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Phase diagrams of Zwanzig models: The effect of polydispersity
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The first goal of this article is to study the validity of the Zwanzig model for liquid crystals to predict
transitions to inhomogeneous phases~like smectic and columnar! and the way polydispersity affects
these transitions. The second goal is to analyze the extension of the Zwanzig model to a binary
mixture of rods and plates. The mixture is symmetric in that all particles have equal volume and
length-to-breadth ratio,k. The phase diagram containing the homogeneous phases as well as the
spinodals of the transitions to inhomogeneous phases is determined for the casesk55 and 15 in
order to compare with previous results obtained in the Onsager approximation. We then study the
effect of polydispersity on these phase diagrams, emphasizing the enhancement of the stability of
the biaxial nematic phase it induces. ©2003 American Institute of Physics.
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I. INTRODUCTION

Although the Zwanzig model was introduced long ago
a very simplified model to study the isotropic–nematic tra
sition in liquid crystals,1 the determination of its phase dia
gram, including all inhomogeneous bulk phases, has ne
been carried out so far. With the help of the scaled-part
theory ~equivalent to ay3 expansion!, developed for a vari-
ety of hard particle fluids2 including the hard parallelepiped
with restricted orientations which define the Zwanz
model,3 the phase behavior of the homogeneous bulk pha
of both the monocomponent fluid3 and binary mixtures4,5 has
been investigated. Also the the isotropic–nematic interf
has been accessible to calculations through a smoot
density approximation,3 which consists of evaluating th
bulk free energy at some smoothed density, following
same recipe of Tarazona for hard spheres.6

The usual second virial approximation~exact for freely
rotating models but only approximate for restricted orien
tion models! has recently been applied to the Zwanzig mo
in order to elucidate the bulk phase behavior of a polyd
perse mixture of hard rods.7 With an inhomogeneous versio
of this approximation different interfaces of a monodispe
hard rod fluid,8 as well as its polydisperse counterpart,9 have
been studied.9

Unlike for hard objects with free orientations, lik
spherocylinders, which have been extensively simulate10

there is only one simulation of the Zwanzig model in
square lattice,11 for parallelepipeds with dimensions 531
3D ~with D51, rods, or 5, plates!.11 The main reason for
this lack of simulation data is that any Monte Carlo mov
ment which includes reorientation of parallelepipeds to a
of the three directions has a very low acceptance ratio du
the huge overlap between particles as the length-to-bre
ratio and the density increase.

a!Electronic mail: yuri@math.uc3m.es
b!Electronic mail: cuesta@math.uc3m.es
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The second virial approximation of the free energy of t
Zwanzig model has also been employed to investigate
phase diagram of symmetric mixtures of rods and plate4

Stimulated by theoretical calculations made in the early 7012

which show that a binary mixture of rods and plates c
stabilize a biaxial nematic phase~in which the symmetry
axes of particles of different types point along mutually p
pendicular directions!, van Roij and Mulder studied the rela
tive stability of this phase against a nematic–nematic ph
separation.4 The authors calculated the phase diagram
different length-to-breadth ratiosk[L/D. They showed that
for k.8.8 the biaxial phase is stable in a relative small w
dow above a multicritical point. How the topology of thes
phase diagrams is modified when a scaled-particle appr
mation ~which includes higher order virial coefficients! is
used instead of the second virial is one of the open quest
which we will try to answer here. Another one is the infl
ence of polydispersity in the phase behavior of the mono
bidisperse Zwanzig model. This is most relevant since wit
recently derived a fundamental measure functional~FMF!
for hard parallelepipeds13 ~equivalent to the scaled-particl
theory for homogeneous phases!, we have shown that poly
dispersity may enhance the thermodynamic stability of a
axial nematic phase.14

There are recent experiments on true mixtures of h
rods and plates which show a very rich phase behavior,
cluding triple coexistence between an isotropic and t
nematics—each rich in one of the species—as well as in
mogeneous phases, like a columnar phase.15 This phase be-
havior has been quantitatively accounted for using the P
son approximation of the free energy functional of bina
mixture of rods and plates in the Onsager limit.16 Neverthe-
less, the long searched biaxial phase has not been foun
these experiments. An unavoidable ingredient of experime
is polydispersity. In Ref. 14 we have shown that this oth
wise undesirable element may cause the stabilization of
biaxial nematic phase. It is very important, though, that
system maintains rod-plate symmetry, in contrast with w

15
happens in the existing experiments.An open question in

4 © 2003 American Institute of Physics
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this work is the topology of the phase diagram at high pa
ing fractions. Addressing this problem requires to study
possible phase transitions to inhomogeneous phases,
smectic, columnar, and solid phases. The calculation
phase equilibria in polydisperse liquid crystals when one
the bulk phase is inhomogeneous is thus far a theore
challenge. There is only one such work, which makes us
an approximate functional for length-polydisperse para
hard cylinders to make two important predictions: the ex
tence of a terminal polydispersity beyond which the sme
phase is no more stable, and the enhancement of the co
nar phase stability.17 These results have been confirmed
simulations of freely rotating hard spherocylinders in the O
sager limit.18 The columnar phase stability for large polydi
persities have been also confirmed in recent experim
with suspensions of polydisperse platelike particles.19

The paper is organized as follows: In Sec. II we descr
both the model and the fundamental measure functional
will use to describe its free energy~A!; the equations for
phase equilibria between phases of a polydisperse sy
~B!; and the formalism to determine spinodal instabilities
mono-, bi- or polydisperse systems~C!. Section III describes
the phase diagrams of the Zwanzig model without~A! and
with polydispersity~B!, as well as the bidisperse rod-pla
model without~C! and with polydispersity~D!. Finally we
conclude in Sec. IV.

II. THEORY

A. Model

Let us consider a length-to-breadth polydisperse mixt
of uniaxial oblate and prolate parallelepipeds, with th
symmetry axes pointing along one of the three coordin
axes. Let us fix the volume of any particle to 1; thus ifl
5L/D is the length-to-breadth ratio~with L the length andD
the breadth! of a parallelepiped, then

L5l2/3, D5l21/3. ~1!

Let us definern(l) to be the density distribution function o
the species parallel to then (5x,y,z) axis, and let the tota
number density to be

r5E
0

`

dl r~l!, r~l!5(
n

rn~l!. ~2!

The ~temperature reduced! free energy density of a mul
ticomponent mixture is given bybFV21[F5F id1Fexc,
whereF id is the ideal part, whose exact form is

F id5(
n,i

r i
n~ ln r i

n21!, ~3!

i labeling different components, and the excess part,Fexc,
can be approximated by the FMF for hard parallelepiped13

namely,

Fexc52n0 ln~12n3!1
(nn1

nn2
n

12n3
1

)nn2
n

~12n3!2 , ~4!

where the weighted densities$na% have the form,
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n[r, n1

n5(
i

@rDi1r i
n~Li2Di !#, ~5!

n35(
n,i

r i
nLiDi

2 , n2
n5(

i
@rLi2r i

n~Li2Di !#Di . ~6!

Specializing the above expressions for our polydisperse m
ture and using Eq.~1! we obtain

F id5(
n
E

0

`

dlrn~l!@ ln rn~l!21#, ~7!

Fexc52r ln~12r!1
(nj2

n j1
n

12r
1

)nj1
n

~12r!2 , ~8!

j6
n 5E

0

`

l61/3@~l7121!rn~l!1r~l!#. ~9!

The pressure can be obtained from its definition

bP5(
n
E

0

`

dl@rn~l!Fn~l!#2F, ~10!

Fn~l![
dF

drn~l!
, ~11!

which in this particular case yields

bP5
r

12r
1

(nj2
n j1

n

~12r!2 1
2)nj1

n

~12r!3 . ~12!

B. Phase equilibria between homogeneous phases

To obtain the phase equilibria we follow the general p
cedure already reported elsewhere.7,20 Suppose that among
the n coexisting phases there arenI isotropic, nN nematic
andnB biaxial phases (n5nI1nN1nB). The global density
distribution ~the parent distribution! is fixed to be

P~l!5P0h~l!, E dlh~l!51, ~13!

so total mass conservation of each species is expresse
the lever rule

P~l!5 (
a51

n

gara~l!, ~14!

with ra(l) the total density distribution of phasea and ga

the fraction of the total volume it occupies~there is the ob-
vious constraint(aga51). Minimizing the free energy den
sity F with respect to the fraction of particles with length
to-breadth ratiol oriented along then axis, i.e., pa

n(l)
[ra

n(l)/ra(l), and using Eq.~14!, the equality of the
chemical potentials of each species in different phases,

bma~l!5(
n

ra
n~l!Fa

n~l!, ~15!

leads to the following expressions for the coexisting den
ties:

ra
n~l!5P0h~l!

e2Fa
n(l)

(bgb(te
2Fb

t (l)
. ~16!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The parent distribution we are going to use through
the paper is characterized by

h~l!5l21@z f ~l/k!1~12z! f ~lk!#, ~17!

f ~z!5K0~a!21 exp@2~a/2!~z21z22!#, ~18!

whereKn(a) (a.0) is thenth-order modified Bessel func
tion, and k.1. This choice is motivated by its rod-plat
symmetry forz51/2. The best way to appreciate this sym
metry is changing the variable to lnl: h̃(ln l)5lh(l) has
two identical humps~wider the smallera! centered at lnk
~rods of ‘‘typical’’ aspect ratiok! and2 ln k ~plates of typical
aspect ratiok21). The parameter 0<z<1 allows one to tune
the overall composition of the mixture, since the molar fra
tion of the rods is given byxr(z)5*1

`h(l)dl @and that of
plates byxp(z)512xr(z), of course#. Thus we can selec
polydisperse rods~plates! by settingz51 (z50). The mo-
ments of this distribution are given by ^lm&
5Km/2(a)K0(a)21@zkm1(12z)k2m#, explicitly showing
the symmetry of the mixture. A quantitative characterizat
of the polydispersity can be given if we determine the d
persion inL and D as obtained fromh(l) for z50 or 1.
This yields

DL,D[A^l2n/3&

^ln/3&2 215AKn/3~a!K0~a!

Kn/6~a!2 21, ~19!

wheren52 for DL andn51 for DD .
The number of independent moments in the set$r,j6

n %
which completely determine each coexisting phase is 3
and 7 for the isotropic, nematic and biaxial phases, resp
tively ~which amounts to a total of 3nI15nN17nB un-
knowns!. They can be obtained through the definitions~2!
and ~9!, together with the distribution functions~16!. The
remaining unknowns—then21 independentga’s—are cal-
culated from the equality of pressures in every phase. T
leaves the global dilution,P0 , as the control parameter. A
ternatively, we can fix an external pressure,P0 , and elimi-
nate P0 in terms of this new control parameter. AsP0 in-
creases, the fractions of volume of each phase change;
for practical purposes, it is computationally simpler to u
one of thega’s as control parameter and obtainP0 as a
function of it.

A particularly important case is the two phase coex
ence between a phase~sayb! which fills the whole volume
~cloud phase! and an incipient new phase~says! which fills
an infinitesimally amount of volume~shadow phase!. In a
cloud-shadow coexistence the parentP(l) coincides with
the distribution function of the cloud phase. Thenr and
(nj6

n are fixed for this phase, so the number of unknow
reduces by 3~the number of constraints!.

C. Spinodal instabilities with respect to
inhomogeneous phases

In order to be as general as possible in developing
formalism let us consider the problem of finding the con
tions for the stability of an arbitrary multicomponent syste
against spatial modulations of the densitiesr i ( i label the
species!. This way we can replace at the end( i→(n for the
monodisperse Zwanzig model and( i→(n*dl for the poly-
Downloaded 23 May 2003 to 147.96.22.23. Redistribution subject to AI
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The reason for so proceeding is that, as we will show la
the spinodal equations can be expressed in two diffe
ways, each of which suits one of the two cases.

The condition of equality of chemical potentials betwe
two phases is equivalent to the minimization of the gra
potential,

V5E dr H kBTF~$na%!2(
i

m ir i~r !J , ~20!

at fixed chemical potentials of each speciesm i , with respect
to the density profile of each speciesr i(r ). We specify this
grand potential for a general model whose free energy d
sity F has an excess part depending on the densities
through certain weighted densities

na~r !5(
i

@r i* va
i #~r !, ~21!

as it is the case of Rosenfeld’s fundamental measure theo21

In the definition ofna the symbol ‘‘* ’’ stands for the convo-
lution of two functions, i.e.,f * g(r )[*dr 8 f (r 8)g(r2r 8).

We are concerned with the case when one of the co
isting phases is homogeneous and the other one is inho
geneous, with its density profile consisting in a small pert
bation around the homogeneous phase with den
distributionr i , i.e.,

r i~r !5r i@11e i~r !#, e i~r !!1. ~22!

The result of minimizing Eq.~20! with respect tor i(r ) can
be cast as

r i~r !5r i expH 2(
a

@Dfa* va
i #~r !J , ~23!

whereDfa(r )5fa(r )2fa andfa5]f/]na . We are im-
plicitly using magnitudes without spatial variable argume
to denote homogeneous phase quantities. ExpandingDfa(r )
to first order ine i(r ) yields

Dfa~r !5(
b

fab(
j

r j@e j* vb
j #~r !1¯ , ~24!

wherefab5]2F/(]na]nb). Inserting Eq.~24! in Eq. ~23!
and expanding the exponential again to first order ine i(r ) we
arrive at the integral equation,

e i~r !52(
a,b

fab(
j

r j@e j* va
i
* vb

j #~r !, ~25!

which is handier to write in Fourier space,

« i~q!1(
a,b

fabVa
i ~q!(

j
r j« j~q!Vb

j ~q!50, ~26!

where« andV are, respectively, the Fourier transforms ofe
andv @with the usual definitionf (q)5*dreiqr f (r )].

Equation~26! gets clearer if written in matrix form. De
fining the functions

mi j ~q![(
a,b

fabVa
i ~q!Vb

j ~q!, ~27!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the matricesM̂ (q)[(mi j (q)) andP̂[(r jd i j ), and the vector
«(q)[(« i(q)), Eq. ~26! becomes

~ I1M̂ ~q!• P̂!«~q!50, ~28!

where I is the identity matrix. This linear system has no
trivial solutions if and only if

D~r,q![det@ I1M̂ ~q!• P̂#50. ~29!

This equation is suitable for the cases in which there i
small number of components, like the monodisperse Zw
zig model with only three components:n5x,y,z.

Alternatively we can multiply Eq.~26! by r iVg
i (q), sum

over i and define the functions

ug~q![(
i

r i« i~q!Vg
i ~q!; ~30!

then Eq.~26! becomes

ug~q!1(
a,b

fabnag~q!ub~q!50, ~31!

where we have introduced new functions

nag~q!5(
i

r iVa
i ~q!Vg

i ~q!. ~32!

Equation~31! can also be written in matrix form, but now
the indices run over the set of weights, not the compone
Hence, defining the matricesF̂[(fab) and N̂(q)
[(nag(q)), and the vectoru(q)[(ua(q)), Eq. ~31! be-
comes

@ I1N̂•F̂#u50. ~33!

Again this system has nontrivial solutions if and only if

D~r,q![det@ I1N̂•F̂#50. ~34!

This alternative characterization of the spinodal is suita
for polydisperse systems~actually, it is a generalization o
the formalism developed in Ref. 22 for homogeneo
phases!. The reason is that it replaces integral operators
finite matrices, in which the number of components is li
ited by the number of weights of the theory. For instance,
the polydisperse Zwanzig model with a free energy fu
tional given by the FMF derived in Ref. 13, functionsnab

take the form

nab~q!5(
n
E dlrn~l!Va

n ~q,l!Vb
n ~q,l!, ~35!

wherea,b50,(1x,1y,1z),(2x,2y,2z),3 and

V0
n~q,l!5)

k
w0~qkLnk!, ~36!

V3
n~q,l!5)

k
Lnkw3~qkLnk!, ~37!

V1,k
n ~q,l!5Lnkw1~qkLnk!V0

n~q,l!, ~38!

V2,k
n ~q,l!5@Lnkw1~qkLnk!#

21V3
n~q,l! ~39!

(k5x,y,z). Hereqk are the components of the vectorq, and
Downloaded 23 May 2003 to 147.96.22.23. Redistribution subject to AI
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Lnk5l21/31~l2/32l21/3!dnk , ~40!

w0~x!5cos~x/2!, ~41!

w3~x!52 sin~x/2!/x, ~42!

w1~x!5w3~x!/w0~x!. ~43!

As there are eight different weights,D(r,q) is in this case
the determinant of an 838 matrix.

Either way we express the equation,~29! or ~34!, the
spinodal instability condition of a homogeneous phase w
density distributionsrn(l) ~or simply rn in the monodis-
perse case! with respect to the transition to an inhomog
neous phase occurs at the values of the total densityr and
wave vectorq for which the functionD(r,q) first vanishes.
More precisely, this function has an oscillatory behavior a
function of q, and is positive as long as the homogeneo
phase is stable, so the spinodal corresponds to the sma
densityr for which the absolute minimum ofD with respect
to q equals zero. This amounts to finding, for a givenr, the
solutions to

“D~r,q!50. ~44!

When we later consider the rod-plate mixture we w
have to locate the nematic-biaxial phase transition. As it
continuous transition it can also be found as a solution to
~34! with q50 ~both phases are homogeneous!, using

rn~l!5P0h~l!
e2Fn(l)

(te
2Ft(l)

~45!

as the distribution functions of the nematic phases.

III. RESULTS

A. Monodisperse Zwanzig model

As a first step towards the calculation of the whole pha
diagram of the monodisperse~pure rods or pure plates!
Zwanzig model using the FMF of Ref. 13 we will determin
the isotropic–nematic (I –N6) coexistence curves as well a
the spinodals for the nematic–smectic (N6 –S6), nematic–
columnar (N6 –C6) and isotropic-plastic~orientationally
disordered! solid (I – PS) transitions, as a function of th
length-to-breadth ratiok. The 1 and 2 superscripts labe
prolate ~rods! and oblate~plates! parallelepipeds, respec
tively. If the transitions are first order, the location of th
coexistence curves will differ from that of the correspondi
spinodals. However, as the main concern of this paper is
effect of polydispersity, we defer the calculations of coexi
ence with and between inhomogeneous phases to a fo
coming publication.

We have obtained the spinodals for this model by so
ing Eqs.~29! and~44! using the monodisperse version of E
~45!. If we choose the nematic director parallel to thez axis,
then the N6 –S6 spinodals can be calculated settingq
5(0,0,q), whereas theN6 –C6 ones follow from takingq
5(q,0,0) orq5(0,q,0) ~both are equivalent due to the nem
atic symmetry!. For the I – PS spinodal all three previou
vectors give the same result.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Figure 1 shows the results of these calculations. We
serve in this figure that there is anI –N6 transition only for
k,0.210 andk.5.02. At those two limiting values ofk the
N1 phase is destabilized by aS1 at a packing fraction
r50.280, and theN2 by aC2 at a packing fractionr50.261
~remember the particle volume has been set to 1!. Also, the
N1 –S1 spinodal is always below theN1 –C1, and the
N2 –C2 spinodal is always below theN2 –S2 one. This is
what intuition tells us but, as we will see later, it is a pec
liarity of the monodisperse system. Despite this, all th
spinodal curves converge asymptotically to the same pac
fraction, r50.314, ask→` or k→0. This is precisely the
packing fraction at which the continuous freezing transit
occurs in a system of parallel hard cubes~k51!.23 The rea-
son for this is that upon increasingk the number of rods with
orientation perpendicular to the director becomes vanish
small, and then the system is, after rescaling thez direction,
almost equivalent to a system of parallel cubes. The sa
holds for plates upon decreasingk. What this means is tha
most likely the N1 –S1 and N2 –C2 transitions will be
metastable with respect to freezing in a large portion of
phase diagram. For 0.182,k,4.93 we have found anI – PS
spinodal instability. The peculiarity of this curve is that
exhibits strong oscillations as the aspect ratio changes. T
oscillations reflect the packing efficiency of randomly o
ented parallelepipeds as a function of their size~the better the
packing the lower the curve!.

The available simulation results for freely rotating ha
spherocylinders show that theI –S1 andN1 –S1 transitions
begin atk54.1 and 4.5, respectively10 @notice that for hard
spherocylinders the length-to-breadth ratio isk5 (L
1D)/D]. On the other hand, simulations of hard cut sphe
show that fork50.2 there is anI –C2 transition~the isotro-
pic phase might instead be a peculiar ‘‘cubatic’’ phase! and
for k50.1 anN2 –C2 one.24 We can see that despite th
different particle geometry and the restricted orientations
the Zwanzig model, the agreement with the thresholdk’s at

FIG. 1. Phase diagram~packing fraction,r, vs length-to-breadth ratio,k! of
the monodisperse Zwanzig model. Solid and dashed lines represent th
tropic (I ) –nematic (N6) coexistence curves. The dashed lines corresp
to the values for which the homogeneous phases are unstable with resp
the inhomogeneous ones. Dotted lines represent the spinodals of the d
ent homogeneous phases: each one is labeled with the corresponding
smectic (S6), columnar (C6) or plastic solid~PS!.
Downloaded 23 May 2003 to 147.96.22.23. Redistribution subject to AI
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which spatial instabilities destabilize the homogeneo
phases is rather good. Also the qualitative picture is simi
elongated rods form smectics, while flat disks form colu
nars, and more symmetric particles form solids instead
smectics or columnar. Thus, this simple model seems to c
ture the essence of the entropy driven phase transitions
tween phases with different symmetries and their relation
particle anisotropy.

The only existing simulation of the Zwanzig model h
been performed on a lattice model of parallelepipeds w
length-to-breadth ratios 15:3~k55! and 3:15~k50.2!.11 For
these k’s the authors findI –C2 for the disks and and
I – DS1 for the rods, where DS1 stands for a novel phas
called ‘‘discotic smectic’’ by the authors~in this phase the
axes of the particles point perpendicular to the normal of
smectic layers while there is no orientational order within t
layer!. The packing fractions they obtain for the transitio
are higher than those of the corresponding spinodals of
1, but they should decrease upon decreasing the lattice s
ing, as the results for the freezing of parallel hard cubes o
lattice ~occurring atr50.568 for edge-length 2 lattice spac
ings, atr50.402, for edge-length 6 lattice spacings, and
r50.314 for the continuum! illustrate.25 All this is again in
agreement with the phase diagram of Fig. 1.

B. Polydisperse Zwanzig model: Unimodal distribution

Let us study now the effect polydispersity has on t
phase behavior of the Zwanzig model discussed above.
have introduced polydispersity through the unimodal par
probability density resulting when settingz51 ~rodlike par-
allelepipeds! or z50 ~platelike parallelepipeds! in function
~17!. Before reporting the results we have obtained, a f
words on polydisperse phase diagram plots are on purpo

Generally speaking, plotting polydisperse phase d
grams would require an infinite dimensional space, for as
vary the fraction of total volume occupied by the coexisti
phases they change their composition. A phase diagram
that of Fig. 1 plots densities versus aspect ratios, thus ca
ing no information whatsoever about compositions. So
must restrict ourselves to a given composition, and this is
parent one, since all pure phases have this composition.
means that only cloud lines can be plotted, delimiting
gions where we can only know that the system is deco
posed into two or more coexisting phases. The result
sembles the coexisting lines of monodisperse phase diag
but the meaning is completely different. Although we cou
connect cloud points in the two lines delimiting the coexi
ence region, they are definitely no coexisting states.

Similar considerations hold for spinodal lines. We c
represent the spinodal of a system in a pure phase having
parent distribution as composition, but if the system reac
a cloud point an incipient shadow phase with a totally diffe
ent composition—hence a totally different spinodal line
coexists with it. If the density of this shadow phase is abo
its own spinodal line, the phase transition will not be stab

Having all this in mind we have solved the coexisten
equations of the isotropic and nematic phases and de
mined the spinodal lines of inhomogeneous instabilities fo
system with the parent distribution~17!. The results for the
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choice a51 ~corresponding to polydispersity paramete
DL50.288 andDD50.143) are shown in Fig. 2.

Apart from the usual broadening of the isotropic
nematic transition already observed for this model in Ref
we find a clear enhancement of the stability of the homo
neous phases i.e., the spinodal instabilities occur at hig
densities. This effect is more pronounced for theN6 –S6 or
N6 –C6 transitions. Another remarkable feature of Fig. 2
that the columnar phases are by far more stable than
smectic ones for any aspect ratio.

This general behavior is in agreement with the resu
obtained from both density functional theory for lengt
polydisperse parallel hard cylinders17 and computer simula
tions for length-polydisperse freely rotating hard spheroc
inders in the Onsager limit.18 Although in Ref. 17 some
strong approximations were made, such as the decouplin
the density profile asr(r ,L)5g(L)r(r ), and the effect of
fractionation between the nematic and columnar phases
ignored, the results agree qualitatively with the simulatio
both show a terminal polydispersity beyond which the sm
tic phase is no more stable, being replaced by a colum
phase~which tolerates a higher degree of polydispersit!.
The nematic–columnar transition is first order. While fra
tionation is indeed negligible in the nematic–smectic tran
tion, the smectic–columnar transition clearly segregates l
rods into the columnar phase.

It is interesting to notice that in the limitsk→` or 0
none of the spinodal lines tend to the density of the freez
of parallel hard cubes~k51!. The reason is that no trivia
scaling can be applied to a polydisperse system of perfe
aligned parallelepipeds to transform it into a system of p
allel hard cubes. On the other hand theS1 andS2 spinodals
tend to the same limiting density whenk→0,̀ , and so do the
C1 and C2 spinodals. The second virial term of the fre
energy is dominant for large~small! k’s; this and the rod-

FIG. 2. Phase diagram for polydisperse Zwanzig model. The distributio
aspect ratios is unimodal with the maximum atk. Polydispersity isDL

50.288 in length andDD50.143 in breadth. The lines have the same me
ings as in Fig. 1. Full circles mark the points above which the nematic cl
phase is unstable against columnar ordering; empty circles mark the p
above which the isotropic cloud phase coexists with a nematic shadow p
unstable against columnar modulations~the spinodal line of this nematic
shadow, computed with the corresponding aspect ratio distribution, is
plotted in the figure!.
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plate symmetry of the chosen parent distributions expla
this behavior.

C. Binary mixture of Zwanzig rods and plates

We have calculated the phase diagram~coexistence of
homogeneous phases as well as their spinodal instabilitie
inhomogeneous phases! for the binary mixture of rods and
plates withk55 and 15. The results fork55 are shown in
Fig. 3. Apart from the usualI –N6 transitions andN2 –N1

phase separations which coalesce in a multicritical point
see that the nematic phases increase their stability with
spect to the inhomogeneous ones as the relative compos
of the fluid tends to the equimolar mixture. Another impo
tant feature is that the biaxial nematic is not stable.

All these characteristics are also present in the ph
diagram obtained using a second virial approximation,4 but
there are important differences as well. The most promin
one is that the whole phase diagram is shifted down in d
sity, with all transitions and spinodals appearing belo
r50.4 ~those obtained with a second virial approximati
occur above that value4!. This result should not surprise i
one takes into account that in ay3 expansion the excess fre
energy is written in terms of the variabley5r/(12r),
which grows faster thanr. Another striking difference with
respect to the second virial approach is the rod-plate as
metry of the phase diagram, a consequence of the inclu
of higher virial coefficients—which do not share the symm
try of the second one.

We pass now to describe the loss of stability of the ne
atics with respect to inhomogeneous phases. The interse
between theN1 line of the I –N1 coexistence and the
N1 –C1 spinodal in the rod-rich part of the phase diagra
~marked in the figure with a full circle; the open circle co
responds to its coexisting isotropic phase! is consistent with
the existence of a first order phase transition between thI

f

-
d
nts
se

ot

FIG. 3. Phase diagram of a binary mixture of rods and plates withk55; xr

is the fraction of rods andr coincides with the packing fraction. Spinoda
and coexistence curves are represented by dotted and solid lines, re
tively. Dashed lines are coexistence curves in the unstable region. The c
ings between the coexistence curves and the spinodals are represente
full circles, and with empty circles their coexisting phases. Full squa
mark the crossover between columnar and smectic phases along the
odals.
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phase and an inhomogeneous~presumably columnar! phase.
@Recall that simulations on the lattice find a first ord
I – DS1 transition for parallelepipeds withk55 ~Ref. 11!.#
Nevertheless a definitive answer about the relative stab
between these inhomogeneous phases—including also
solid—can only be given after carrying out coexistence c
culations.

Increasing the fraction of plates~which in theC1 phase
have their principal axes oriented perpendicular to the dir
tor! seems to favor the smectic alignment of rods. This
sults in the intersection of theN1 –C1 and theN1 –S1 spin-
odals~marked with a full square on the right of Fig. 3!. In the
second virial approach theN1 –S1 spinodal is always below
theN1 –C1 one. At the plate-rich part of the phase diagra
the nematic exhibits a spinodal to theC2 phase, as usual in
discotic fluids.24 Increasing the fraction of rods beyond
threshold value~indicated with a full square on the left pa
of the phase diagram! makes the smectic more stable than t
columnar, which agrees qualitatively with the results fro
the second virial approach.4

The phase diagram fork515 appears in Fig. 4. Its mai
difference with the previous one is the presence of a ther
dynamically stable biaxial nematic phase in an inverted
angular right above the multicritical point. The window
limited to the left and to the right by continuous phase tra
sitions to uniaxial nematic phases, and to the top by aB–N1

coexistence which becomes aN2 –N1 phase separation a
density increases. As discussed in Ref. 4, the driving mec
nism which determines the preference of this system
phase separation instead of biaxial ordering is the larger
clude volume between unlike particles compared to tha
like particles~the rod-plate excluded volume divided by th
rod–rod one scales ask2/3 for largek!. When the gain in free
volume compensates the loss in mixing entropy~and this
strongly depends on concentration and composition! phase
separation occurs.

The slight asymmetry of the phase diagram is again
to the presence of higher virial terms in the free energy. T
second virial approximation predicts a small region of trip

FIG. 4. Phase diagram of binary mixture of rods and plates withk515.
Lines and symbols have the same meanings as in Fig. 3. Notice that g
the continuous nature of theB–N6 transitions, the spinodals are the tru
transition lines.
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coexistence between theN2, N1, andB phases right on top
of the biaxial phase region. The absence of this triple co
istence region in Fig. 4 is due to the asymmetry of the ph
diagram. Simulations of a mixture of prolate and obla
ellipsoids26 show a similar asymmetric phase diagram, on
tilted in the opposite direction~there is aB–N2 demixing on
top of the biaxial nematic, instead of theB–N1 of the
present model!, probably due to the different particle geom
etry. Despite the asymmetry, we should admit that fork515
there is good overall agreement between the second v
approach and ours.

We have not studied the changes an asymmetry in
mixture ~a difference in the volume of rods and plates, f
instance! would induce in the phase diagram. Intuitivel
asymmetry acts against the stability of the biaxial pha
something that is confirmed by a recent work27 which studies
a binary rod-plate mixture of freely rotating oblate and pr
late cylinders in the Onsager approximation. This work e
plicitly shows that the region of stability of the biaxial pha
decreases with increasing the asymmetry of the mixture~al-
though, according to this work, this phase can be found
highly asymmetry mixtures!.

With respect to the inhomogeneous phases, Fig. 4 sh
a remarkable behavior: Although pure hard rods in theN1

phase undergo a spinodal instability to a smectic one,
adding a tiny fraction of plates the instability takes place t
columnar phase. This phenomenon has already been
served in a different system, namely, in simulations of bin
mixtures of parallel hard spherocylinders.28 Although pure
parallel hard spherocylinders exhibit a continuous nemat
smectic transition, a binary mixture of them with length-t
breadth ratios 2 and 2.9 show a first order nematic–colum
transition instead. This result was explained by the poo
packing of rods of different length in the smectic phase
compared to that of rods of the same length. Borrowing
argument, in our rod-plate model the plates can fit into
interlayer spacing with their axes parallel to the smectic
rector as long as there are few of them; but upon increas
their molar fraction some of them are forced to get into t
smectic layers with their axes perpendicular to the sme
director, thereby destabilizing the smectic phase.

Finally, at the other extreme of phase diagram theN2

phase losses its stability to a columnar phase of plate
densities lower than those of theN1 –C1 spinodal.

D. Polydisperse Zwanzig model: Bimodal distribution

In this section we are going to study the effect of po
dispersity on the phase behavior of the previous rod-p
mixture. In Ref. 14 we have shown how polydispersity c
stabilize the biaxial phase even for mixtures with relati
small aspect ratios, likek55, for which Fig. 3 shows that the
biaxial phase is absent.

Apart from the increase in mixing entropy that polydi
persity carries, the other mechanism behind the enhancem
of stability of the biaxial phase is the decrease of the ratio
the average exclude volumes of like and unlike particles. T
excluded volume between two parallel rods with lengthsLi

and breadthDi ( i 51,2) is

en
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v rr 5~L11L2!~D11D2!2, ~46!

and the excluded volume between a rod with lengthL1 and
breadthD1 and a plate with lengthL2 and breadthD2 , with
axes perpendicular to each other, is

v rp5~L11D2!~L21D1!~D11D2!. ~47!

According to Eq.~1!, if the volume of all particles is set to
one, in terms of the length-to-breadth ratiosl i , Li5l i

2/3 and
Di5l i

21/3. Taking a double average ofv rr over
) i@h(l i)Q(l i21)# and of v rp over @) ih(l i)#Q(l1

21)Q(12l2) @h(l) is the parent distribution~17!#, and
fixing z51/2 ~the equimolar composition! we arrive at

^̂ v rp&&

^̂ v rr &&
5

1
2 1m21

2 1m1
212~m21m21m1m22!

1
2 14m21m112m22m2

, ~48!

where mb[*1
`dlh(l)lb/3. It can be shown numerically

that, for a givenk, the ratio~48! decreases with polydisper
sity ~i.e., with decreasinga!. Analytic expressions for this
ratio can be obtained in the limit of high particle anisotro
~k@1! and high polydispersity~a!1! with the constraint
ak2!1 ~in terms of the parametersDn , n5L,D, this con-
straint is equivalent to 1!Dn!Aln k, implying that the frac-
tion of cubic-like particles is vanishing small!. Using the
asymptotic expressions,

mb;
kb/3

ab/6~2 ln a!
, Dn;~2 ln a!1/2, ~49!

we obtain

^̂ v rp&&

^̂ v rr &&
;k2/3e2cnDn

2
, n5L,D ~50!

with cn a positive constant. This asymptotic relationship e
plicitly shows both the scaling of this ratio discussed for t
pure rod-plate mixture4 and the exponential attenuation
this scaling with polydispersity.

We have estimated the threshold value ofk ~denotedk* !
beyond which the biaxial phase begins to be thermodyna
cally stable, as a function of polydispersity. The results
summarized in Table I. Without polydispersity this value
k*56.9, smaller than the second virial estimation4 k*58.8.
This is an indication that three~and higher! body correlations
increase the stability of the biaxial phase. As we can se
Table I, k* decreases upon increasing polydispersity, an
lustration of the enhancement of stability of the biaxial o
dering induced by polydispersity.

TABLE I. Threshold values of the length-to-breadth ratio,k* , for the ap-
pearance of a biaxial nematic phase as a function of polydispersity,
pressed in terms of the parametersa, DL , andDD .

a DL DD k*

` 0.000 0.000 6.9
2.00 0.216 0.107 6.6
1.00 0.288 0.143 6.3
0.50 0.374 0.185 5.9
0.25 0.470 0.233 5.1
0.10 0.610 0.302 4.0
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In Fig. 5 we plot the phase diagram of this system
k55 and a50.1 ~corresponding toDL50.610 and DD

50.302). According to Table I for this parameter choice t
biaxial phase is thermodynamically stable, and this is clea
shown in Fig. 5~a!, where we can see a small window o
biaxial nematic just above the multicritical point. Figure 5~b!
is a zoom of the upper border of this window. There is
narrow region ofN2 –B coexistence limited from above by
N2 –N1 coexistence. The dividing line~the dotted line in the
diagram! represents a continuous transition between theB
and theN1 phases which coexist with theN2. This line has
no analog in the binary rod-plate mixture. To obtain it o
has to solve the equations for two phase coexistence a
values ofg in Eq. ~16! ~the volume occupied by one of th
coexisting phases! and then find the one for which th
B–N1 transition occurs.

The high density part of the phase diagram of Fig. 5~a!
was not determined in Ref. 14. The most remarkable fea
it shows is that pure phases are hardly stable; the diagra
dominated by coexistence regions. The reason is that p
dispersity is so high that the mixture has, beside rods
plates, a significant amount of cubiclike particles. This fav
entropic phase separation in the three different phasesI , N2,
andN1.

In the upper part of Fig. 5~a! there is a region of triple
coexistenceI –N2 –N1. The lines limiting this region were
obtained by solving the coexistence equations for the c
when one of the coexisting phases is a shadow phase~i.e., it
occupies a vanishing fraction of the total volume!. As an
illustrative example, if we takeg I50, gN25g, and gN2

512g and solve the coexistence equations for theN515
unknowns~see the discussion about phase equilibria in po
disperse systems in Sec. II B! we obtain the curve joining the
two points marked with full squares in Fig. 5~a!. The other
two curves limiting the triple coexistence region were calc

x-

FIG. 5. Phase diagram of a polydisperse mixture of rods and plates
k55 and length and breath polydispersitiesDL50.610 andDD50.302. Part
~b! is a zoom of the region right above the biaxial phase.
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lated selectinggN150 ~the left one! andgN250 ~the right
one!.

We have checked that the nematics below the triple
gion are always stable with respect to spatial density mo
lations of any kind. In order to estimate the packing fracti
at which these instabilities occur we solved Eqs.~34! and
~44! using the density distributionsrn(l) of all the coexist-
ing phases along the borders of the triple coexistence reg
The left and right open circles correspond, respectively
the packing fractions at which the coexistingN1 and N2

~the shadow phase in both cases! lose their stability to the
C1 and C2 phases. Above these points the phase diag
will possibly include coexistences between four phasesI ,
N2, N1, andC2 or C1 ~the experiments of Ref. 15 find
similar scenario!.

Figure 6 shows the density distribution functions of t
phases coexisting at the points marked with full square
Fig. 5~a!. As already discussed, the curves illustrate the h
fraction of cubiclike particles partly responsible for th
strong demixing this system exhibits. The figure also illu
trates the strong fractionation which takes place between
coexisting phases: the isotropic phase is rich in cubic
particles, theN2 in plates and theN1 in rods.

In contrast, the phase diagram of the polydisperse r
plate mixture fork515 does not change qualitatively com
pared to the binary mixture~cf. Figs. 7 and 4!; the size and
shape of the biaxial regions are similar and the general
pology of the phase diagram is basically the same. The o
important difference~minor in terms of the size of the por
tion of phase diagram it involves! appears just above th
biaxial; one can observe bothB–N1 andB–N2 coexistence
~the former occupying a larger region!, as well as a triple
coexistence zone separating them@see Fig. 7~c!#. As for

FIG. 6. Distribution functions at theNsh
2 – I –N1 ~a! and theNsh

1 – I –N2 ~b!
triple points of the phase diagram of Fig. 5~marked with full squares!. The
subscript ‘‘sh’’ denotes shadow phases. Solid lines represent the sha
phases, dotted lines theI phase and dashed lines theN1 ~a! and N2 ~b!
phases.
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k55, theB–N6 coexistences becomeN1 –N2 coexistence
through a second order phase transition of theB phase to the
N6 @dotted lines in Figs. 7~b! and 7~c!#.

TheN2 andN1 lose their stability to columnar phases
relative high packing fractions@see the dotted lines in th
upper part of Fig. 7~a!#. In both cases it is theN2 phase
which first becomes unstable with respect toC2 at the
N1 –N2 coexistence@theN2 cloud on the left, marked with
a full circle in Fig. 7~a!, and theN2 shadow on the right,
marked with an empty circle in this figure#.

Figure 8 shows the density distribution functions cor
sponding to the point marked by a full square in Fig. 7~c!.
The distributions of theN1 and B phases are very similar
except for the fact that theN1 has a slightly higher propor
tion of rods~and correspondingly less of plates! than theB
phase. It is clear from the figure that the proportion of cu
clike particles is negligible, so this mixture can be regard
as a true~polydisperse! rod-plate mixture.

IV. CONCLUSIONS

We have studied the effect of polydispersity on the ph
diagrams of several variants of the Zwanzig model for liqu
crystals. We have first determined the spinodal instabilities

ow

FIG. 7. Phase diagram and two details of a polydisperse rod-plate mix
with k515 and length and breadth polydispersityDL50.288 andDD

50.143, respectively.
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the homogeneous phases to the smectic, columnar or pl
solid phases for one component fluids of rods or pla
There is a general qualitative agreement with phase diagr
of oblate and prolate particles obtained from Monte Ca
simulations.10,24 We have also shown that even a small d
gree of polydispersity has dramatic effects on the transiti
to highly ordered phases~like the smectic or the columnar!.
In particular, we have shown that upon increasing polyd
persity the transition to the columnar phase of rods preem
the N1 –S1 transition, in agreement with simulations.29

Next we have obtained the phase diagrams of symme
rod-plate binary mixtures with length-to-breadth ratiosk55
and 15. While for largek’s the differences between thes
phase diagrams and those calculated with a second v
approximation4 are only quantitative, for smallk’s both
methods differ qualitatively. For instance, all the transitio
occur at packing fractions well below those obtained with
second virial approach, and sometimes the relative stab
between different inhomogeneous phases changes.

We have shown that the introduction of polydispersity
a rod-plate mixture in a very symmetric way enhances
stability of the biaxial phase even for as small an aspect r
ask55. For this case the amount of polydispersity needed
stabilize the biaxial phase is so high that the mixture
comes very unstable with respect to phase separation at

FIG. 8. Density distribution functions at the point marked with a full squ
in Fig. 7~c!. The solid, dashed, and dotted lines correspond to the cloudB,
shadowN1, and shadowN2 phases, respectively.
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tically any composition. There are large regions of thr
phase and possibly four phase coexistence (I –N2 –N1 and
I –N2 –N1 –C6). These results agree with what is observ
in experiments with rod-plate mixtures with a high degree
polydispersity.15
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