second virial approximation of the free energy of the
Zwanzig model has also been employed to investigate the
Although the Zwanzig model was introduced long ago asphase diagram of symmetric mixtures of rods and plates.
a very simplified model to study the isotropic—nematic tran-Stimulated by theoretical calculations made in the early}%0s
sition in liquid crystals, the determination of its phase dia- which show that a binary mixture of rods and plates can
gram, including all inhomogeneous bulk phases, has nevestabilize a biaxial nematic phage which the symmetry
been carried out so far. With the help of the scaled-particleaxes of particles of different types point along mutually per-
theory (equivalent to ay3 expansioj developed for a vari- pendicular directions van Roij and Mulder studied the rela-
ety of hard particle fluidsincluding the hard parallelepipeds tive stability of this phase against a nematic—nematic phase
with restricted orientations which define the Zwanzigseparatiof. The authors calculated the phase diagram for
model? the phase behavior of the homogeneous bulk phasedifferent length-to-breadth ratios=L/D. They showed that
of both the monocomponent fldidnd binary mixturés® has ~ for «>8.8 the biaxial phase is stable in a relative small win-
been investigated. Also the the isotropic—nematic interfacelow above a multicritical point. How the topology of these
has been accessible to calculations through a smootheghase diagrams is modified when a scaled-particle approxi-
density approximatioR, which consists of evaluating the mation (which includes higher order virial coefficientss
bulk free energy at some smoothed density, following theused instead of the second virial is one of the open questions
same recipe of Tarazona for hard sphéres. which we will try to answer here. Another one is the influ-
The usual second virial approximatigexact for freely — ence of polydispersity in the phase behavior of the mono and
rotating models but only approximate for restricted orienta-bidisperse Zwanzig model. This is most relevant since with a
tion model$ has recently been applied to the Zwanzig modelrecently derived a fundamental measure functioffVF)
in order to elucidate the bulk phase behavior of a polydisfor hard parallelepipedd (equivalent to the scaled-particle
perse mixture of hard rodswith an inhomogeneous version theory for homogeneous phagese have shown that poly-
of this approximation different interfaces of a monodispersedispersity may enhance the thermodynamic stability of a bi-
hard rod fluid® as well as its polydisperse counterphnave  axial nematic phas¥.
been studied. There are recent experiments on true mixtures of hard
Unlike for hard objects with free orientations, like rods and plates which show a very rich phase behavior, in-
spherocylinders, which have been extensively simulited, cluding triple coexistence between an isotropic and two
there is only one simulation of the Zwanzig model in anematics—each rich in one of the species—as well as inho-
square latticé! for parallelepipeds with dimensions>x@ ~ mogeneous phases, like a columnar pHasnis phase be-
XD (with D=1, rods, or 5, platds® The main reason for havior has been quantitatively accounted for using the Par-
this lack of simulation data is that any Monte Carlo move-son approximation of the free energy functional of binary
ment which includes reorientation of parallelepipeds to anymixture of rods and plates in the Onsager liffitNeverthe-
of the three directions has a very low acceptance ratio due t§ss, the long searched biaxial phase has not been found in
the huge overlap between particles as the length-to-breadthese experiments. An unavoidable ingredient of experiments
ratio and the density increase. is polydispersity. In Ref. 14 we have shown that this other-
wise undesirable element may cause the stabilization of the
aE| ) L biaxial nematic phase. It is very important, though, that the
ectronic mail: yuri@math.uc3m.es L . .
bElectronic mail: cuesta@math.uc3m.es system maintains rod-plate symmetry, in contrast with what
happens in the existing experimefitsAn open question in
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this work is the topology of the phase diagram at high pack-

ing fractions. Addressing this problem requires to study the no=2> p{=p, ni=2 [pDi+p/(Li~Dy], ()
possible phase transitions to inhomogeneous phases, like " '

smectic, columnar, and solid phases. The calculation of b o ) ,

phase equilibria in polydisperse liquid crystals when one of ”3=§4 piLiDi, n2=§i: [pLi—pi(Li=Di)ID;i. (6

the bulk phase is inhomogeneous is thus far a theoretical ’

challenge. There is only one such work, which makes use opPecializing the above expressions for our polydisperse mix-
an approximate functional for length-polydisperse parallefure and using Eq(1) we obtain

hard cylinders to make two important predictions: the exis-

tence of a terminal polydispersity beyond which the smectic ~ ®4= E J’ dAp”(M)[Inp”(N)—1], 7
phase is no more stable, and the enhancement of the colum- v 0

nar phase stability/ These results have been confirmed in S8 TL,E

simulations of freely rotating hard spherocylinders inthe On- @ =—pIn(1—p)+ 1= + -2 (8)
sager limit'® The columnar phase stability for large polydis- P (1=p

persities have been also confirmed in recent experiments SN,

with suspensions of polydisperse platelike particfes. §L= fo N TE=1)p" () +p (V)] 9

The paper is organized as follows: In Sec. Il we describe
both the model and the fundamental measure functional w&he pressure can be obtained from its definition
will use to describe its free energy); the equations for -
phase equilibria between phases of a polydisperse system ﬁHzE f dA[p"(M) P (N)]— D, (10
(B); and the formalism to determine spinodal instabilities in v JO
mono-, bi- or polydisperse syster(s). Section Il describes 5P
the phase diagrams of the Zwanzig model with@u and @V()\)EW, (12
with polydispersity(B), as well as the bidisperse rod-plate prN)
model without(C) and with polydispersityD). Finally we  which in this particular case yields
conclude in Sec. IV. ) S e e 2Il,et

1-p  (1-pZ 1-p?

BII= (12)

II. THEORY
A. Model

B. Phase equilibria between homogeneous phases

To obtain the phase equilibria we follow the general pro-
Let us consider a length-to-breadth polydisperse mixtureedure already reported elsewhéf8.Suppose that among
of uniaxial oblate and prolate parallelepipeds, with theirthe n coexisting phases there ang isotropic, ny nematic
symmetry axes pointing along one of the three coordinatandng biaxial phasesi{=n,+ny+ng). The global density
axes. Let us fix the volume of any particle to 1; thus\if distribution (the parent distributionis fixed to be
=L/D is the length-to-breadth ratigvith L the length andD

the breadthof a parallelepiped, then P(N)=Poh()), f d\h(\) =1, (13

L=A?® D=1 () : i
so total mass conservation of each species is expressed by
Let us defingp”(\) to be the density distribution function of the lever rule

the species parallel to the(=x,y,z) axis, and let the total

n
number density to be P(N)=2, yapa(N), (14
a=1
p= JO d\ p(N), P()\):Ey p"(N). @ with pa(\) the total density distribution of phageand y,

_ the fraction of the total volume it occupidéthere is the ob-
~ The (temperature reducgdree energy density of a mul- vious constraint ,y,=1). Minimizing the free energy den-
ticomponent mixture is given bBFV™'=®=®+ Dy,  sity & with respect to the fraction of particles with length-

where®jq is the ideal part, whose exact form is to-breadth ration oriented along thev axis, i.e., p2(\)
=p.(N)/pa(N), and using Eq.(14), the equality of the
<I>id=2_ pi(Inpy—1), (3 chemical potentials of each species in different phases,
v,
i labeling different components, and the excess phgt,., Bua(N)=> pa(N)DPL(N), (15
can be approximated by the FMF for hard parallelepipéds, v
namely, leads to the following expressions for the coexisting densi-
s n’ng ,n ties:
D eye=—NoIN(1—n3) + T-n, + (1-ny)?" (4) ) e PL0N)
_ y PA(N) =Poh(\) T (16
where the weighted densiti¢s,} have the form, DIEROI-BEIO
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The parent distribution we are going to use throughoutisperse one, to obtain the respective spinodal instabilities.
the paper is characterized by The reason for so proceeding is that, as we will show later,
the spinodal equations can be expressed in two different

_\-1 _
hO) =AM+ (1= 0T ()], 17 ways, each of which suits one of the two cases.
f(2)=Ko(a) texd — (al2)(Z?+2 ?)], (18 The condition of equality of chemical potentials between
whereK ,(a) («>0) is thewth-order modified Bessel func- B’:’)?eg,:;:lses 'S equivalent to the minimization of the grand

tion, and k>1. This choice is motivated by its rod-plate
symmetry for{=1/2. The best way to appreciate this sym-

metry is changing the variable to An h(In\)=\h(\) has Q:f dr[kBTtb({na})—Z pipiCr) (20

two identical humpgwider the smallere) centered at I ) . ) ) )

(rods of “typical” aspect ratio) and — In « (plates of typical &t fixed che_m|cal pptenuals of each specigs with respect
aspect ratioc %). The parameter € ;<1 allows one to tune {0 the density profile of each speciggr). We specify this

the overall composition of the mixture, since the molar frac-9rand potential for a general model whose free energy den-
tion of the rods is given by,(£)=/7h(\)d\ [and that of sity ® has an excess part depgndlng on the densities only
plates byx,({)=1-x,(£), of coursd. Thus we can select through certain weighted densities

polydisperse rod¢plates by setting{=1 ({=0). The mo- ‘

ments of this distribution are given by(A™) No(r)=2> [pi* ' ](r), (21

=K a@)Ko(a) " HIxM+(1— )k~ ™], explicitly showing !

the symmetry of the mixture. A quantitative characterizationas it is the case of Rosenfeld’s fundamental measure titory.
of the polydispersity can be given if we determine the dis-In the definition ofn, the symbol %” stands for the convo-
persion inL and D as obtained fromh(\) for {=0 or 1.  |ution of two functions, i.e.f*g(r)=/dr'f(r")g(r—r").

This yields We are concerned with the case when one of the coex-
N7 K (@) Ko(a) isting phases is homogeneous and the other one is inhomo-
Al p=\7m7—1=\/—0——>——1, (199  geneous, with its density profile consisting in a small pertur-
' (%) Koe(e) bation around the homogeneous phase with density
wherev=2 for A| andv=1 for Ap. distribution p;, i.e.,

The number of independent moments in the{get® }
which completely determine each coexisting phase is 3, 5,
and 7 for the isotropic, nematic and biaxial phases, respecrhe result of minimizing Eq(20) with respect top;(r) can
tively (which amounts to a total of §+5ny+7ng un-  be cast as
knowns. They can be obtained through the definitid2s
and (9), together with the distribution functiond6). The pi(N)=pi exp{ — > [Ad 0l ](N}, (23
remaining unknowns—the— 1 independenty,’s—are cal- a

culated from the equality of pressures in every phase. Thiﬁ/heremﬁ ()= b.(t)— b, and ¢, =adlan, . We are im-

leaves the global dilutiorPo, as the control parameter. Al- plicitly using magnitudes without spatial variable arguments

tertnalgve_ly,twe canff?r(]_an externatl plressuﬂq,,tand eI|_m|- to denote homogeneous phase quantities. Expandifygr)
nate Py in terms of this new control parameter. &5 in- to first order ine;(r) yields

creases, the fractions of volume of each phase change; thus,

for practical purposes, it is computationally simpler to use _ i

one of they,’s as control parameter and obtaly, as a A‘ﬁa(r)_% ¢aﬂ§j: piler wpl(r)+---, (24)
function of it. 5 _ _

A particularly important case is the two phase coexistWhere ¢.z=d°®/(dn.dng). Inserting Eq.(24) in Eq. (23)
ence between a phasgsay 8) which fills the whole volume an(_d expandlng the exponer_mal again to first ordes; (n) we
(cloud phasgand an incipient new phassay o) which fills ~ arrive at the integral equation,
an infinitesimally amount of voluméshadow phase In a o
cloud-shadow coexistence the pardh\) coincides with &(n=—2, qﬁaﬁz pil €* w,* wlﬁ](r), (25
the distribution function of the cloud phase. Thenand @p !
reduces by 3the number of constraints

pi(N=pi[1+e&(r)], e€(r)<1. (22

i(q)+ o) i£1(q)QL(q)=0, 26
C. Spinodal instabilities with respect to ei(@) a:?a Pap a(Q)Ej: piei(a) oD (9

inhomogeneous phases . .
g P wheree and () are, respectively, the Fourier transformseof

In order to be as general as possible in developing th@nd » [with the usual definitiorf (q) = fdre'9f(r)].
formalism let us consider the problem of finding the condi-  Equation(26) gets clearer if written in matrix form. De-
tions for the stability of an arbitrary multicomponent systemfining the functions
against spatial modulations of the densitigs(i label the
species This way we can replace at the eBg— X, for the m(g)= Ql () Q) 2
monodisperse Zwanzig model adig— 3, fd\ for the poly- ij(Q) Z’% bapQo () Qp(a), (27)
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the matricesvl (q)=(m;;(q)) andP=(p;d;;), and the vector A= N BB "B s, (40)
=(¢g; , Eq.(26) b

£(q) (sA.(q)) | g. (26) becomes Wo(X) = COgX/2), 1)
(I+M(q)-P)e(@)=0, 28) W4(X) =2 Sin(x/2)/x, (42)

where | is the identity matrix. This linear system has non-

trivial solutions if and only if W1 (X) =W3(X)/Wo(X). (43)
D(p.q)=defl+ K (q)-P]=0. 29 As there are eight different weightB,(p,q) is in this case

the determinant of an>88 matrix.
This equation is suitable for the cases in which there is a Either way we express the equatiai29) or (34), the
small number of components, like the monodisperse Zwanspinodal instability condition of a homogeneous phase with

zig model with only three components=x,y,z. density distributionsp”(\) (or simply p” in the monodis-
Alternatively we can multiply Eq(26) by piQ'y(q), sum  perse casewith respect to the transition to an inhomoge-
overi and define the functions neous phase occurs at the values of the total depsépd
wave vectorg for which the functionD(p,q) first vanishes.
uy(q)EE pigi(q)Qiy(q); (300  More precisely, this function has an oscillatory behavior as a
! function of g, and is positive as long as the homogeneous
then Eq.(26) becomes phase is stable, so the spinodal corresponds to the smallest
densityp for which the absolute minimum d with respect
U(@)+ 2 dapay(@DUg(a)=0, (31) 10 equals zero. This amounts to finding, for a giyerthe
a,B solutions to
where we have introduced new functions VD(p,q)=0. (44

i i When we later consider the rod-plate mixture we will
— el i
n”(q)_zi Pifla(A),(Q). (32 have to locate the nematic-biaxial phase transition. As it is a
) ) ) ) continuous transition it can also be found as a solution to Eq.
Equgthn(31) can also be written in matrix form, but now (34) with q=0 (both phases are homogenepusing
the indices run over the set of weights, not the components.

Hence, defining the matricesb=(¢,z) and N(q) YOy = Poh( A 45
=(n,,(0)), and the vectoru(q)=(u,(a)), Eqg. (31) be- p"(N)=Poh( )E e~ @) (45
comes !
o as the distribution functions of the nematic phases.

[I+N-®]Ju=0. (33

Again this system has nontrivial solutions if and only if
A A Ill. RESULTS

D(p,q)=defl+N-d]=0. (39)

) ] o ] ) ) A. Monodisperse Zwanzig model
This alternative characterization of the spinodal is suitable _ _
for polydisperse system@ctually, it is a generalization of As a first step towards the calculation of the whole phase

the formalism developed in Ref. 22 for homogeneousdiagram of the monodispersgure rods or pure plates
phaseks The reason is that it replaces integral operators bywanzig model using the FMF of Ref. 13 we will determine
finite matrices, in which the number of components is lim-the isotropic—nematicl N~) coexistence curves as well as
ited by the number of weights of the theory. For instance, fothe spinodals for the nematic—smect(~S*), nematic—
the polydisperse Zwanzig model with a free energy func-columnar N*—C™) and isotropic-plastic(orientationally
tional given by the FMF derived in Ref. 13, functions, disorderedl solid (I-PS) transitions, as a function of the

take the form length-to-breadth ratioc. The + and — superscripts label
prolate (rodg and oblate(plates parallelepipeds, respec-

n, ):2 dhp" () Q (g N)QL(GN) (35) tively. If the transitions are first order, the location of the
«pla p P p(AN), . - .

v coexistence curves will differ from that of the corresponding

spinodals. However, as the main concern of this paper is the
effect of polydispersity, we defer the calculations of coexist-

Y ence with and between inhomogeneous phases to a forth-
Qo(q*")zlg Wo( Ak ). (36) coming publication.

We have obtained the spinodals for this model by solv-
ing Egs.(29) and(44) using the monodisperse version of Eq.
(45). If we choose the nematic director parallel to thexis,
then the N*—S* spinodals can be calculated setting
QLA = A Wi (GeA L) Qp(d,N ), (38)  =(0,00), whereas thd\*—C* ones follow from takingg

» _ 1w =(q,0,0) orq=(0,q,0) (both are equivalent due to the nem-
Q2 @M =AW (@A ) I Q5(A0) @9 atic symmetry. For the | —PS spinodal all three previous
(k=x,y,2). Hereq, are the components of the vectprand  vectors give the same result.

where «, 3=0,(1x,1y,12),(2x,2y,22),3 and

Qé(q,h)=1;[ AW GiA i), 37)
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0.5

T which spatial instabilities destabilize the homogeneous
phases is rather good. Also the qualitative picture is similar:
elongated rods form smectics, while flat disks form colum-
nars, and more symmetric particles form solids instead of
smectics or columnar. Thus, this simple model seems to cap-
ture the essence of the entropy driven phase transitions be-
tween phases with different symmetries and their relation to
particle anisotropy.

The only existing simulation of the Zwanzig model has
been performed on a lattice model of parallelepipeds with
length-to-breadth ratios 151&=5) and 3:15(x=0.2).** For
these «'s the authors findl—C~ for the disks and and
|-DS" for the rods, where DS stands for a novel phase
X called “discotic smectic” by the authorén this phase the

FIG. 1. Phase diagrafpacking fract lengih-to-breadth ratiad of axes of the particles point perpendicular to the normal of the

. 1. Phase diagrafpacking fractionp, vs length-to-breadth ratia) o . . . . . s

the monodisperse Zwanzig model. Solid and dashed lines represent the is%—mec£IC Iayers W_hlle ther_e IS no O”entat_lonal order Wlth_lr_‘ the

tropic (I)—nematic N*) coexistence curves. The dashed lines correspond@y€l). The packing fractions they obtain for the transitions

to the values for which the homogeneous phases are unstable with respectawge higher than those of the corresponding spinodals of Fig.

the inhomogeneous ones. Dotted lines represent the spinodals of the diffef- [t they should decrease upon decreasing the lattice spac-

ent homogeneous phases: each one is labeled with the corresponding phase: .

smectic 6), columnar C-) or plastic solid(PS. aﬁ'?g., as the re;ults for the freezing of parallel hard _cubes ona
lattice (occurring atp=0.568 for edge-length 2 lattice spac-
ings, atp=0.402, for edge-length 6 lattice spacings, and at

Figure 1 shows the results of these calculations. We ob9:O'314 for t.he continuumilliustrate.% A”. this is again in
serve in this figure that there is arN= transition only for agreement with the phase diagram of Fig. 1.
k<0.210 andk>5.02. At those two limiting values of the
N* phase is destabilized by &" at a packing fraction
p=0.280, and th&~ by aC™ at a packing fractiop=0.261 Let us study now the effect polydispersity has on the
(remember the particle volume has been set)tdAlso, the  phase behavior of the Zwanzig model discussed above. We
N*-S* spinodal is always below th&l*—C™", and the have introduced polydispersity through the unimodal parent
N~ —C™ spinodal is always below thd™—S™ one. This is  probability density resulting when setting=1 (rodlike par-
what intuition tells us but, as we will see later, it is a pecu-allelepiped$ or =0 (platelike parallelepipedsin function
liarity of the monodisperse system. Despite this, all thesé€17). Before reporting the results we have obtained, a few
spinodal curves converge asymptotically to the same packingords on polydisperse phase diagram plots are on purpose.
fraction, p=0.314, ask—» or k—0. This is precisely the Generally speaking, plotting polydisperse phase dia-
packing fraction at which the continuous freezing transitiongrams would require an infinite dimensional space, for as we
occurs in a system of parallel hard culigs=1).> The rea-  vary the fraction of total volume occupied by the coexisting
son for this is that upon increasingthe number of rods with  phases they change their composition. A phase diagram like
orientation perpendicular to the director becomes vanishinghat of Fig. 1 plots densities versus aspect ratios, thus carry-
small, and then the system is, after rescalingziuirection, ing no information whatsoever about compositions. So we
almost equivalent to a system of parallel cubes. The sammust restrict ourselves to a given composition, and this is the
holds for plates upon decreasing What this means is that parent one, since all pure phases have this composition. This
most likely the N*—S* and N"—C~ transitions will be means that only cloud lines can be plotted, delimiting re-
metastable with respect to freezing in a large portion of thegions where we can only know that the system is decom-
phase diagram. For 0.182¢<4.93 we have found ah-PS  posed into two or more coexisting phases. The result re-
spinodal instability. The peculiarity of this curve is that it sembles the coexisting lines of monodisperse phase diagram,
exhibits strong oscillations as the aspect ratio changes. Thesait the meaning is completely different. Although we could
oscillations reflect the packing efficiency of randomly ori- connect cloud points in the two lines delimiting the coexist-
ented parallelepipeds as a function of their githe better the ence region, they are definitely no coexisting states.
packing the lower the curye Similar considerations hold for spinodal lines. We can

The available simulation results for freely rotating hardrepresent the spinodal of a system in a pure phase having the
spherocylinders show that the-S* andN™—S* transitions  parent distribution as composition, but if the system reaches
begin atk=4.1 and 4.5, respectivéfy[notice that for hard a cloud point an incipient shadow phase with a totally differ-
spherocylinders the length-to-breadth ratio is= (L ent composition—hence a totally different spinodal line—
+D)/D]. On the other hand, simulations of hard cut spheresoexists with it. If the density of this shadow phase is above
show that fork=0.2 there is an—C™ transition(the isotro- its own spinodal line, the phase transition will not be stable.
pic phase might instead be a peculiar “cubatic” phased Having all this in mind we have solved the coexistence
for k=0.1 anN~—C~ one?® We can see that despite the equations of the isotropic and nematic phases and deter-
different particle geometry and the restricted orientations ofnined the spinodal lines of inhomogeneous instabilities for a
the Zwanzig model, the agreement with the threshéédat  system with the parent distributidd7). The results for the

B. Polydisperse Zwanzig model: Unimodal distribution
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FIG. 2. Phase diagram for polydisperse Zwanzig model. The distribution of

aspect ratios is unimodal with the maximum st Polydispersity isA_ FIG. 3. Phase diagram of a binary mixture of rods and plates w#tB; X,
=0.288 in length and\, =0.143 in breadth. The lines have the same mean-is the fraction of rods ang coincides with the packing fraction. Spinodal
ings as in Fig. 1. Full circles mark the points above which the nematic cloucand coexistence curves are represented by dotted and solid lines, respec-
phase is unstable against columnar ordering; empty circles mark the pointssely. Dashed lines are coexistence curves in the unstable region. The cross-
above which the isotropic cloud phase coexists with a nematic shadow phasegs between the coexistence curves and the spinodals are represented with
unstable against columnar modulatioftke spinodal line of this nematic full circles, and with empty circles their coexisting phases. Full squares
shadow, computed with the corresponding aspect ratio distribution, is nomark the crossover between columnar and smectic phases along the spin-
plotted in the figure odals.

plate symmetry of the chosen parent distributions explains

choice a=1 (corresponding to polydispersity parametersthis behavior.
A, =0.288 andA=0.143) are shown in Fig. 2.

Apart from the usual broadening of the isotropic— C Bi . ‘7 i rod d ol
nematic transition already observed for this model in Ref. 7,™ Inary mixture of Zwanzig rods and plates
we find a clear enhancement of the stability of the homoge- We have calculated the phase diagré&oexistence of
neous phases i.e., the spinodal instabilities occur at highdromogeneous phases as well as their spinodal instabilities to
densities. This effect is more pronounced for Mieé—S* or  inhomogeneous phasefor the binary mixture of rods and
N*—C* transitions. Another remarkable feature of Fig. 2 isplates withk=5 and 15. The results fat=5 are shown in
that the columnar phases are by far more stable than theig. 3. Apart from the usudl-N= transitions andN™—N"*
smectic ones for any aspect ratio. phase separations which coalesce in a multicritical point we

This general behavior is in agreement with the resultsee that the nematic phases increase their stability with re-
obtained from both density functional theory for length- spect to the inhomogeneous ones as the relative composition
polydisperse parallel hard cylindéfsand computer simula- of the fluid tends to the equimolar mixture. Another impor-
tions for length-polydisperse freely rotating hard spherocyltant feature is that the biaxial nematic is not stable.
inders in the Onsager limtf Although in Ref. 17 some All these characteristics are also present in the phase
strong approximations were made, such as the decoupling dliagram obtained using a second virial approximafidmut
the density profile ag(r,L)=g(L)p(r), and the effect of there are important differences as well. The most prominent
fractionation between the nematic and columnar phases wamse is that the whole phase diagram is shifted down in den-
ignored, the results agree qualitatively with the simulationssity, with all transitions and spinodals appearing below
both show a terminal polydispersity beyond which the smecp=0.4 (those obtained with a second virial approximation
tic phase is no more stable, being replaced by a columnasccur above that valde This result should not surprise if
phase(which tolerates a higher degree of polydispepsity one takes into account that iny8 expansion the excess free
The nematic—columnar transition is first order. While frac-energy is written in terms of the variablg=p/(1—p),
tionation is indeed negligible in the nematic—smectic transiwhich grows faster thap. Another striking difference with
tion, the smectic—columnar transition clearly segregates longespect to the second virial approach is the rod-plate asym-
rods into the columnar phase. metry of the phase diagram, a consequence of the inclusion

It is interesting to notice that in the limits—o~ or O  of higher virial coefficients—which do not share the symme-
none of the spinodal lines tend to the density of the freezindry of the second one.
of parallel hard cube$xk=1). The reason is that no trivial We pass now to describe the loss of stability of the nem-
scaling can be applied to a polydisperse system of perfectlgtics with respect to inhomogeneous phases. The intersection
aligned parallelepipeds to transform it into a system of parbetween theN™ line of the I-N* coexistence and the
allel hard cubes. On the other hand BieandS™ spinodals N*—C™ spinodal in the rod-rich part of the phase diagram
tend to the same limiting density when-0,2, and so do the (marked in the figure with a full circle; the open circle cor-
C* and C~ spinodals. The second virial term of the free responds to its coexisting isotropic phageconsistent with
energy is dominant for largésmal) «'s; this and the rod- the existence of a first order phase transition between the

Downloaded 23 May 2003 to 147.96.22.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



10170  J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Y. Martinez-Raton and J. A. Cuesta

04 — — T — coexistence between ti~, N*, andB phases right on top

of the biaxial phase region. The absence of this triple coex-

istence region in Fig. 4 is due to the asymmetry of the phase

diagram. Simulations of a mixture of prolate and oblate

ellipsoid$® show a similar asymmetric phase diagram, only

tilted in the opposite directiofthere is a8B—N~ demixing on

top of the biaxial nematic, instead of tH@—N" of the

present modeg] probably due to the different particle geom-

) } etry. Despite the asymmetry, we should admit thatderl5

01 ¢ i there is good overall agreement between the second virial

) | approach and ours.

I We have not studied the changes an asymmetry in the

0 e mixture (a difference in the volume of rods and plates, for
0 0.2 0.4 06 08 1 instance would induce in the phase diagram. Intuitively,

" asymmetry acts against the stability of the biaxial phase,

FIG. 4. Phase diagram of binary mixture of rods and plates withl5. somethmg thatis Cor_]flrmed by a recent V_\%r\k’hwh studies

Lines and symbols have the same meanings as in Fig. 3. Notice that gived Dinary rod-plate mixture of freely rotating oblate and pro-

the continuous nature of tH—N* transitions, the spinodals are the true late cylinders in the Onsager approximation. This work ex-

transition lines. plicitly shows that the region of stability of the biaxial phase

decreases with increasing the asymmetry of the mixtare

though, according to this work, this phase can be found in

highly asymmetry mixtures

03

a 0.2

phase and an inhomogenedpsesumably columnaphase.

[Recall that simulations on the lattice find a first order ) . .
With respect to the inhomogeneous phases, Fig. 4 shows

|-DS" transition for parallelepipeds witk=5 (Ref. 11).] o 2
Nevertheless a definitive answer about the relative stabilit@ remarkable behavpr. Althpugh pure hard rods n line
glase undergo a spinodal instability to a smectic one, by

between these inhomogeneous phases—including also e ) _ . .
solid—can only be given after carrying out coexistence Cal_addmg a tiny fraction of plates the instability takes place to a
culations columnar phase. This phenomenon has already been ob-

Increasing the fraction of platéwhich in theC* phase served in a different system, namely, in simulations of binary

have their principal axes oriented perpendicular to the direcmixtures of parallel ha_rd spheroc_y_lindéF‘SAI_though pure
arallel hard spherocylinders exhibit a continuous nematic—

tor) seems to favor the smectic alignment of rods. This re? . o . . .
sults in the intersection of the* —C* and theN* —S* spin- smectic transition, a binary mixture of them with length-to-

odals(marked with a full square on the right of Fig). 3n the breadt.h ra'tios 2 and 2.'9 show a first order. nematic—columnar
second virial approach tHé* —S* spinodal is always below trans'ltlon instead. Thls result was gxplalned by the poorer
theN*—C™ one. At the plate-rich part of the phase diagrampaCk'ng of rods of different length in the smectic ph_ase as
the nematic exhibits a spinodal to tGs phase, as usual in compared to that of rods of the same length. Borrowing the

discotic fluids®* Increasing the fraction of rods beyond a argument, in our roq-plate_ model the plates can fit int_o th_e
threshold valudindicated with a full square on the left part interlayer spacing with their axes parallel to the smectic di-

of the phase diagranmakes the smectic more stable than therec?or as long as there are few of them; but upon in_creasing
columnar, which agrees qualitatively with the results fromthelr molar fraction some of them are forced to get into the

the second virial approach smectic layers with their axes perpendicular to the smectic

The phase diagram for=15 appears in Fig. 4. Its main directpr, thereby destabilizing the smectic phgse. )
difference with the previous one is the presence of a thermo- Finally, at Fhe Otheff extreme of phase diagram Rhe
dynamically stable biaxial nematic phase in an inverted triphas_e_ losses its stability to a cglum+nar _phase of plates at
angular right above the multicritical point. The window is densities lower than those of the"—C™ spinodal.
limited to the left and to the right by continuous phase tran-
sitions to uniaxial nematic phases, and to the top By-&™
coexistence which becomesNt —N* phase separation as
density increases. As discussed in Ref. 4, the driving mecha- In this section we are going to study the effect of poly-
nism which determines the preference of this system fodispersity on the phase behavior of the previous rod-plate
phase separation instead of biaxial ordering is the larger exnixture. In Ref. 14 we have shown how polydispersity can
clude volume between unlike particles compared to that oftabilize the biaxial phase even for mixtures with relative
like particles(the rod-plate excluded volume divided by the small aspect ratios, like=5, for which Fig. 3 shows that the
rod—rod one scales a$'3 for large k). When the gain in free biaxial phase is absent.

D. Polydisperse Zwanzig model: Bimodal distribution

volume compensates the loss in mixing entrdpyd this Apart from the increase in mixing entropy that polydis-
strongly depends on concentration and compositigmase persity carries, the other mechanism behind the enhancement
separation occurs. of stability of the biaxial phase is the decrease of the ratio of

The slight asymmetry of the phase diagram is again du¢he average exclude volumes of like and unlike particles. The
to the presence of higher virial terms in the free energy. Thexcluded volume between two parallel rods with lendths
second virial approximation predicts a small region of tripleand breadtiD; (i=1,2) is
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TABLE |. Threshold values of the length-to-breadth ratid, for the ap-

pearance of a biaxial nematic phase as a function of polydispersity, ex-
pressed in terms of the parametessA, , andAp .
a AL Ap K*
S 0.000 0.000 6.9 i
2.00 0.216 0.107 6.6
1.00 0.288 0.143 6.3
0.50 0.374 0.185 59
0.25 0.470 0.233 5.1 1
0.10 0.610 0.302 4.0 0.1875
2 0.1865 .
vrr=(L1tL2)(D1+ D)%, (46)
and the excluded volume between a rod with lenigihand
breadthD, and a plate with length, and breadtiD,, with

i i 0.1855 o ! —
axes perpendicular to each other, is > 48 052 056

Uip=(L1+D3)(L+Dy)(D1+Dy). (47 X

According to Eq.(1), if the volume of all particles is set to FiG. 5. Phase diagram of a polydisperse mixture of rods and plates with

one, in terms of the length-to-breadth ratlgs L;=A?*and =5 and length and breath polydispersities=0.610 and\ ,=0.302. Part

D; :)\;1/3' Taking a double average ofv,, over (b) is a zoom of the region right above the biaxial phase.

IL[h(A)O(Nj—1)] and of v,, over [I[;h(N;)]O(N,

—1)®(1—\,) [h(\) is the parent distributior{17)], and

fixing {=1/2 (the equimolar compositignwe arrive at In Fig. 5 we plot the phase diagram of this system for
x=5 and «=0.1 (corresponding toA, =0.610 andAp

(48) =0.302). According to Table | for this parameter choice the
biaxial phase is thermodynamically stable, and this is clearly

shown in Fig. %a), where we can see a small window of

biaxial nematic just above the multicritical point. Figuré)5b

(o) 3+ m? |+ m2+2(m_;my+m;m_,)

(G $+4m_,;m;+2m_,m,
where mg=[7d\h(AM)AP3. It can be shown numerically
that, for a givenx, the ratio(48) decreases with polydisper- s a zoom of the upper border of this window. There is a
sity (i.e., with decreasingy). Analytic expressions for this narrow region oN~—B coexistence limited from above by a
ratio can be obtained in the limit of high particle anisotropy - _N*+ coexistence. The dividing linghe dotted line in the
(«>1) and high polydispersitya<1) with the constraint giagram represents a continuous transition between Bhe

2 . _ .
ak®<1 (in terms of the parameters,, »=L,D, this con-  anq theN* phases which coexist with tHé ™. This line has
straint is equivalent to A ,< \In x, implying that the frac- 5 analog in the binary rod-plate mixture. To obtain it one

tion of cubic-like particles is vanishing smallUsing the  has to solve the equations for two phase coexistence at all
asymptotic expressions, values ofy in Eq. (16) (the volume occupied by one of the

K B3 coexisting phasgsand then find the one for which the
Ms™ 2P —Ina)’ A,~(=Ina)'?, (49 B-—N" transition occurs.
The high density part of the phase diagram of Fi@) 5
we obtain was not determined in Ref. 14. The most remarkable feature
(vrp) . it sh(_st is that pure phases are hardly stable; th_e diagram is
m~xz’3e‘°VAv, v=L,D (500 dominated by coexistence regions. The reason is that poly-

dispersity is so high that the mixture has, beside rods and

with ¢, a positive constant. This asymptotic relationship ex-plates, a significant amount of cubiclike particles. This favors
plicitly shows both the scaling of this ratio discussed for theentropic phase separation in the three different phgses,
pure rod-plate mixturkand the exponential attenuation of andN™*.
this scaling with polydispersity. In the upper part of Fig. ®) there is a region of triple

We have estimated the threshold valuecdfienotedy<*) coexistencd =N~ —N". The lines limiting this region were
beyond which the biaxial phase begins to be thermodynamiebtained by solving the coexistence equations for the case
cally stable, as a function of polydispersity. The results aravhen one of the coexisting phases is a shadow phaseit
summarized in Table I. Without polydispersity this value isoccupies a vanishing fraction of the total volum&s an
«*=6.9, smaller than the second virial estimafiof =8.8. illustrative example, if we takey,=0, yy-=7, and yy-
This is an indication that thre@nd higher body correlations =1— 1y and solve the coexistence equations for ke 15
increase the stability of the biaxial phase. As we can see innknowns(see the discussion about phase equilibria in poly-
Table |, «* decreases upon increasing polydispersity, an il-disperse systems in Sec. I Be obtain the curve joining the
lustration of the enhancement of stability of the biaxial or-two points marked with full squares in Fig(éh. The other
dering induced by polydispersity. two curves limiting the triple coexistence region were calcu-
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FIG. 6. Distribution functions at thelg~1—-N* (a) and theN~I-N" (b)

triple points of the phase diagram of Fig(fharked with full squarés The

subscript “sh” denotes shadow phases. Solid lines represent the shadow

phases, dotted lines tHephase and dashed lines the" () andN~ (b)

phases. & 0.1565

lated selectingyy+=0 (the left ong and yy-=0 (the right

one. 0.1562 - : ! - :
We have checked that the nematics below the triple re- 0.62 0.65 0.68

gion are always stable with respect to spatial density modu- X

lations of any kind. In order to estimate the packing fraction : . : :

. . . FIG. 7. Phase diagram and two details of a polydisperse rod-plate mixture
at which these instabilities occur we solved EC{M) and with «=15 and length and breadth polydispersity =0.288 andAp
(44) using the density distributions”(\) of all the coexist-  =0.143, respectively.
ing phases along the borders of the triple coexistence region.
The left and right open circles correspond, respectively, to
the packing fractions at which the coexistifgy™ and N~ k=5, theB—N=* coexistences becom¢" —N~ coexistence
(the shadow phase in both casésse their stability to the through a second order phase transition ofBhghase to the
C*™ and C~ phases. Above these points the phase diagrarhl* [dotted lines in Figs. (b) and 7c)].

will possibly include coexistences between four phases: TheN™ andN™ lose their stability to columnar phases at
N~, N, andC™ or C* (the experiments of Ref. 15 find a relative high packing fractionfsee the dotted lines in the
similar scenarip upper part of Fig. @]. In both cases it is thé&~ phase

Figure 6 shows the density distribution functions of thewhich first becomes unstable with respect @ at the
phases coexisting at the points marked with full squares ilN"—N~ coexistencgthe N~ cloud on the left, marked with
Fig. 5a). As already discussed, the curves illustrate the higta full circle in Fig. 1a), and theN™ shadow on the right,
fraction of cubiclike particles partly responsible for the marked with an empty circle in this figuke
strong demixing this system exhibits. The figure also illus-  Figure 8 shows the density distribution functions corre-
trates the strong fractionation which takes place between thgponding to the point marked by a full square in Fi¢c)7
coexisting phases: the isotropic phase is rich in cubiclikeéThe distributions of theN™ and B phases are very similar,
particles, theN ™~ in plates and thél™ in rods. except for the fact that thd™ has a slightly higher propor-

In contrast, the phase diagram of the polydisperse rodtion of rods(and correspondingly less of plajegban theB
plate mixture fork=15 does not change qualitatively com- phase. It is clear from the figure that the proportion of cubi-
pared to the binary mixturécf. Figs. 7 and % the size and clike particles is negligible, so this mixture can be regarded
shape of the biaxial regions are similar and the general toas a trug(polydispersgrod-plate mixture.
pology of the phase diagram is basically the same. The only
|mp0rtant dlffere'nce(mln(.)r in terms of the size of the por- IV. CONCLUSIONS
tion of phase diagram it involvésappears just above the
biaxial; one can observe boB+-N" andB—N~ coexistence We have studied the effect of polydispersity on the phase
(the former occupying a larger regipras well as a triple diagrams of several variants of the Zwanzig model for liquid
coexistence zone separating thg¢see Fig. 7c)]. As for  crystals. We have first determined the spinodal instabilities of
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o6 — tically any composition. There are large regions of three
A \ phase and possibly four phase coexisterleeN[ —N* and
I-N~—N"—C%). These results agree with what is observed
in experiments with rod-plate mixtures with a high degree of
_ 04 r 7 polydispersity:®
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