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We study the phase behavior of the Zwanzig model of suspensions of hard rods, allowing for
polydispersity in the lengths of the rods. In spite of the simplified nature of the nionid are
restricted to lie along one of three orthogonal ax#®e results agree qualitatively with experimental
observations: the coexistence region broadens significantly as the polydispersity increases, and
strong fractionation occurs, with long rods found preferentially in the nematic phase. These
conclusions are obtained from an analysis of the exact phase equilibrium equations. In the second
part of the paper, we consider the application of the recently developed “moment free energy
method” to the polydisperse Zwanzig model. Even though the model contains nonconserved
densities due to the orientational degrees of freedom, most of the exactness statezgantsng

the onset of phase coexistence, spinodals, and critical palats/ed previously for systems with
conserved densities remain valid. The accuracy of the results from the moment free energy increases
as more and more additional moments are retained in the description. We show how this increase
in accuracy can be monitored without relying on knowledge of the exact results, and discuss an
adaptive technique for choosing the extra moments optimally.2000 American Institute of
Physics[S0021-960800)50238-4

I. INTRODUCTION eter, «. By now minimizing the resultant free energy with
respect tay, its concentration dependence can be calculated.
Solutions of rodlike particles undergo a transition from arFrom this dependence the conditions for coexistence of the
disordered isotropic phase to an ordered nematic phase as tetropic and nematic phases can be determined.
concentration of rods is increased. In the isotropic phase the There are several difficulties in quantitatively comparing
rods have no preferred orientation, whereas in the nematigxperimental results from systems such as solutions of to-
phase there is a favored average alignment of the rods. Sugfacco mosaic virus with Onsager’s predictions. First, in ad-
a transition has been observed by Zochier solutions of gition to the hard core repulsion, the interaction between
rod-like V,0s, particles, and later by Bawden and rods often includes a soft repulsion due to electrostatic
co-workeré* in solutions of tobacco mosaic virus. In 1949, forces. Second, the rods are rarely rigid, and semi-flexibility
Onsaget showed that the ordering could be explained, atmyst be accounted for. To overcome these difficulties, Buin-
least for solutions of monodisperse long thin rigid rods, bying and co-worker® synthesized sterically stabilized beo-
considering only the competition between the excluded volymite particles. Buining and Lekkerkerkerand van
ume inFeractiorj apd the orientgtional entropy. The key to hi%ruggen, van der Kooij and LekkerkerRehen studied the
model is the distribution functior?(6), that represents the aqe behavior of the solutions of these particles, which can
fraction of rods with a given angular orientatiofi, with o 1odeled reasonably with a rigid hard rod interaction, with
respect to some director. In principle, this function can b€ rections arising from soft electrostatic repulsions and
determined self-consistently by minimizing the free energy;semi-ﬂexibility being negligible. However, there remains

however, the resultant non-linear integral equationH¢o) one further complication: as with most polymeric systems,
cannot be solved analytically. To progress further, Onsage[rhe particles are polydisperse

introduced a trial function with a single variational param- The Onsager approach has been modified to enable

phase diagrams for bidispefs&' and tridispers¥ systems,

ziElectron!C mail: nigel.clarke@umist.ac.uk in which the rods differ only in length, to be calculated. A

C)E:zgggr:‘:z :‘n“::l' ;“gz;a%’:&t:;;‘;i";fs rich variety of behavior has been predicted, such as widening
 be la of the region of coexistence, fractionation of the longer rods
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9Electronic mail: alessandro.speranza@kcl.ac.uk into the nematic phase, nematic—nematic coexistence, and
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re-entrant phases. Qualitatively, the first three of these are iproved systematically by retaining additional moment densi-

agreement with the experiments reported in Ref. 7 and 8, anties in the description.

the widening of the region of coexistence between phases The paper is structured as follows. In Sec. Il, we de-

appears to be a general feature of polydisperse systems. Dgcribe the polydisperse Zwanzig model, give its free energy

spite the obvious difficulties in trying to map a continuous (calculated within the second virial approximaticend de-

polydisperse system onto a bidisperse mixture, Merchant anidve the corresponding expressions for the chemical poten-

Rill'® have attempted to analyze the transition concentratiotials and the osmotic pressure. These results are used in Sec.

in solutions of polydisperse rodlike DNA in terms of the Il to study the exact thermodynamic behavior of the model.

theory presented in Ref. 10. It is clear that quantitative agreeln Sec. IV, we construct the moment free energy, discuss its

ment is still lacking. Generalization of the Onsager approaciproperties, and compare the results obtained from it with the

to continuous polydispersity is, however, far from simple.exact ones. Because the exact calculation of the phase behav-

The only attempts, to date, that we are aware of, have treatddr of the polydisperse Zwanzig model is feasible, it might

the polydispersity perturbativefy;'® this limits the validity =~ Sseem unnecessary to confirm these results using the moment

of the analysis to situations with rather narrow distributionsmethod. However, it is preciselgecausethe exact results

of rod lengths. are available that the Zwanzig model provides a useful test
Another approach to the problem of monodisperse rodcase for application of the moment method to systems with

like mixtures was adopted by ZwanzijHe restricted the nonconserved degrees of freedom. The conclusions drawn

orientations of the rods to be in one of three mutually pershould help us to apply the method to more complicated

pendicular directions. This enables the exact calculation o$ystemssuch as the polydisperse Onsager mpueéiere an

higher order virial coefficients, and the orientational distribu-€xact calculation of the phase behavior is infeasible. This

tion can be determined without approximations. In contras@ind other possible avenues for future work are discussed in

to the Onsager approach, the Zwanzig model may be readil$ec. V.

extended to polydisperse systems. For bidisperse mixtures it

has _alr(_aady been shown by Clarke and Mc_:LQisthat the " Il. DEFINITION OF THE MODEL

qualitative features of the phase diagram, with the exception

of the nematic—nematic coexistence, are similar to those pre- The Zwanzig model considers hard rods in the shape of

dicted by Lekkerkerketet all® The polydisperse Zwanzig parallelepipeds of length and with square base of edge

model therefore provides a useful starting point for underlengthD. In contrast to the full Onsager model, the orienta-

standing the effects of polydispersity on the phase behavidions of these rods are restricted to be along one of the three

of hard rod systems. Cartesian coordinate axes, X, y or z. We will assume that all
Further important motivation for studying polydisper- rods have the same diameter but that they are polydis-

sity, in this simplified model, is that it provides an interesting Perse inlength so there is a continuous distribution of rod

scenario for testing and extending the recently proposetengthsL. Introducing a reference lengtty and the normal-

“moment method” approach to the thermodynamic treat-ized lengthd =L/L,, we will focus on the Onsager limit of

ment of polydisperse systen{s:?° The moment method ap- long thin rods. This corresponds to lettifyyL,—0 while

plies to systems whose excess free energy depends only §8eping the normalized lengthsonstant. Unless a distinc-

somemomentf the density distribution describing a poly- tion between normalized Y and unnormalizedLl() lengths

disperse system; we show below that the Zwanzig modeheeds to be made explicitly, we will simply refer tas the

(treated within the second virial approximatjds of exactly ~ length of a rod in the following.

this form. By expressing the ideal part of the free energy ina  Because of the length polydispersity, the number densi-

similar form a “moment free energy” can be defined, which ties of the rods in the three possible orientations are specified

only depends on the given moment densities. This is a drasteY densitydistributions p4(l), with d=x, y, z; for a small

reduction in the number of densities required to describe theange of lengthgll, py(1) dI is the number density of rods

system, from the infinite number of degrees of freedom oferiented alongl and with lengths betweenand| +dl. The

the complete density distribution to a finite number of mo_ftotal number density distributiofirrespective of orientation

ment densities. The standard methods of the thermodynami¢3 then

of finite mixtures can then be applied to the moment free

energy to analyze the phase behavior. Although in general P(I):Px(|)+Py(|)+PZ(I)E% pa(l),

the results will be approximate, for systems with conserved

densities it has been sho¥fn?° that the cloud and shadow and integrating overr gives the total number density of rods:

points(which specify the onset of phase coexistence in poly-

disperse systemsspinodals, and critical points are all found p=f dl p(l)=2 f dl py(l). (D)

exactly In the case of the Zwanzigr Onsagermodel, how- d

ever, one has both conserv@dd lengthg and nonconserved Here and in the following, all integrals ovérun from 0 to

(rod orientations degrees of freedom. We show below that«. With these definitions, the density distributipg(l) over

the moment method can be extended to this kind of scenaridengths| and orientationsl can be decomposed as

and that most of the above exactness statements carry over.

We also assess the accuracy of the moment methodyin the Pd()=p()Pi(d)=pP()P(d), 2

region where it is not exact and discuss how it can be imwhere
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PA=p)lp m=¢/p=J dlIP(l)
is the normalized distribution of rod lengthsand
is then simply the average length of rods in the system, i.e.,
P,(d)= pa(h) the first moment of the rod length distributid(1).
p(l) Adding the ideal part of the free energyensity to Eq.

is the probability of finding a rod wittgiven length | in (4), we have for the total free energglensity

orientationd. Note thatP,(d) is the analogue of the orienta- _
tion distribution in the full Onsager model and obeys the f‘; dl pg(D)[In Pd(l)—1]+§ bda(Pp—bq). (6)

normalization _ L . . .
This equation is the starting point of our analysis. When we

2 P(d)=1 3 refer to “exac’F” results in the follqwing, we mean the exact
7 ! : thermodynamics of the model defined by the free energy Eq.
(6).
In the isotropic phaseP,(d)=1/3 for all d and|. In the Equation(6) shows that the free energy is a functional of
nematic phase, on the other hand, we h&e)=P(y)  the density distributiop4(l) overl andd. If we use Eq.(2)
<P(2) if we take the director to be along tleaxis. We  to write p4(1)=p(l)P,(d), we note an important difference
will nevertheless develop the theory of the model first forbetween the two factors: while the total density distribution
arbitrary orientation distributiongwith P(x)# P\(y)] be- (1) is conservedbecause the rods cannot change lepgth
cause this leads to somewhat more compact expressions, afié orientation distributio®, (d) is not(because the rods can
only specialize to the nematic case at a later stage. change orientation We separate out the respective contribu-
For simplicity, we only treat the model in the second tions to the free energy by writing
virial approximation.(In contrast to the case of the Onsager
model, this approximation does not become exact in the limif — J dl p(D[Inp(1)—1]
D/L,—0 here: higher order virial terms to not vaniéh.
The excess free energy is then essentially determined by the
excluded volume of two rods. If the rods hagreormalized +f dip(1) 2 PAINP(d)+ 2 da(d— g (7)
lengthsl andl’ and areperpendicular this volume is d d
For a givenp(l), the orientation distribution$,(d) (for
eachl) are then obtained by minimizin§ subject to the
normalization constraints Eq&3) (again, for each). Intro-
ducing Lagrange multiplierg(l) for these constraints gives

V&=2D(L+D)(L'+D)=2Il"(DL3)[1+O(D/Ly)],

while the excluded volume fgparallel rods

VPO=4D2(L+L") the minimization condition
=4(I+I’)(DL2)R=DL2(D(D/L ) 0 f+f di k()2 Py(d)
oL, 0 0 6P (d) T
is negligible by comparison in the limD/L,—0. As sug- =p(H[InPy(d)+1]+2(p— gl p(l)+ «(I)=0.

gested by the result for®*®, we chooseDL2 as our unit of
volume in the following, making all densities dimensionless
(p—>pDL§). If we also setkgT=1, the excess free energy

Solving for P(d) and eliminating the«(l) by using Eq.(3)
gives the orientation distributions

density becomegwithin the second virial approximation B () e2(dg=9)! e2¢d! @
| = = .
~ 2(dgr— ) 2¢q
f=2fdldl'H'[pxu)py(l'>+px<|>pz<l'> 2, et 2, e
+py(Np, (1] Inserting this result into the definition E¢5a) then gives
e three simultaneous nonlinear equations which can be solved
_ _ _ for the ¢q.
=2yt dxbrt bybo) = 2 dal =), “) To derive the conditions for phase coexistence in the
] polydisperse Zwanzig model, we need expressions for the
where we have defined chemical potential.(I)—which, due to the polydispersity, is
a function of the rod length—and the osmotic pressure. The
qu:f dl |pd(|)=f dlp(l)P(d), (5a) chemical potential
(h= >
b= ¢>d:f di1p(). (5b) ™ 5()
d

is obtained by functional differentiation of the free energy
Our choice of volume units implies thaD(Ly)¢4 and  Eq. (7) w.r.t. p(l). There is no contribution from the varia-
(D/Ly) ¢ are, respectively, the volume fraction of rods point- tion of P,(d) with p(I) because we have already minimized
ing in directiond and the total volume fraction. The ratio  the free energy w.r.t?;(d). This leads to
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u<|>=lnp<l>+§ Py(d)InP(d)

+2§ (¢— pa)Pi(d)] (9)
or, using Eq.(8),

w(h)=In p(|)—|n( ; e2<¢d—¢>'>. (10)

Clarke et al.

in the different phases; at phase coexistence, these must of
course all be equal. We thus have, in the most general form
of the conditions for coexistence &f phases, K variables
(threea?) and onev® per phase=1 ...K) and equally
many equations to solve: theK3conditions Eqs(13) for
chemical potential equality, thK—1 conditions Eqs(16)
for equality of the pressures, and the trivial normalization of
the phase volume fractiong,,v®=1.

It is easy to show that, just as in the Onsager model,
isotropic—isotropic coexistence is not possible in the Zwan-

The osmotic pressure can be written in terms of the fre€ig model with length polydispersity onlyThis would be

energy and the chemical potential; hence, using(Bg.

=1+ [ dlput)=p+3 6uo-d. @1

IIl. EXACT PHASE COEXISTENCE CALCULATION

A. Coexistence conditions

different if the rod diameterswere polydisperse as well;
compare Refs. 21-2AGiven the results for the bidisperse
case!’ it is also unlikely that nematic—nematic coexistence
could occur; this is in contrast to what has been found for the
Onsager modéP Intuitively, the difference can be explained
as follows: when a polydisperse nematic phase splits into
two nematics containing predominantly short and long rods,
respectively, it gives up entropy of mixing but gains orien-

We can now state the conditions for coexistence of twaational entropy. In the Onsager model, where the rod angles

or more phases, labeled lay=1 .. .K, into which a “par-
ent” phase with density distributiop(®)(1) is assumed to

are continuous variables, the gain in orientational entropy
can be arbitrarily large, thus favoring such a phase gflite

have split. From Eq(10), the equality of the chemical po- orientational entropy tends te as the orientational distri-
tentials between the phases is obeyed exactly if the densitidsition function tends to a delta functiorin the Zwanzig

can be written in the form

pO(H=R(M, exdagl] (12
with a function R(1) common to all phases and thef
obeying

af=2(¢ - ) +c. (13

Herec is an arbitrary constarfagain common to all phases
If the phases occupy fractions® of the total system vol-
ume, particle conservation implies

> v@p@(1)=pO1).

a

(14
This fixesR(l), giving
> exd eI
d

> 0@ exdal®l]
d/

p@(1)=p )

a’

The density distributions over rod lengthand orientations
d are then found from Eq2) and, using Eqs(8), (13), take
the simple form

ext aPI]

> @)y exp[afﬁ,)l]
d/

a’

P (1)=pO(1) (15)

Integrals over these distributions define, by Ed3, (5), the
values of the densities®® and volume fractiong® , ¢®
in all phases. These variables determine the pressures

M@=p@+ > (- o) (16)

case, on the other hand, the maximum gain in orientational
entropy iskgIn 3 (this being the difference between the en-
tropies of an isotropic and a fully ordered nematic phase
that nematic—nematic coexistence is disfavored.

We therefore now specialize to coexistence between an
isotropic (I) and a nemati¢N) phase. If we choose the di-
rector to be along the-axis, we then havep,= ¢, and ¢
=2¢4+ ¢,. Denoting

A=¢d,— dy= b~ (lsyi

the volume fractions of rods with the three possible orienta-
tions can be expressed as

b= dy=3(¢—A), ¢,=3(¢+24) (17

and the excess free energy and pressure simplify to

T=5(¢*-1?), (18)

[=p+ 5(¢*—A?). (19

Instead of numbering the phases &y 1,2, we label them
with superscripts | and N from now on. In the isotropic
phase, we havepy=¢'/3 for d=x,y,z (A'=0), and by
choosing the arbitary constaatin Eq. (13) asc=4¢'/13 we
can ensure that all the coefficient§ vanish. If, for the cor-
responding coefficients in the nematic phase, we write

N_ N
x_ay

the conditions Eqs(13) simplify to
a=35(¢'= "+ 4),
a,=5(¢'=¢N=34).

The condition Eq(16) of equality of the pressures, on the
other hand, becomes

N_
o o, az=a||,

(20

(21)
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4+ 2(g)2=pN+ 2[(pN)2— A2, 22 (20, (21), (22 for ), @, and p(‘_)). Alternatively, one can
interpretey and «, as being defined by Eq20) (21), and
Note that we have dropped the subscript “N” e, o, and  regardp(?, p', ¢', pN, ¢N and A as the underlying vari-
A because the corresponding quantities in the isotropic phasghles. Eqs(22), (23) then constitute six equations for these
are all zero. six unknowns, which can be solved numerically; this is the
If we denotev'=y andvN=1-y (so thaty is the frac-  approach that we adopt.
tion of the system volume occupied by the isotropic phase
our phase coexistence problem now takes the form of thre
nonlinear equation§20), (21), (22) for e, @, andy. The
densities and volume fractions appearing in these equations In the following, we will restrict ourselves to the case
can be found by specializing Eq4), (5), (15) to the case of where the rod lengths in the parent phase are distributed

E. Results: Cloud point and shadow curves

I-N coexistence: according to a Schulz distribution
I I O] (Z+l)z+l z
pzfonpm, (239 PO)= 1y gy "o~ (z+ 1)1 (29

This distribution is normalized and has an average rod length
¢'=f dllp'(1), (23D of m®=1. (Allowing other values oin(®> would not make
our treatment more general since the valuam®? can al-

ways be absorbed into a rescaling of the reference length
pN=| dIpMN(I) (239 i
' Lo.) The parameter controls the shape and width of the
distribution, and is taken to be nonnegative. A more intuitive
¢N:f dlipN() (239 ~ measure of the width of the parent distribution is the relative
' standard deviatior (usually called the “polydispersity};
defined by
A=fd||[puN(l)—pE‘(l)], (23¢9 ( 1
2= f dl |2P(°>(|)> —1. (26)
with [m(©)72
3p)(1) It is then easy to see that, for the Schulz distribution,
p(1)= £ , (242 (1412
3y+(1-y)[e +2e%'] o=(1+2)""%
For z—<, we thus have a monodisperse parent with O
M= 3p'(1)e (24b) ©) i i
P 3P ' andP™(I)=46(1—1). Aszis decreasedr increases and the
parent gets more and more polydisperse. Eol0, finally,
()= 3p'(he! (249 istribution | i i
i 3p ' the parent distribution is a simple exponential, aod
Ny — N N achieves its(for the chosen Schulz distributipbrmaximal
PN =pl(1)+2p(1). (240 00OV

In the above setting of the phase coexistence problem, To calculate the cloud point and shadow curves, we pro-
we specified a single parent density distributid®(1). We  ceed as explained in Sec. Ill A. For the isotropic cloud point
will normally be interested in results along a so-called “di- and shadow, we seg=1. In Eqgs.(24), we then have'(l)
lution line,” where the parent length distributioR®(1) = p©)(l). This of course makes sense: Only an infinitesimal
=p©(1)/p® is kept fixed while the overall parent density amount of nematic phase has appeared, and so the density
p@ is varied. Asp'© is increased from zero, we then expect distribution of the isotropic phase is only negligibly per-
to find a single isotropic phase firsy£1). At the isotropic  turbed away from the parent. In Eq23), the equations for
“cloud point,” an infinitesimal fraction of nematic phase p' and¢' then simplify to the trivial statemenjs=p(® and
will first appear; the densitpN of this nematic phase gives ¢'=p@m©@=p© and we only have to solve four equa-
the nematic “shadow.” On the other hand, starting fromtions for the four unknown®, pN, ¢N and AN. Con-
high densityp(® we will first see a pure nematic phase ( versely, for the nematic cloud point and shadow, we et
=0). On decreasing(®, an infinitesimal amount of isotro- =0. We then findpN(1)=p©(1) and pN=¢N=p® and
pic phase will appear at the nematic cloud point; the densityhave to solve the remaining four equations for the four un-
of the isotropic phase at this point gives the correspondingnownsp(®, p', ¢' andAN.
isotropic shadow. The two cloud points delimit the coexist-  The results for the cloud point and shadow curves are
ence region. For values pf% inside this region, an isotropic plotted in Figs. 1 to 4. In Fig. 1 we see that the coexistence
and a nematic phase coexist and occupy noninfinitesimakgion (the density range between the isotropic and nematic
fractions of system volume, witl decreasing from 1 to 0 as cloud point$ broadens quite dramatically as the parent dis-
p® increases. tribution becomes more polydisperse. The transition, which

Numerically, rather than changing® and findingy, it  is already strongly first order in the monodisperse case,
is easier to varyy between 0 and 1 and find the correspond-spreads out so that whern=1 the coexistence region spans
ing p(®). To implement this scheme, one only has to replacealmost an order of magnitude in density, frgn+0.54 top
pO(1) in Egs. (24) by p@(1)=p@P©O)(]) and solve Eqs. =3.96. As¢ increases, the nematic shadow curve moves
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FIG. 1. The isotropic and nematic cloud point curysslid) and their cor-

responding shadow curvedasheg showing the densities of the coexisting FIG. 3. The rod length distribution®(l) in the coexisting isotropic and

phases as a function of the polydispersityOf the two cloud point curves, nematic phases, at polydispersity=0.75 and for different fractions of

the isotropic one is the one with the lower density; it meets the isotropicsystem volume occupied by the isotropic phase. Bold dashedPRifi¢:in

shadow curve foor—0 as it must. The nematic cloud and shadow curves the nematic shadow at the isotropic cloud pomii’ 1. The distribution in

likewise coincide in this limit. the isotropic phase at this point is the parental ¢r@d solid line. As y
decreases through 0.75, 0.5, 0.25, the thin dashed and dotted lines
show—from bottom to top—the distributions in the coexisting nhematic and

rapidly toward lower densities, approaching the iSOtrOpiCiSOtmp_iC phases, respectively. At='0,.fina'lly(the nematic clouc_i pointthe
cloud curve. In Fig. 2, we show the average rod lengths irf*Pc 122 e areta enat dnbulon: he ol otied e shle
the nematic and isotropic shadow phases. As the polydispeputions to that of the parent.

sity increases, a strong fractionation effect is observed, with

long rods found preferentially in the nematic phase; this is in

qualitative agreement with results for the bi- and tridispersearent(shown by the bold solid line The fact that longer
Onsager modet:*? For o=1, for example, the average rods are found preferentially in the nematic phase can clearly
length of rods in the nematic phase’, is more than double be seen: For example, bkt 4 (i.e., at four times the average
that in the isotropic phasey', both at the isotropic and at the rod length of the parentP(l) in the nematic shadow phase
nematic cloud point(Note that at the isotropic cloud point, is almost an order of magnitude larger than in the isotropic
m'=m©®=1 andm">1, while at the nematic cloud point, cloud phase. Finally, we study in Fig. 4 the cloud point and
mN=m(@=1 andm'<1.) This fractionation effect can be shadow curves in a different representatfdinstead of the
seen in more detail in Fig. 3, where for=0.75 we have number density of the coexisting phasgss in Fig. 2, we
plotted the relevant rod length distributio§l). The bold  show their rescaled rod volume fractign=mp. This leaves
dashed and dotted lines shd¥l) in the nematic and iso- the cloud point curves$for which m=m(®=1) unchanged,
tropic shadow phases, respectively; the corresponding clousut does affect the shadow curvédong which, as Fig. 2
phases have, by definition, the same length distribution as the

1.0
1.0 : //
e 08
08 /// |
//
) 0.6 |
06 / ] b
© // 04
04 | / |
7
/ 0.2t
02t ] J
i
| 0.0
0.0 ‘ 0.0
0.0 1.0 2.0 3.0
m

FIG. 4. The isotropic and nematic cloud point cur¢sslid) and their cor-
FIG. 2. The average rod lengtins in the shadow phases are plotted as a responding shadow curvédashedlof Fig. 1 are replotted here, showing the
function of the polydispersityg. The dashed and solid curves give the (rescaledlrod volume fractionsp=mp of the coexisting phases rather than
results for the nematic and isotropic shadow phases, respectively. Note theteir densitiep. Of the two cloud point curves, the isotropic one is the one
the corresonding cloud phases are identical to the parent and therefore hawéth the lower¢; it meets the isotropic shadow curve fer~0 as it must.
average rod lengths equal nf®=1. The nematic cloud and shadow curves likewise coincide in this limit.
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©0)

FIG. 5. The densitiep of the coexisting isotropigsolid) and nematic  FIG. 6. The average rod lengths in the coexisting isotropit olid) and
(dashedl phases as a function of the parent dengif}), for polydispersity nematic m", dasheylphases corresponding to Fig. 5. The dotted line indi-
a=0.5. The isotropic and nematic cloud points, which delimit the coexist-cates the average rod lengti® =1 of the parent.

ence region, are located at the densities wiéiand pN meet the “dilution
line” p=p© (dotted, respectively. Outside the coexistence region, there is
only a single isotropidfor low densitiey or nematic(for high densities
phase with density distributiop®(l) (and therefore density(?)) identical

to that of the parent.

Finally, we can also study the evolution of the distribu-
tion functionsP(l) as the fraction of volume occupied by the
isotropic phasey, is varied. The results are included in Fig.

3. At the isotropic cloud pointy= 1) the isotropic phase has
shows, m can differ significantly fromm(®=1). Interest- the parental distributio(®)(1); as y is decreasedcorre-
ingly, the volume fractions of the shadow phases turn out tsponding to increasing parent density), this distribution
depend only weakly on the polydispersity in contrast to  shifts toward smaller lengths, evolving smoothly into the dis-
their number densitieecompare Fig. L In fact, the volume tribution at the nematic cloud poini=0. Proceeding in the
fraction in the nematic shadow phase does not even showraverse direction, the nematic phase has the parent distribu-
definite trend in its dependence on polydispersity, being dion at-y=0 and then changes smoothly into the distribution
nonmonotonic function ofr. at the isotropic cloud point ag is increased toward 1, shift-

We have not so far discussed the strength of the oriening toward larger rod lengths in the process.
tational ordering in the nematic phase. This can be charac-
terized by the order parametge= A/ ¢, which has the value
g=0 in the isotropic phase ang=1 for perfect nematic
ordering. It turns out that, due to the strongly first orderA. Constructing the moment free energy
nature of the I-N transitiorg is close to its maximal value of
unity for all polydispersitiesr, so we do not display it.

IV. COMPARISON WITH THE MOMENT METHOD

We now outline how the moment metH8d?° can be
applied to the polydisperse Zwanzig model. To construct the
moment free energy, one recognizes from Ep) that the
excess free energy of the modepecialized to isotropic or
_ ) ) nematic orientational ordeonly depends on the variables

~ We now turn to the properties of the isotropic and nem-, 4 - Both of these arenomentwf the density distribution
atic phases in the cc_)eX|stence region, i.e., fo_r parent denS|t|%sa(|) over lengthd and orientations
between the isotropic and nematic cloud points. Both phases
then exist in noninfinitesimal amounts, implying<@/<1.
Using the numerical scheme outlined in Sec. lll A, we then
obtain the results shown in Figs. 5 and 6. Figure 5 tracks the
densities of the coexisting phases as the coexistence region is
crossed(for 0=0.5). As expected, the densities interpolate
between the cloud and shadow phase densities at either end.. : :
and increase smoothly with ths parent density. Figure (?gfmed by the weight functions
shows similarly the variation of the rod lengths in the isotro- ~ wy(l,d)=1,
pic and nematic phases across the coexistence region. As L L
expected from Fig. 2, the average rod length in the nematic Wo(l,d)=1(84,,~ 264x— 7 0a,y)-

phasem", is always higher than that in the isotropic phasewe therefore callp, and p, moment densitiesAnother,

| . . . 1 N . L . .
m'. At the isotropic cloud pointm'=1 andm™>1, while at  trivial, example of a moment density is the total number
the nematic cloud pointn'<1 andmN=1; again the values density

inside the coexistence region interpolate smoothly between
th limits, with both aver rod length reasin th _

ese S, (O)t_)o average rod lengths decreasing as the P=Po:2 Jd|Pd(|)
parent density'”’ increases. d

C. Results: Inside the coexistence region

b=p1=2, fdlwlu,d)pdu),
d

A== [ il oy,
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which corresponds to the weight functian(l,d)=1. only enforces the particle conservation law Etd) for the
Even though thexcesdree energy chosen moment densitigs, while allowing it to be violated
~ o 2 o for all other details of the density distributigs(l). Physi-
f=3(p1—p2) cally, this corresponds to letting the density distributj(h)

“anneal” to its most likely shape for any given set of values
of the p;, with a “default shape” specified by(l). Such an
approach can clearly only be successful when combined with
a specific choice of (1), which we now discuss.

- By construction, the moment free energy E2g) is the

of the free energy = figeqrt f still contains all details of the  free energy of systems with density distributions of the form
density distributionpy(1). To construct a moment free en- Eq.(27). One therefore expects it to give exact results for the
ergy which depends only on the moment densities appearinghase behavior as long as the density distributions of all the
in f, we therefore need to transform this ideal part to a mo-coexisting phases are actually contained in the “family” Eq.
ment form. For this purpose, it is useful to add a term (27). Considering an isotropic parent, withogo)(l)
—3qfdl pg()Inr()=—fdl p(l)Inr(l) to the free energy, giv- =p(®(1)/3, we can ensure that this is true at least for the
ing parent by choosing(1)=p®(1)/3. This is the choice that
we adopt from now on, giving explicitly

depends on moment densities only, the ideal part

fgeam S | 1o pt) 1]

=> f dl py(l) |n@—1}+’f.
? " pall)= %pwmexp[z Awi(l,d) 29
The additional term is linear in theonservedensitiesp(l) '
and therefore has no effect on the exact thermodynamictr the family of density distributions and
described byf. [This would not be true if we had replaced
r(l) by ad-dependent quantityy(l), becausepy(l) is not = f . 1 (0) W
conserved.For the moment method, on the other hand) P % diwill.d)zp (I)ex;{; Aw(Ld)] (30

turns out to be crucial. The key idea is to allow violations of
the particle conservation rule E@L4) as long as they do not
affect the moment densities appearing in the excess free e
ergy (¢=p; and A=p,, in our cas¢ The intuitive
rationale—to be verified posteriori—is that phase behavior

for the relation between the Lagrange multipliassand the
moment densitiep; . With this choice, the isotropic cloud
B'oint and corresponding nematic shadow will be found ex-
actly by the moment method: At that point, the parent is only
negligibly perturbed because only an infinitesimal amount of
-the nematic phase has appeared, while the nematic phase
fiself is related to the parent by exactly the kind of Gibbs—
Boltzmann factor appearing in ER9).

To see more formally why the moment method gives
exact results for the isotropic cloud point, let us write down
the resultant phase coexistence conditions and show that they

then obtained by minimizin§at given values of the moment
densitiesp; (i=1,2). Using Lagrange multipliers; to fix
these values, one finds that the minimumfobccurs for
density distributions of the form

are equivalent to the exact conditiofpgarticle conservation
pa(l)=r(l)ex Z Awi(l,d) (27)  violations apait Associated with each of the moment den-
sitiesp; is a moment chemical potentigl = of .o,/ Ip; - Us-
and the corresponding minimum value is ing the Legendre transform propertisf f,,,,, one finds
_ 3 ot 4
fmom_zi Nipi—potf. (28) M1=N1+ (9—=7\1+ SP1s (313
P1 3
This expression defines the moment free energy. Note that, P 4
from Eg. (27),_ the moment densities are related to the o=yt —=Ny— =py. (31b
Lagrange multipliers by Ip2 3
Because, is conserved while, is not, ., must be equal in
Pi:%: f dlw;(l,d) r(I)ex;{}j: 7\jo(|,d)}- all coexisting phases, whilg, must actually be zero:

(a) — (a) —
Inverting these relations determines Mjen terms of thep; ; pi'=c, py =0 foralla, (32)

the moment free energy E8) thus depends on the mo- wherec is a constant common to all phases. To compare
ment densitiep; only, as desired. We can therefore use it t0these conditions with the exact conditions EG), (13) for
find phase equilibria, simply by applying the usual methodsequality of the chemical potentiajs(l), we write the den-

for the thermodynamics of systems with a finite number Ofsity distributions Eq.(29) for the different rod orientations
densities[In our case, this means minimizifg,or(p1.p2)  explicitly:

over the nonconserved densipy and then performing a

double tangent construction with respect to the remaining  p(1)=p,(1)= 5pO(1)et17*2)!,
conserved density,.] But the results will generally not be

exact, because the construction of the moment free energy p, (1)=p,(1)=p,(1)= 5pO(1)e*17*2/2).
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These are of the form of Eq12) if we identify addition of new moment densities has the effect of extending
oy _ the family of density distributions that are accessible; the
== ay= N hal2, = az =Nt g, B3 exact distributiond Eq. (15)] in the coexisting phases can
Using Eq.(13), coexisting phases calculated from the mo-thus be approximated with arbitrary accuracy as the number
ment free energy therefore have eq(etac) chemical po- of moment densities is increased. More explicitly, this can be

tentialsw (1) if seen as follows. Because the additional moment dengities
@11 (@ @ @ . (&) 1 AL (i#1,2) do not appear in the excess free energy, their asso-
N HNT=2(h = ) o= 5(— VA +c, ciated moment chemical potentials are simply=X\;. These

must be equal in all phases, so we can write the density
distributions in coexisting phases predicted by the moment

in all phases. But from Eqg31) one easily sees that these Method as

conditions are equivalent to thogeqg. (32)] derived from the 1

moment free energy, as promised. For the condition of equal-  p{(1)= §P(O)(|)GXF{E Aiwi (| ,d)}

ity of pressure in all phases, it is even easier to see that the 1Lz

moment free energy gives the correct answer: one finds » F{
ex

)\(la)_ %)\(za)zz(d,g(a)_ d@)+c=2(—2¢p@-A@)+¢

s s > A@wi(l,d)}.
=~ fmomt prsat para=po+ 5(p1=p2), =12

which is exactly the same as the result in Et) derived ~COMparing with Eq(12), and bearing in mind the identifi-
from the original free energfi Remember that, in our mo- Cation !Eq.(33), we see that the. moment met'hod essentially
ment density notationge=p, p1=¢, andp,=A. approximates In(®) [whereD is the glenomlnator on the
We have thus shown that coexisting phases calculatefin-S- of Eq.(15)] by a linear combination of the additional
from the moment free energy satisfy the exact phase equilip¥€ight functions. Sinc® depends ot only (not ond), all
rium conditions of equal chemical potentials and pressuredN€se weight functions can be chosen todsedependent;
If the phases also obey the exact particle conservation cod'® corresponding moment densities are thus conserved. A
ditions Eq.(14), they therefore give the exact solution of the Particular additional moment density that we will always re-
phase coexistence problem. This is the case at the isotropi@in iS the overall density,, with weight functionwq(l)
cloud point, because one of the phases is then identical to tig 1 This guarantees that the dilution line(l)=const
isotropic parent, and the othénematio phase is infinitesi- < 2 (1) =€"0p((1) for the parentp®)(l) is contained in
mally small. As stated above, this point will therefore beth® family Eq.(27), and thus simplifies the calculation of
located exactly by the moment free energy method. Thé‘loud points and _shadows._ The optw_nal ch_0|ce of the remain-
nematic cloud point, on the other hand, will not be foundind additional weight functions(1) (i=3) is less clear cut
exactly: on the high-density side of this point, the density2nd is discussed further below. One thing we can say already
distribution of the single nematic phase pg(l) at this point, however, concerns the Iaﬂwymp{otllcs: !t is
=pO@(1)P,(d), with P,(d) obeying Eq(8)], will notin gen- €Sy to see that, for largeIn(3/D)=c,+c,l +e ¢, with
eral be a member of the family E€R9). constantscy, Cz, Cs, and up to terms which are exponen-
In Refs. 18, 19 it was shown that the moment free enlially smaller. The first two contributions are covered by the

ergy allows one to determine exactly the onset of phase cgVeight functionswg, wy, w», so all other weight functions
existence(cloud point and shadowthe spinodals and the Should be chosen to decay exponentially for lakgeae co-
critical points of a polydisperse system with conserved den&fficientcs of this decay is not knowa priori, however.
sities. In our above discussion, we have shown that for a
system with nonconserved degrees of freedtim rod ori- 5. Results
entationsg, the onset of phase coexistence is still located ex-"
actly under the following condition: in the single phase re- We show in Fig. 7 the cloud point and shadow curves
gion from which coexistence is approached, the parent musibtained from the moment free energy with different num-
not exhibit any ordering of the nonconserved degrees of freebersn of moment densities retained. As explained above we
doms (which means in our case that it must be isotrppic always keep, beyond the “essential” moment densijgs
One can show that this conclusion holds quite generally, andndp,, the overall number density,, so the smallest value
that under the same restriction spinodals and critical pointsf n that we consider is:1=3. For largern, the additional
found from the moment free energy also remain exact. Weaveight functions were chosen to be exponentials with in-
thus conclude that the moment method remains useful evesreasing decay constants,.;(I)=e ' (j=1...n-3).
in systems with nonconserved degrees of freedom. This form is consistent with the expected exponential behav-
To improve the accuracy of the moment method in theior for largel; the coefficient was chosen as=0.5 by trial
regions where it is not exadbeyond the isotropic cloud and error. As expected, the isotropic cloud point curve and
point), one can simply retain additional moment densities inthe corresponding nematic shadow are found exactly already
the moment description, defined by weight functionsfor n=3. For the nematic cloud point curve and the isotropic
w;(l,d). The above construction of the moment free energyshadow, deviations from the exact results become apparent
generalizes directly to this case: the expressions B2, for larger polydispersitiesr; as expected, these deviations
(29), (30) remain valid as long as the sums oveare ex- decrease as, the number of moment densities retained, in-
tended appropriately. From E9), one recognizes that the creases.
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FIG. 7. Cloud point and shadow curves found using the moment methodF!G. 8. The densitiep of the coexisting isotropi¢solid) and nematic
The exact resultécompare Fig. Lare shown in bold for comparison. Even (dashedi phases as a function of the parent dengif), for polydispersity
when only the minimal number of moment densities=(3) is retained in ~ 0=0.5. We show here the results calculated from the moment method with
the moment free energy, the isotropic cloud point and corresponding nemR=3,4,5 (thin lines, and the exact results of Fig. ®old lineg. As ex-
atic shadow are found exactly; the moment method results therefore overlagected, the densities beyond the isotropic cloud point are not exact, but
the corresponding exact curves. The nematic cloud point and isotropibecome increasingly more accurateras increased. The results for=5
shadow are not found exactly, but their accuracy increasesiadicated by are indistinguishable from the exact ones on the scale of the plot.
the upper row of symbaJsncreases. The other symbols show the points on
the moment method curves where the log-erfofirst reaches the value
10 * as¢ is increased from zero; see text for discussion.

properties of coexisting phases inside the coexistence region.

In Fig. 8, we therefore show the analogue of Fig. 5 for the

As noted in the Introduction, for the polydisperse Zwan-moment method: the densities of the coexisting isotropic and
zig model that we are considering the moment method is ngiematic phases in the coexistence region, as a function of the
really needed because the exact phase coexistence equatidagent density(?). Again, exact results are obtained only at
can be solved directly. However, for more realistic modelsthe isotropic cloud point; but as the number of moment den-
(such as the polydisperse Onsager model, with unrestrictegities, n, is increased, the results across the whole of the
rod orientationy this will not be the case. One thus needs tocoexistence region become progressively more accurate.
be able to assess the accuracy of the moment metithdut We compare different choices for the additional weight
knowing the exact results beforehand. In Ref. 20, the followfunctions in Fig. 9, in terms of the dependence of the log-
ing quantity was proposed for this purpose: for any phasérror d onn at a point deep within the coexistence region of
coexistence calculated from the moment free energy, one cdhe phase diagram. Results for two sets of additional weight
work out the total density distribution over rod lengths, functions are shown. The first set consists of the exponential
po)=Z0@p@() =2, w@p@(1). The quantity weight functions considered above. For the second set, we
In pior(1)/p©(1) then measures how strongly particle conser-chose increasing powers of, wa,(I)=11"te ¢ (]
vation of rods of length is violated; taking the square and =1 ...n—3). Note the exponential factor, which ensures
averaging over the normalized parent distributiBf)(1)
=pO(1)/p©® defines the “log-error”

Pl |* 10
5=f dl P(O)(I)( In =% ) . (34)

p) -
For small violations of particle conservation,
IN prot(1D/pO(1) =~ pioi(1)/p(1) — 1, and we can think of/s 107
as the root-mean-squared relative deviation betwgg(l) o
and p©(1). In Fig. 7, we indicate by the lower symbols on 107
the nematic cloud point and isotropic shadow curves where,
as the polydispersity is increased from zer@ first reaches 107
the value 10“ (which corresponds to an average violation of
particle conservation of 1% The fact that the symbols lie »

essentially on the curves with the exact result shows éhat
provides a good indicator of the accuracy of the moment
method?° adding moment densities unti<10~* ensures

that the results are essentially indistinguishable from the exEIG. 9. The dependence of the log-erréron the numben of moment
densities retained in the moment free energy, at the pdh&2, 0=1 in
act ones. - ) . .
. . (iw phase diagram. The two lines correspond to different choices of the
Beyond the calculation of phase boundaries, one woulGggitional weight functions: exponentidbolid) and power-exponential

also like the moment method to give reliable results for thedasheit see text for precise functional forms.
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the required asymptotic behaviarwas again chosen as 0.5. 107
We call these weight functions “power-exponential.” \

In this example, the exponential weight functions are 10° AN
seen to lead to a faster decreasedafith n. However, fur- \\
ther experimentation with other choices of weight functions 10° N
may well lead to even better results, and it would clearly be « N
desirable to have a more systematic way of constructing op- 10 , \\\
timal additional weight functions. The following adaptive » ' N
approach is a first step in this directi¢see also Ref. 20 107 ¢ i T
Consider a given point in the phase diagram, characterized in B | | | .
the present case by the densit{’ of the parent and its 0 T 2 3 a4 o ! 5 3
polydispersityos. Performing a moment method phase equi- number of iterations pumber of iterations

librium calculation without additional weight functions, one
will find a certain Iog—lever rule violation |ptot(|)/P(O)(|) FIG. 10. The dependence of the log-ergbon the number of iterations of

o . . . the “adaptive” weight function algorithm described in the text, at the point
(called “log ratio” for short in the following. One then p@=2, o=1 in the phase diagram. Left: using four exponential basis func-

expects that adding a weight functipws(l), in our casé tions; right: using seven power-exponential basis functions. Dotted lines:
which has the samé&dependence as this log-ratio should Value of § reached by the “brute-force” approach where all basis functions

significantly reduce the log-error: it extends the family Eq.are retained as weight functions.
(29) of density distributions “in the right direction.” Of
course, constructing/;(l) to fit the log-ratio exactly would
be computationally costly. Instead, we represent it as a line
combination=c, i, (l) of some simple basis functiong(l).
These could be the exponential or power-exponential fun
tions used above, for example. The coefficiantare chosen
to minimize the squared deviation from the log-ratio
(weighted by the normalized parent distributipn

rule for p; obviously follows from that folp; andp,.) We
%re now back to a situation with only a single additional
weight function and can repeat the process: obtgj@l) by
Cfitting to the current log-ratio, rerun witp; and p;, com-
bine wg(l) and wy(l) into wg(l) and so on. This method
avoids the computational problems associated with using a
large number of additional moment densities; indeed, it re-
2 quires at most two additional weight functions at any time.
f dl p(O)(|)(2 et —In Prot 1) _ The pumber of basis functions, howe\{er, is unrestricted in
K pO(1) principle and can feasibly be made quite large. In fact, one
can show that for an infinitely large set of basis functions,
This is a straightforward weighted least squares problem, angthich allows arbitrary functional forms of the log-ratio to be
the ¢, can easily be found in closed form, thus determiningfitted, the method must converge to the results of the exact
ws(1). One can now repeat the phase equilibrium calculatiorphase equilibrium calculatiof@assuming it converges at all
with the momenp; defined byws(1) included, and fit a new For finite but sufficiently large sets of basis functions, one
weight functionw,(l) to the resulting log-ratidwhich is  thus expects excellent approximations to the exact results. As
expected to be rather smaller in magnitude than bgf&te-  long as the set of basis functions is sufficiently “flexible” to
peating this process should lead to a steady decrease of thpproximate thd-dependence of the log-ratio, the precise
log-error §. However, a large number of additional weight choice of the basis functions should also be relatively unim-
functions may still be required befoi® reaches an accept- portant, thus reducing the effect of the remaining heuristic
ably small value, and this can cause numerical probfems. element of the method.
To avoid this problem, we note from the discussion at the In Fig. 10, we show the results for the adaptive method
end of the previous section thatsingle additional weight just described, at the same point in the phase diagram as in
function can reproduce the exact results within the momenFig. 9. As basis functions we considered the exponential and
method, if only itsl-dependence can be found appropriately.power-exponential weight functions described above. The
Rather than keeping a large number of additional weightumber of basis functions was chosen such thdtnifthe
functions, we can thus continually adapt a single weightprevious nonadaptive, “brute-force” approachll basis
function, as follows. We choose the first additional weightfunctions are retained as additional weight functions, the log-
functionws(1) by fitting the initial log-ratio, rerun the phase erroré is less than 10°. As can be read off from Fig. 9, this
equilibrium calculation withps included, and fit a “tempo- leads ton—3=7—-3=4 exponential basis functions amd
rary” additional weight functionw,(l) to the resulting de- —3=10-3=7 power-exponential basis functions. The cor-
creased log-ratio. With botps and p, included, we again responding “brute-force” values of are shown as horizon-
run the calculation; this produces values of the Lagrangeal lines in Fig. 10. They provide natural baselines for the
multipliersA 3 and\ 4 (which, being associated with moment results of the adaptive method: because the latter only retains
densities not appearing in the excess free energy, are cora-single additional weight functiofa linear combination of
mon to all phases The key point is now that if we merge the basis functions it can obviously do no better than the
ws(l) and wy(l) into the linear combinationw(l) brute-force method which allows the coefficients of all basis
=NaWs3(l) +N4wy(l), and discardv,(l), repeating the cal- functions to be adjusted individually. Figure 10 confirms
culation would give exactly the same resultadll moment this; the adaptive method converges after a few iterations to
phase equilibrium conditions are still satisfied, and the leven value of 6 above the brute-force baseline. While the
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rods are restricted to lie along one of three orthogonal axes.
In spite of this drastic simplificatioficompared to the On-
sager model, where rod orientations are unrestrictée re-
sults we obtain are in qualitative agreement with experimen-
tal observationd® the coexistence region broadens
significantly as the polydispersitythe width of the rod
length distribution of the parenincreases; fractionation is
also observed, with long rods found preferentially in the
nematic phase. These conclusions were obtained from an ex-
act analysis of the phase equilibrium equations, starting from
the free energy of the model within the second virial ap-
proximation.

At this point, we pause briefly for a somewhat more
detailed comparison with experimental observations. Buin-
ing and Lekkerkerkérfound that the rod volume fractions at
the isotropic and nematic cloud points of their system were
¢'=4.7% andpN=18%, respectively. For a monodisperse
system, within our theroretical framework, one would predict
FIG. 11. Moment free energfom versus the “essential” moments densi- that ¢'~6% and¢N~10% for the experimental rod dimen-
ties py and p,, for a Schulz parent withr=0.5 and densit}_p(o):O.QSQ sionsD~10 nm andL,~200 nm(see Ref. } these num-
corresponding to the isotropic cloud point. Constant and linear terms havE)ers can be read off from Fig. 4, bearing in mind that the
been added td,,,,, to make its tangent plane at the parémipresented by . .
the pointp,=p©@m©=0.959, p,=0) coincide with thexy-plane. As ex. ~ volume fractions shown there are rescaledlyD. This
pected, this tangent plane touches the free energy surface at a second poi@@nfirms again that polydispersity broadens the region of co-
the nematic shadow, whose valuespgfand p, are found exactly. existence.

Buining and Lekkerkerkérthen compared their results
. , . . with the predictions of a bidisperse Onsager modehg
slightly larger final value ofs is, of course, a disadvantage, hard rods of two different lengths; andL,). They chose

the adaptive method more than makes up for this by bem%Z/Ll:Z.S and assumed that there were 25 times more short
much faster and numerically more stable. We therefore plan

i : - . .. rods in the system than long ones. This choice, which corre-
to study this method in more detail in future. In particular, if ponds to a polydispersity of~0.27, was made in order to
one Is i_nterested in pe_rforming calcula_tio_ns fo_r a number Offeproduce a striking feature of- th;—:- experimental observa-
Z(r)r:ni 'Cvégfepglaeszedéz%%agnt%: dallrl:r']?nishcg’ri;%roﬁé_ tions: As the overal(parenj volume fraction of rods was

Pie, . . ne p . . increased across the coexistence region, the rod volume frac-
could imagine a dynamical version of the algorithm which_. "~ h ic bhasde d h L
adapts the single additional weight function whenever a;:\?g ]'c:: :o?[hnee?lfst Iecr\?eozlivolucrr::?‘?ac?g\;lvse\\l/\?ar\:st ﬁoqrg'al'rr:gabi d
threshold value of the log-erraf is crossed. As long as the isperse Onsager theory with parameters aspabc;vean q
chosen set of basis functions is sufficiently powerful, this

= i Im 0 N% 0,
should lead to uniformly precise results across the whol§ th)o nm i)ft‘idlc_tiﬁt 1_2/0 adnd¢ ?7 /OI fo(rj thevvolun;]e
phase diagram. ractions at the isotropic and nematic cloud pointsuc

Finally, we illustrate in Fig. 11 the geometrical intuition higher than observed. The mismatch cannot just be due to

provided by the moment free energy. We plot, as a errors in estimating the rod dimensiofwhich could affect
function of the “essential’” moment deﬁsitiesl pom for a the overall scaling of the volume fractiondecause the pre-
) 2

- dicted ratiogp"/ ¢' is also too small.
parentp(©)(1) whose density was chosen to be exactly at the o .
isotropic cloud point. As expected, the tangent plane drawn  Buining and Lekkerkerkéracknowledged that the dis-
at the parent touches the surface at a second point: the nefff€Pancy might be due to the fact that their system was in
atic shadow phase. The moment free energy thus allows fact polydisperse rather than bidisperse. Unfortunately, they

simple geometrical interpretation of this phase transition in (,Prowd_ed no ‘?'em"s of the Iength_ d'_St”bUt'on_’ SO we cannot
polydisperse system, in terms of a double-tangent plane to igvestigate this suggestion quantitatively hééthin the ap-

conventional two-dimensional free energy surface. We emProximation of the Zwanzig model Instead, consider two

phasize that the properties of the cloud and shadow phasggndidate rod length distributions, the bidisperse scenario of

are found exactly, even though the moment free energy iBuining and Lekkerkerkérand the fully polydisperse Schulz

only a low-dimensional projection of the true free energydistribution (which has a single maximumin the former
[which “lives” in the infinite-dimensional space of density €aS€, one finds predictions which are very similar to the On-
distributionspy(1)]. sager model. The decrease $F across the coexistence re-

gion is reproduced, but the predictions for the cloud point
volume fractions are poor. For a Schulz distribution, on the
other hand, we never find a decreasepdf instead, plots of

We have studied the phase behavior of the Zwanzigs' and ¢N versus¢$(®) (not shown look similar to Fig. 5,
model of suspensions of hard rods, allowing for polydisper-with ¢N increasing across the coexistence region. But a rea-
sity in the lengths of the rods. The model assumes that theonable fit to the observed volume fractiagagossible with

V. CONCLUSION
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a Schulz distribution. The experimental ratd'/ ¢'~3.8 re-  tion expansion after the leading term and leads to an excess

quires from Fig 4 a polydispersity ofr~0.74; with the free energy depending on only two moment densities. This

experimental values for the rod dimensiorls,€200 nm, approach should be of independent interest as a phenomeno-

D=10 nm), we then predictp'~4% andpN~14% at the logical description of polydisperse suspensions of rodlike

respective cloud points. Considering the simplifying assumpparticles with more complexsoft) interactions. Finally, it

tions inherent in the Zwanzig model, the agreement with th@vould also be interesting to study the effect of diameter-

experimental values quoted above is quite satisfactory. Ipolydispersity on hard rod systems. Novel features such as

summary, the fact that the assumed Schulz and bidisperdgotropic—isotropic phase coexistence have previously been

distributions both only reproduce parts of the experimentafound for the bidisperse cas@ods with two different

data suggests that the experimental system may indeed hadi@meters*~**and it will be interesting to see how these are

been polydisperse, but with a length distribution which wasmodified for truly polydisperse systems.

peaked around the lengths identified by Buining and
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