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Phase equilibria in the polydisperse Zwanzig model of hard rods
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We study the phase behavior of the Zwanzig model of suspensions of hard rods, allowing for
polydispersity in the lengths of the rods. In spite of the simplified nature of the model~rods are
restricted to lie along one of three orthogonal axes!, the results agree qualitatively with experimental
observations: the coexistence region broadens significantly as the polydispersity increases, and
strong fractionation occurs, with long rods found preferentially in the nematic phase. These
conclusions are obtained from an analysis of the exact phase equilibrium equations. In the second
part of the paper, we consider the application of the recently developed ‘‘moment free energy
method’’ to the polydisperse Zwanzig model. Even though the model contains nonconserved
densities due to the orientational degrees of freedom, most of the exactness statements~regarding
the onset of phase coexistence, spinodals, and critical points! derived previously for systems with
conserved densities remain valid. The accuracy of the results from the moment free energy increases
as more and more additional moments are retained in the description. We show how this increase
in accuracy can be monitored without relying on knowledge of the exact results, and discuss an
adaptive technique for choosing the extra moments optimally. ©2000 American Institute of
Physics.@S0021-9606~00!50238-4#
a
s
t
a
u

d
9,
a

b
o
h

b
gy

g
-

h
ted.
the

ng
to-

ad-
en
tic

lity
in-
-

can
ith
nd
s
s,

able

A
ing
ds
and
I. INTRODUCTION

Solutions of rodlike particles undergo a transition from
disordered isotropic phase to an ordered nematic phase a
concentration of rods is increased. In the isotropic phase
rods have no preferred orientation, whereas in the nem
phase there is a favored average alignment of the rods. S
a transition has been observed by Zocher1 in solutions of
rod-like V2O5, particles, and later by Bawden an
co-workers2,3 in solutions of tobacco mosaic virus. In 194
Onsager4 showed that the ordering could be explained,
least for solutions of monodisperse long thin rigid rods,
considering only the competition between the excluded v
ume interaction and the orientational entropy. The key to
model is the distribution function,P(u), that represents the
fraction of rods with a given angular orientation,u, with
respect to some director. In principle, this function can
determined self-consistently by minimizing the free ener
however, the resultant non-linear integral equation forP(u)
cannot be solved analytically. To progress further, Onsa
introduced a trial function with a single variational param

a!Electronic mail: nigel.clarke@umist.ac.uk
b!Electronic mail: cuesta@math.uc3m.es
c!Electronic mail: R.Sear@surrey.ac.uk
d!Electronic mail: peter.sollich@kcl.ac.uk
e!Electronic mail: alessandro.speranza@kcl.ac.uk
5810021-9606/2000/113(14)/5817/13/$17.00
the
he
tic
ch

t
y
l-
is

e
;

er

eter, a. By now minimizing the resultant free energy wit
respect toa, its concentration dependence can be calcula
From this dependence the conditions for coexistence of
isotropic and nematic phases can be determined.

There are several difficulties in quantitatively compari
experimental results from systems such as solutions of
bacco mosaic virus with Onsager’s predictions. First, in
dition to the hard core repulsion, the interaction betwe
rods often includes a soft repulsion due to electrosta
forces. Second, the rods are rarely rigid, and semi-flexibi
must be accounted for. To overcome these difficulties, Bu
ing and co-workers5,6 synthesized sterically stabilized beo
hmite particles. Buining and Lekkerkerker7 and van
Bruggen, van der Kooij and Lekkerkerker8 then studied the
phase behavior of the solutions of these particles, which
be modeled reasonably with a rigid hard rod interaction, w
corrections arising from soft electrostatic repulsions a
semi-flexibility being negligible. However, there remain
one further complication: as with most polymeric system
the particles are polydisperse.

The Onsager approach has been modified to en
phase diagrams for bidisperse9–11 and tridisperse12 systems,
in which the rods differ only in length, to be calculated.
rich variety of behavior has been predicted, such as widen
of the region of coexistence, fractionation of the longer ro
into the nematic phase, nematic–nematic coexistence,
7 © 2000 American Institute of Physics
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re-entrant phases. Qualitatively, the first three of these ar
agreement with the experiments reported in Ref. 7 and 8,
the widening of the region of coexistence between pha
appears to be a general feature of polydisperse systems
spite the obvious difficulties in trying to map a continuo
polydisperse system onto a bidisperse mixture, Merchant
Rill 13 have attempted to analyze the transition concentra
in solutions of polydisperse rodlike DNA in terms of th
theory presented in Ref. 10. It is clear that quantitative ag
ment is still lacking. Generalization of the Onsager appro
to continuous polydispersity is, however, far from simp
The only attempts, to date, that we are aware of, have tre
the polydispersity perturbatively;14,15 this limits the validity
of the analysis to situations with rather narrow distributio
of rod lengths.

Another approach to the problem of monodisperse r
like mixtures was adopted by Zwanzig:16 He restricted the
orientations of the rods to be in one of three mutually p
pendicular directions. This enables the exact calculation
higher order virial coefficients, and the orientational distrib
tion can be determined without approximations. In contr
to the Onsager approach, the Zwanzig model may be rea
extended to polydisperse systems. For bidisperse mixtur
has already been shown by Clarke and McLeish17 that the
qualitative features of the phase diagram, with the excep
of the nematic–nematic coexistence, are similar to those
dicted by Lekkerkerkeret al.10 The polydisperse Zwanzig
model therefore provides a useful starting point for und
standing the effects of polydispersity on the phase beha
of hard rod systems.

Further important motivation for studying polydispe
sity, in this simplified model, is that it provides an interesti
scenario for testing and extending the recently propo
‘‘moment method’’ approach to the thermodynamic tre
ment of polydisperse systems.18–20 The moment method ap
plies to systems whose excess free energy depends on
somemomentsof the density distribution describing a poly
disperse system; we show below that the Zwanzig mo
~treated within the second virial approximation! is of exactly
this form. By expressing the ideal part of the free energy i
similar form a ‘‘moment free energy’’ can be defined, whic
only depends on the given moment densities. This is a dra
reduction in the number of densities required to describe
system, from the infinite number of degrees of freedom
the complete density distribution to a finite number of m
ment densities. The standard methods of the thermodyna
of finite mixtures can then be applied to the moment f
energy to analyze the phase behavior. Although in gen
the results will be approximate, for systems with conserv
densities it has been shown18–20 that the cloud and shadow
points~which specify the onset of phase coexistence in po
disperse systems!, spinodals, and critical points are all foun
exactly. In the case of the Zwanzig~or Onsager! model, how-
ever, one has both conserved~rod lengths! and nonconserved
~rod orientations! degrees of freedom. We show below th
the moment method can be extended to this kind of scena
and that most of the above exactness statements carry
We also assess the accuracy of the moment method in
region where it is not exact and discuss how it can be
in
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proved systematically by retaining additional moment den
ties in the description.

The paper is structured as follows. In Sec. II, we d
scribe the polydisperse Zwanzig model, give its free ene
~calculated within the second virial approximation! and de-
rive the corresponding expressions for the chemical po
tials and the osmotic pressure. These results are used in
III to study the exact thermodynamic behavior of the mod
In Sec. IV, we construct the moment free energy, discuss
properties, and compare the results obtained from it with
exact ones. Because the exact calculation of the phase be
ior of the polydisperse Zwanzig model is feasible, it mig
seem unnecessary to confirm these results using the mo
method. However, it is preciselybecausethe exact results
are available that the Zwanzig model provides a useful
case for application of the moment method to systems w
nonconserved degrees of freedom. The conclusions dr
should help us to apply the method to more complica
systems~such as the polydisperse Onsager model! where an
exact calculation of the phase behavior is infeasible. T
and other possible avenues for future work are discusse
Sec. V.

II. DEFINITION OF THE MODEL

The Zwanzig model considers hard rods in the shape
parallelepipeds of lengthL and with square base of edg
lengthD. In contrast to the full Onsager model, the orien
tions of these rods are restricted to be along one of the th
Cartesian coordinate axes, x, y or z. We will assume tha
rods have the same diameterD, but that they are polydis-
perse inlength, so there is a continuous distribution of ro
lengthsL. Introducing a reference lengthL0 and the normal-
ized lengthsl 5L/L0 , we will focus on the Onsager limit o
long thin rods. This corresponds to lettingD/L0→0 while
keeping the normalized lengthsl constant. Unless a distinc
tion between normalized (l ) and unnormalized (L) lengths
needs to be made explicitly, we will simply refer tol as the
length of a rod in the following.

Because of the length polydispersity, the number den
ties of the rods in the three possible orientations are spec
by densitydistributionsrd( l ), with d5x, y, z; for a small
range of lengthsdl, rd( l ) dl is the number density of rod
oriented alongd and with lengths betweenl and l 1dl. The
total number density distribution~irrespective of orientation!
is then

r~ l !5rx~ l !1ry~ l !1rz~ l ![(
d

rd~ l !,

and integrating overl gives the total number density of rod

r5E dl r~ l !5(
d
E dl rd~ l !. ~1!

Here and in the following, all integrals overl run from 0 to
`. With these definitions, the density distributionrd( l ) over
lengthsl and orientationsd can be decomposed as

rd~ l !5r~ l !Pl~d!5rP~ l !Pl~d!, ~2!

where
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P~ l !5r~ l !/r

is the normalized distribution of rod lengthsl, and

Pl~d!5
rd~ l !

r~ l !

is the probability of finding a rod withgiven length l in
orientationd. Note thatPl(d) is the analogue of the orienta
tion distribution in the full Onsager model and obeys t
normalization

(
d

Pl~d!51. ~3!

In the isotropic phase,Pl(d)51/3 for all d and l. In the
nematic phase, on the other hand, we havePl(x)5Pl(y)
,Pl(z) if we take the director to be along thez-axis. We
will nevertheless develop the theory of the model first
arbitrary orientation distributions@with Pl(x)ÞPl(y)] be-
cause this leads to somewhat more compact expressions
only specialize to the nematic case at a later stage.

For simplicity, we only treat the model in the secon
virial approximation.~In contrast to the case of the Onsag
model, this approximation does not become exact in the li
D/L0→0 here: higher order virial terms to not vanish.16!
The excess free energy is then essentially determined by
excluded volume of two rods. If the rods have~normalized!
lengthsl and l 8 and areperpendicular, this volume is

V'
excl52D~L1D !~L81D !52l l 8~DL0

2!@11O~D/L0!#,

while the excluded volume forparallel rods

Vi
excl54D2~L1L8!

54~ l 1 l 8!~DL0
2!

D

L0
5DL0

2 O~D/L0!

is negligible by comparison in the limitD/L0→0. As sug-
gested by the result forV'

excl, we chooseDL0
2 as our unit of

volume in the following, making all densities dimensionle
(r→rDL0

2). If we also setkBT51, the excess free energ
density becomes~within the second virial approximation!

f̃ 52E dl dl8 l l 8@rx~ l !ry~ l 8!1rx~ l !rz~ l 8!

1ry~ l !rz~ l 8!#

52~fxfy1fxfz1fyfz!5(
d

fd~f2fd!, ~4!

where we have defined

fd5E dl lrd~ l !5E dl lr~ l !Pl~d!, ~5a!

f5(
d

fd5E dl lr~ l !. ~5b!

Our choice of volume units implies that (D/L0)fd and
(D/L0)f are, respectively, the volume fraction of rods poin
ing in directiond and the total volume fraction. The ratio
r

and

r
it

he

m5f/r5E dl lP~ l !

is then simply the average length of rods in the system,
the first moment of the rod length distributionP( l ).

Adding the ideal part of the free energy~density! to Eq.
~4!, we have for the total free energy~density!

f 5(
d
E dl rd~ l !@ ln rd~ l !21#1(

d
fd~f2fd!. ~6!

This equation is the starting point of our analysis. When
refer to ‘‘exact’’ results in the following, we mean the exa
thermodynamics of the model defined by the free energy
~6!.

Equation~6! shows that the free energy is a functional
the density distributionrd( l ) over l andd. If we use Eq.~2!
to write rd( l )5r( l )Pl(d), we note an important differenc
between the two factors: while the total density distributi
r( l ) is conserved~because the rods cannot change leng!,
the orientation distributionPl(d) is not~because the rods ca
change orientation!. We separate out the respective contrib
tions to the free energy by writing

f 5E dl r~ l !@ ln r~ l !21#

1E dl r~ l !(
d

Pl~d!ln Pl~d!1(
d

fd~f2fd!. ~7!

For a givenr( l ), the orientation distributionsPl(d) ~for
each l ) are then obtained by minimizingf, subject to the
normalization constraints Eqs.~3! ~again, for eachl ). Intro-
ducing Lagrange multipliersk( l ) for these constraints give
the minimization condition

d

dPl~d! S f 1E dl k~ l !(
d

Pl~d! D
5r~ l !@ ln Pl~d!11#12~f2fd!lr~ l !1k~ l !50.

Solving for Pl(d) and eliminating thek( l ) by using Eq.~3!
gives the orientation distributions

Pl~d!5
e2(fd2f) l

(
d8

e2(fd82f) l

5
e2fdl

(
d8

e2fd8l

. ~8!

Inserting this result into the definition Eq.~5a! then gives
three simultaneous nonlinear equations which can be so
for the fd .

To derive the conditions for phase coexistence in
polydisperse Zwanzig model, we need expressions for
chemical potentialm( l )—which, due to the polydispersity, i
a function of the rod lengthl—and the osmotic pressure. Th
chemical potential

m~ l !5
d f

dr~ l !

is obtained by functional differentiation of the free ener
Eq. ~7! w.r.t. r( l ). There is no contribution from the varia
tion of Pl(d) with r( l ) because we have already minimize
the free energy w.r.t.Pl(d). This leads to
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m~ l !5 ln r~ l !1(
d

Pl~d!ln Pl~d!

12(
d

~f2fd!Pl~d!l ~9!

or, using Eq.~8!,

m~ l !5 ln r~ l !2 lnS (
d

e2(fd2f) l D . ~10!

The osmotic pressure can be written in terms of the f
energy and the chemical potential; hence, using Eq.~9!,

P52 f 1E dl r~ l !m~ l !5r1(
d

fd~f2fd!. ~11!

III. EXACT PHASE COEXISTENCE CALCULATION

A. Coexistence conditions

We can now state the conditions for coexistence of t
or more phases, labeled bya51 . . .K, into which a ‘‘par-
ent’’ phase with density distributionr (0)( l ) is assumed to
have split. From Eq.~10!, the equality of the chemical po
tentials between the phases is obeyed exactly if the dens
can be written in the form

r (a)~ l !5R~ l !(
d

exp@ad
(a)l # ~12!

with a function R( l ) common to all phases and thead
(a)

obeying

ad
(a)52~fd

(a)2f (a)!1c. ~13!

Herec is an arbitrary constant~again common to all phases!.
If the phases occupy fractionsv (a) of the total system vol-
ume, particle conservation implies

(
a

v (a)r (a)~ l !5r (0)~ l !. ~14!

This fixesR( l ), giving

r (a)~ l !5r (0)~ l !

(
d

exp@ad
(a)l #

(
a8

v (a8)(
d8

exp@ad8
(a8)l #

.

The density distributions over rod lengthsl and orientations
d are then found from Eq.~2! and, using Eqs.~8!, ~13!, take
the simple form

rd
(a)~ l !5r (0)~ l !

exp@ad
(a)l #

(
a8

v (a8)(
d8

exp@ad8
(a8)l #

. ~15!

Integrals over these distributions define, by Eqs.~1!, ~5!, the
values of the densitiesr (a) and volume fractionsfd

(a) , f (a)

in all phases. These variables determine the pressures

P (a)5r (a)1(
d

fd
(a)~f (a)2fd

(a)! ~16!
e

o

ies

in the different phases; at phase coexistence, these mu
course all be equal. We thus have, in the most general f
of the conditions for coexistence ofK phases, 4K variables
~threead

(a) and onev (a) per phasea51 . . .K) and equally
many equations to solve: the 3K conditions Eqs.~13! for
chemical potential equality, theK21 conditions Eqs.~16!
for equality of the pressures, and the trivial normalization
the phase volume fractions,(av (a)51.

It is easy to show that, just as in the Onsager mod
isotropic–isotropic coexistence is not possible in the Zw
zig model with length polydispersity only.~This would be
different if the rod diameterswere polydisperse as well
compare Refs. 21–24.! Given the results for the bidispers
case,17 it is also unlikely that nematic–nematic coexisten
could occur; this is in contrast to what has been found for
Onsager model.10 Intuitively, the difference can be explaine
as follows: when a polydisperse nematic phase splits
two nematics containing predominantly short and long ro
respectively, it gives up entropy of mixing but gains orie
tational entropy. In the Onsager model, where the rod an
are continuous variables, the gain in orientational entro
can be arbitrarily large, thus favoring such a phase split.~The
orientational entropy tends to2` as the orientational distri-
bution function tends to a delta function.! In the Zwanzig
case, on the other hand, the maximum gain in orientatio
entropy iskB ln 3 ~this being the difference between the e
tropies of an isotropic and a fully ordered nematic phase! so
that nematic–nematic coexistence is disfavored.

We therefore now specialize to coexistence between
isotropic ~I! and a nematic~N! phase. If we choose the di
rector to be along thez-axis, we then havefx5fy and f
52fx1fz . Denoting

D5fz2fx5fz2fy ,

the volume fractions of rods with the three possible orien
tions can be expressed as

fx5fy5
1
3 ~f2D!, fz5

1
3 ~f12D! ~17!

and the excess free energy and pressure simplify to

f̃ 5 2
3 ~f22D2!, ~18!

P5r1 2
3 ~f22D2!. ~19!

Instead of numbering the phases bya51,2, we label them
with superscripts I and N from now on. In the isotrop
phase, we havefd

I 5f I/3 for d5x,y,z (D I50), and by
choosing the arbitary constantc in Eq. ~13! asc54f I/3 we
can ensure that all the coefficientsad

I vanish. If, for the cor-
responding coefficients in the nematic phase, we write

ax
N5ay

N[a' , az
N[a i ,

the conditions Eqs.~13! simplify to

a i5
4
3 ~f I2fN1D!, ~20!

a'5 4
3 ~f I2fN2 1

2 D!. ~21!

The condition Eq.~16! of equality of the pressures, on th
other hand, becomes
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r I1 2
3 ~f I!25rN1 2

3 @~fN!22D2#. ~22!

Note that we have dropped the subscript ‘‘N’’ ona i , a' and
D because the corresponding quantities in the isotropic ph
are all zero.

If we denotev I5g andvN512g ~so thatg is the frac-
tion of the system volume occupied by the isotropic phas!,
our phase coexistence problem now takes the form of th
nonlinear equations~20!, ~21!, ~22! for a i , a' and g. The
densities and volume fractions appearing in these equat
can be found by specializing Eqs.~1!, ~5!, ~15! to the case of
I-N coexistence:

r I5E dl r I~ l !, ~23a!

f I5E dl lr I~ l !, ~23b!

rN5E dl rN~ l !, ~23c!

fN5E dl lrN~ l !, ~23d!

D5E dl l @r i
N~ l !2r'

N~ l !#, ~23e!

with

r I~ l !5
3r (0)~ l !

3g1~12g!@ea i l12ea' l #
, ~24a!

r i
N~ l !5 1

3 r I~ l !ea i l , ~24b!

r'
N~ l !5 1

3 r I~ l !ea' l , ~24c!

rN~ l !5r i
N~ l !12r'

N~ l !. ~24d!

In the above setting of the phase coexistence probl
we specified a single parent density distributionr (0)( l ). We
will normally be interested in results along a so-called ‘‘d
lution line,’’ where the parent length distributionP(0)( l )
5r (0)( l )/r (0) is kept fixed while the overall parent densi
r (0) is varied. Asr (0) is increased from zero, we then expe
to find a single isotropic phase first (g51). At the isotropic
‘‘cloud point,’’ an infinitesimal fraction of nematic phas
will first appear; the densityrN of this nematic phase give
the nematic ‘‘shadow.’’ On the other hand, starting fro
high densityr (0) we will first see a pure nematic phase (g
50). On decreasingr (0), an infinitesimal amount of isotro
pic phase will appear at the nematic cloud point; the den
of the isotropic phase at this point gives the correspond
isotropic shadow. The two cloud points delimit the coexi
ence region. For values ofr (0) inside this region, an isotropic
and a nematic phase coexist and occupy noninfinitesi
fractions of system volume, withg decreasing from 1 to 0 a
r (0) increases.

Numerically, rather than changingr (0) and findingg, it
is easier to varyg between 0 and 1 and find the correspon
ing r (0). To implement this scheme, one only has to repla
r (0)( l ) in Eqs. ~24! by r (0)( l )5r (0)P(0)( l ) and solve Eqs.
se

e

ns

,

t

ty
g
-

al

-
e

~20!, ~21!, ~22! for a i , a' andr (0). Alternatively, one can
interpreta i and a' as being defined by Eq.~20! ~21!, and
regardr (0), r I, f I, rN, fN and D as the underlying vari-
ables. Eqs.~22!, ~23! then constitute six equations for thes
six unknowns, which can be solved numerically; this is t
approach that we adopt.

B. Results: Cloud point and shadow curves

In the following, we will restrict ourselves to the cas
where the rod lengths in the parent phase are distribu
according to a Schulz distribution

P(0)~ l !5
~z11!z11

G~z11!
l z exp@2~z11!l #. ~25!

This distribution is normalized and has an average rod len
of m(0)51. ~Allowing other values ofm(0) would not make
our treatment more general since the value ofm(0) can al-
ways be absorbed into a rescaling of the reference len
L0 .) The parameterz controls the shape and width of th
distribution, and is taken to be nonnegative. A more intuit
measure of the width of the parent distribution is the relat
standard deviations ~usually called the ‘‘polydispersity’’!,
defined by

s25S 1

@m(0)#2E dl l 2P(0)~ l !D 21. ~26!

It is then easy to see that, for the Schulz distribution,

s5~11z!21/2.

For z→`, we thus have a monodisperse parent withs50
andP(0)( l )5d( l 21). Asz is decreased,s increases and the
parent gets more and more polydisperse. Forz50, finally,
the parent distribution is a simple exponential, ands
achieves its~for the chosen Schulz distribution! maximal
value of 1.

To calculate the cloud point and shadow curves, we p
ceed as explained in Sec. III A. For the isotropic cloud po
and shadow, we setg51. In Eqs.~24!, we then haver I( l )
5r (0)( l ). This of course makes sense: Only an infinitesim
amount of nematic phase has appeared, and so the de
distribution of the isotropic phase is only negligibly pe
turbed away from the parent. In Eqs.~23!, the equations for
r I andf I then simplify to the trivial statementsr I5r (0) and
f I5r (0)m(0)5r (0), and we only have to solve four equa
tions for the four unknownsr (0), rN, fN and DN. Con-
versely, for the nematic cloud point and shadow, we seg
50. We then findrN( l )5r (0)( l ) and rN5fN5r (0) and
have to solve the remaining four equations for the four u
knownsr (0), r I, f I andDN.

The results for the cloud point and shadow curves
plotted in Figs. 1 to 4. In Fig. 1 we see that the coexisten
region ~the density range between the isotropic and nem
cloud points! broadens quite dramatically as the parent d
tribution becomes more polydisperse. The transition, wh
is already strongly first order in the monodisperse ca
spreads out so that whens51 the coexistence region span
almost an order of magnitude in density, fromr50.54 tor
53.96. As s increases, the nematic shadow curve mov
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rapidly toward lower densities, approaching the isotro
cloud curve. In Fig. 2, we show the average rod lengths
the nematic and isotropic shadow phases. As the polydis
sity increases, a strong fractionation effect is observed, w
long rods found preferentially in the nematic phase; this is
qualitative agreement with results for the bi- and tridispe
Onsager model.9–12 For s51, for example, the averag
length of rods in the nematic phase,mN, is more than double
that in the isotropic phase,mI, both at the isotropic and at th
nematic cloud point.~Note that at the isotropic cloud poin
mI5m(0)51 andmN.1, while at the nematic cloud poin
mN5m(0)51 and mI,1.) This fractionation effect can b
seen in more detail in Fig. 3, where fors50.75 we have
plotted the relevant rod length distributionsP( l ). The bold
dashed and dotted lines showP( l ) in the nematic and iso
tropic shadow phases, respectively; the corresponding c
phases have, by definition, the same length distribution as

FIG. 2. The average rod lengthsm in the shadow phases are plotted as
function of the polydispersity,s. The dashed and solid curves give th
results for the nematic and isotropic shadow phases, respectively. Note
the corresonding cloud phases are identical to the parent and therefore
average rod lengths equal tom(0)51.

FIG. 1. The isotropic and nematic cloud point curves~solid! and their cor-
responding shadow curves~dashed!, showing the densities of the coexistin
phases as a function of the polydispersitys. Of the two cloud point curves,
the isotropic one is the one with the lower density; it meets the isotro
shadow curve fors→0 as it must. The nematic cloud and shadow curv
likewise coincide in this limit.
c
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parent~shown by the bold solid line!. The fact that longer
rods are found preferentially in the nematic phase can cle
be seen: For example, atl 54 ~i.e., at four times the averag
rod length of the parent!, P( l ) in the nematic shadow phas
is almost an order of magnitude larger than in the isotro
cloud phase. Finally, we study in Fig. 4 the cloud point a
shadow curves in a different representation:20 instead of the
number densityr of the coexisting phases~as in Fig. 1!, we
show their rescaled rod volume fractionf5mr. This leaves
the cloud point curves~for which m5m(0)51) unchanged,
but does affect the shadow curves~along which, as Fig. 2

hat
ave

FIG. 3. The rod length distributionsP( l ) in the coexisting isotropic and
nematic phases, at polydispersitys50.75 and for different fractionsg of
system volume occupied by the isotropic phase. Bold dashed line:P( l ) in
the nematic shadow at the isotropic cloud point,g51. The distribution in
the isotropic phase at this point is the parental one~bold solid line!. As g
decreases through 0.75, 0.5, 0.25, the thin dashed and dotted
show—from bottom to top—the distributions in the coexisting nematic a
isotropic phases, respectively. Atg50, finally ~the nematic cloud point!, the
nematic has the parental length distribution; the bold dotted line showsP( l )
in the corresponding isotropic shadow. Inset: Ratio of the rod length di
butions to that of the parent.

FIG. 4. The isotropic and nematic cloud point curves~solid! and their cor-
responding shadow curves~dashed! of Fig. 1 are replotted here, showing th
~rescaled! rod volume fractionsf5mr of the coexisting phases rather tha
their densitiesr. Of the two cloud point curves, the isotropic one is the o
with the lowerf; it meets the isotropic shadow curve fors→0 as it must.
The nematic cloud and shadow curves likewise coincide in this limit.
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shows,m can differ significantly fromm(0)51). Interest-
ingly, the volume fractions of the shadow phases turn ou
depend only weakly on the polydispersitys, in contrast to
their number densities~compare Fig. 1!. In fact, the volume
fraction in the nematic shadow phase does not even sho
definite trend in its dependence on polydispersity, bein
nonmonotonic function ofs.

We have not so far discussed the strength of the or
tational ordering in the nematic phase. This can be cha
terized by the order parameterq5D/f, which has the value
q50 in the isotropic phase andq51 for perfect nematic
ordering. It turns out that, due to the strongly first ord
nature of the I-N transition,q is close to its maximal value o
unity for all polydispersitiess, so we do not display it.

C. Results: Inside the coexistence region

We now turn to the properties of the isotropic and ne
atic phases in the coexistence region, i.e., for parent dens
between the isotropic and nematic cloud points. Both pha
then exist in noninfinitesimal amounts, implying 0,g,1.
Using the numerical scheme outlined in Sec. III A, we th
obtain the results shown in Figs. 5 and 6. Figure 5 tracks
densities of the coexisting phases as the coexistence regi
crossed~for s50.5). As expected, the densities interpola
between the cloud and shadow phase densities at eithe
and increase smoothly with the parent density. Figure
shows similarly the variation of the rod lengths in the isot
pic and nematic phases across the coexistence region
expected from Fig. 2, the average rod length in the nem
phase,mN, is always higher than that in the isotropic pha
mI. At the isotropic cloud point,mI51 andmN.1, while at
the nematic cloud point,mI,1 andmN51; again the values
inside the coexistence region interpolate smoothly betw
these limits, with both average rod lengths decreasing as
parent densityr (0) increases.

FIG. 5. The densitiesr of the coexisting isotropic~solid! and nematic
~dashed! phases as a function of the parent densityr (0), for polydispersity
s50.5. The isotropic and nematic cloud points, which delimit the coex
ence region, are located at the densities wherer I andrN meet the ‘‘dilution
line’’ r5r (0) ~dotted!, respectively. Outside the coexistence region, ther
only a single isotropic~for low densities! or nematic~for high densities!
phase with density distributionr (0)( l ) ~and therefore densityr (0)) identical
to that of the parent.
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Finally, we can also study the evolution of the distrib
tion functionsP( l ) as the fraction of volume occupied by th
isotropic phase,g, is varied. The results are included in Fi
3. At the isotropic cloud point (g51) the isotropic phase ha
the parental distributionP(0)( l ); as g is decreased~corre-
sponding to increasing parent densityr (0)), this distribution
shifts toward smaller lengths, evolving smoothly into the d
tribution at the nematic cloud pointg50. Proceeding in the
reverse direction, the nematic phase has the parent dist
tion atg50 and then changes smoothly into the distributi
at the isotropic cloud point asg is increased toward 1, shift
ing toward larger rod lengths in the process.

IV. COMPARISON WITH THE MOMENT METHOD

A. Constructing the moment free energy

We now outline how the moment method18–20 can be
applied to the polydisperse Zwanzig model. To construct
moment free energy, one recognizes from Eq.~18! that the
excess free energy of the model~specialized to isotropic or
nematic orientational order! only depends on the variablesf
andD. Both of these aremomentsof the density distribution
rd( l ) over lengthsl and orientationsd

f[r15(
d
E dl w1~ l ,d!rd~ l !,

D[r25(
d
E dl w2~ l ,d!rd~ l !,

defined by the weight functions

w1~ l ,d!5 l ,

w2~ l ,d!5 l ~dd,z2
1
2 dd,x2 1

2 dd,y!.

We therefore callr1 and r2 moment densities. Another,
trivial, example of a moment density is the total numb
density

r[r05(
d
E dl rd~ l !

-

s

FIG. 6. The average rod lengths in the coexisting isotropic (mI, solid! and
nematic (mN, dashed! phases corresponding to Fig. 5. The dotted line in
cates the average rod lengthm(0)51 of the parent.
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which corresponds to the weight functionw0( l ,d)51.
Even though theexcessfree energy

f̃ 5 2
3 ~r1

22r2
2!

depends on moment densities only, the ideal part

f ideal5(
d
E dl rd~ l !@ ln rd~ l !21#

of the free energyf 5 f ideal1 f̃ still contains all details of the
density distributionrd( l ). To construct a moment free en
ergy which depends only on the moment densities appea
in f̃ , we therefore need to transform this ideal part to a m
ment form. For this purpose, it is useful to add a term
2(d*dl rd( l )ln r(l)52*dl r(l)ln r(l) to the free energy, giv-
ing

f 5(
d
E dl rd~ l !F ln

rd~ l !

r ~ l !
21G1 f̃ .

The additional term is linear in theconserveddensitiesr( l )
and therefore has no effect on the exact thermodynam
described byf. @This would not be true if we had replace
r ( l ) by a d-dependent quantityr d( l ), becauserd( l ) is not
conserved.# For the moment method, on the other hand,r ( l )
turns out to be crucial. The key idea is to allow violations
the particle conservation rule Eq.~14! as long as they do no
affect the moment densities appearing in the excess free
ergy (f[r1 and D[r2 , in our case!. The intuitive
rationale—to be verifieda posteriori—is that phase behavio
is mainly governed by the excess free energy and the
ment densities appearing in it. The relevant free energ
then obtained by minimizingf at given values of the momen
densitiesr i ( i 51,2). Using Lagrange multipliersl i to fix
these values, one finds that the minimum off occurs for
density distributions of the form

rd~ l !5r ~ l !expF(
i

l iwi~ l ,d!G ~27!

and the corresponding minimum value is

f mom5(
i

l ir i2r01 f̃ . ~28!

This expression defines the moment free energy. Note
from Eq. ~27!, the moment densities are related to t
Lagrange multipliers by

r i5(
d
E dl wi~ l ,d! r ~ l !expF(

j
l jwj~ l ,d!G .

Inverting these relations determines thel j in terms of ther i ;
the moment free energy Eq.~28! thus depends on the mo
ment densitiesr i only, as desired. We can therefore use it
find phase equilibria, simply by applying the usual metho
for the thermodynamics of systems with a finite number
densities.@In our case, this means minimizingf mom(r1 ,r2)
over the nonconserved densityr2 and then performing a
double tangent construction with respect to the remain
conserved densityr1.] But the results will generally not be
exact, because the construction of the moment free en
ng
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at,

s
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gy

only enforces the particle conservation law Eq.~14! for the
chosen moment densitiesr i , while allowing it to be violated
for all other details of the density distributionr( l ). Physi-
cally, this corresponds to letting the density distributionr( l )
‘‘anneal’’ to its most likely shape for any given set of value
of ther i , with a ‘‘default shape’’ specified byr ( l ). Such an
approach can clearly only be successful when combined w
a specific choice ofr ( l ), which we now discuss.

By construction, the moment free energy Eq.~28! is the
free energy of systems with density distributions of the fo
Eq. ~27!. One therefore expects it to give exact results for
phase behavior as long as the density distributions of all
coexisting phases are actually contained in the ‘‘family’’ E
~27!. Considering an isotropic parent, withrd

(0)( l )
5r (0)( l )/3, we can ensure that this is true at least for t
parent by choosingr ( l )5r (0)( l )/3. This is the choice tha
we adopt from now on, giving explicitly

rd~ l !5 1
3 r (0)~ l !expF(

i
l iwi~ l ,d!G ~29!

for the family of density distributions and

r i5(
d
E dl wi~ l ,d! 1

3 r (0)~ l !expF(
j

l jwj~ l ,d!G ~30!

for the relation between the Lagrange multipliersl j and the
moment densitiesr i . With this choice, the isotropic cloud
point and corresponding nematic shadow will be found
actly by the moment method: At that point, the parent is o
negligibly perturbed because only an infinitesimal amoun
the nematic phase has appeared, while the nematic p
itself is related to the parent by exactly the kind of Gibb
Boltzmann factor appearing in Eq.~29!.

To see more formally why the moment method giv
exact results for the isotropic cloud point, let us write dow
the resultant phase coexistence conditions and show that
are equivalent to the exact conditions~particle conservation
violations apart!. Associated with each of the moment de
sitiesr i is a moment chemical potentialm i5] f mom/]r i . Us-
ing the Legendre transform properties20 of f mom, one finds

m15l11
] f̃

]r1
5l11

4

3
r1 , ~31a!

m25l21
] f̃

]r2
5l22

4

3
r2 . ~31b!

Becauser1 is conserved whiler2 is not,m1 must be equal in
all coexisting phases, whilem2 must actually be zero:

m1
(a)5c, m2

(a)50 for all a, ~32!

where c is a constant common to all phases. To comp
these conditions with the exact conditions Eqs.~12!, ~13! for
equality of the chemical potentialsm( l ), we write the den-
sity distributions Eq.~29! for the different rod orientations
explicitly:

r i~ l ![rz~ l !5 1
3 r (0)~ l !e(l11l2) l ,

r'~ l ![rx~ l !5ry~ l !5 1
3 r (0)~ l !e(l12l2/2)l .
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These are of the form of Eq.~12! if we identify

a'[ax5ay5l12l2/2, a i[az5l11l2 . ~33!

Using Eq. ~13!, coexisting phases calculated from the m
ment free energy therefore have equal~exact! chemical po-
tentialsm( l ) if

l1
(a)1l2

(a)52~fz
(a)2f (a)!1c5 4

3 ~2f (a)1D (a)!1c,

l1
(a)2 1

2 l2
(a)52~fx

(a)2f (a)!1c5 2
3 ~22f (a)2D (a)!1c

in all phases. But from Eqs.~31! one easily sees that thes
conditions are equivalent to those@Eq. ~32!# derived from the
moment free energy, as promised. For the condition of eq
ity of pressure in all phases, it is even easier to see that
moment free energy gives the correct answer: one finds

P52 f mom1r1m11r2m25r01 2
3 ~r1

22r2
2!,

which is exactly the same as the result in Eq.~19! derived
from the original free energyf. Remember that, in our mo
ment density notation,r0[r, r1[f, andr2[D.

We have thus shown that coexisting phases calcula
from the moment free energy satisfy the exact phase equ
rium conditions of equal chemical potentials and pressu
If the phases also obey the exact particle conservation
ditions Eq.~14!, they therefore give the exact solution of th
phase coexistence problem. This is the case at the isotr
cloud point, because one of the phases is then identical to
isotropic parent, and the other~nematic! phase is infinitesi-
mally small. As stated above, this point will therefore
located exactly by the moment free energy method. T
nematic cloud point, on the other hand, will not be fou
exactly: on the high-density side of this point, the dens
distribution of the single nematic phase@rd( l )
5r (0)( l )Pl(d), with Pl(d) obeying Eq.~8!#, will not in gen-
eral be a member of the family Eq.~29!.

In Refs. 18, 19 it was shown that the moment free
ergy allows one to determine exactly the onset of phase
existence~cloud point and shadow!, the spinodals and the
critical points of a polydisperse system with conserved d
sities. In our above discussion, we have shown that fo
system with nonconserved degrees of freedom~the rod ori-
entations!, the onset of phase coexistence is still located
actly under the following condition: in the single phase
gion from which coexistence is approached, the parent m
not exhibit any ordering of the nonconserved degrees of f
doms ~which means in our case that it must be isotropi!.
One can show that this conclusion holds quite generally,
that under the same restriction spinodals and critical po
found from the moment free energy also remain exact.
thus conclude that the moment method remains useful e
in systems with nonconserved degrees of freedom.

To improve the accuracy of the moment method in
regions where it is not exact~beyond the isotropic cloud
point!, one can simply retain additional moment densities
the moment description, defined by weight functio
wi( l ,d). The above construction of the moment free ene
generalizes directly to this case: the expressions Eqs.~28!,
~29!, ~30! remain valid as long as the sums overi are ex-
tended appropriately. From Eq.~29!, one recognizes that th
-
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addition of new moment densities has the effect of extend
the family of density distributions that are accessible;
exact distributions@Eq. ~15!# in the coexisting phases ca
thus be approximated with arbitrary accuracy as the num
of moment densities is increased. More explicitly, this can
seen as follows. Because the additional moment densitier i

( iÞ1,2) do not appear in the excess free energy, their a
ciated moment chemical potentials are simplym i5l i . These
must be equal in all phases, so we can write the den
distributions in coexisting phases predicted by the mom
method as

rd
(a)~ l !5

1

3
r (0)~ l !expF (

iÞ1,2
l iwi~ l ,d!G

3expF (
i 51,2

l i
(a)wi~ l ,d!G .

Comparing with Eq.~12!, and bearing in mind the identifi
cation Eq.~33!, we see that the moment method essentia
approximates ln(3/D) @where D is the denominator on the
r.h.s. of Eq.~15!# by a linear combination of the additiona
weight functions. SinceD depends onl only ~not ond), all
these weight functions can be chosen to bed-independent;
the corresponding moment densities are thus conserve
particular additional moment density that we will always r
tain is the overall densityr0 , with weight functionw0( l )
51. This guarantees that the dilution liner( l )5const
3r (0)( l )5el0r (0)( l ) for the parentr (0)( l ) is contained in
the family Eq. ~27!, and thus simplifies the calculation o
cloud points and shadows. The optimal choice of the rema
ing additional weight functionswi( l ) ( i>3) is less clear cut
and is discussed further below. One thing we can say alre
at this point, however, concerns the largel asymptotics: it is
easy to see that, for largel, ln(3/D)5c11c2l 1e2c3l , with
constantsc1 , c2 , c3 , and up to terms which are expone
tially smaller. The first two contributions are covered by t
weight functionsw0 , w1 , w2 , so all other weight functions
should be chosen to decay exponentially for largel; the co-
efficient c3 of this decay is not knowna priori, however.

B. Results

We show in Fig. 7 the cloud point and shadow curv
obtained from the moment free energy with different nu
bersn of moment densities retained. As explained above
always keep, beyond the ‘‘essential’’ moment densitiesr1

andr2 , the overall number densityr0 , so the smallest value
of n that we consider isn53. For largern, the additional
weight functions were chosen to be exponentials with
creasing decay constants,w21 j ( l )5e2c j l ( j 51 . . .n23).
This form is consistent with the expected exponential beh
ior for largel; the coefficientc was chosen asc50.5 by trial
and error. As expected, the isotropic cloud point curve a
the corresponding nematic shadow are found exactly alre
for n53. For the nematic cloud point curve and the isotrop
shadow, deviations from the exact results become appa
for larger polydispersitiess; as expected, these deviation
decrease asn, the number of moment densities retained,
creases.
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As noted in the Introduction, for the polydisperse Zwa
zig model that we are considering the moment method is
really needed because the exact phase coexistence equ
can be solved directly. However, for more realistic mod
~such as the polydisperse Onsager model, with unrestri
rod orientations!, this will not be the case. One thus needs
be able to assess the accuracy of the moment methodwithout
knowing the exact results beforehand. In Ref. 20, the follo
ing quantity was proposed for this purpose: for any ph
coexistence calculated from the moment free energy, one
work out the total density distribution over rod length
r tot( l )5(av (a)r (a)( l )5(a,dv (a)rd

(a)( l ). The quantity
ln rtot( l )/r

(0)( l ) then measures how strongly particle cons
vation of rods of lengthl is violated; taking the square an
averaging over the normalized parent distributionP(0)( l )
5r (0)( l )/r (0) defines the ‘‘log-error’’

d5E dl P(0)~ l !S ln
r tot~ l !

r (0)~ l !
D 2

. ~34!

For small violations of particle conservation
ln rtot( l )/r

(0)( l )'r tot( l )/r
(0)( l )21, and we can think ofAd

as the root-mean-squared relative deviation betweenr tot( l )
andr (0)( l ). In Fig. 7, we indicate by the lower symbols o
the nematic cloud point and isotropic shadow curves wh
as the polydispersitys is increased from zero,d first reaches
the value 1024 ~which corresponds to an average violation
particle conservation of 1%!. The fact that the symbols lie
essentially on the curves with the exact result shows thad
provides a good indicator of the accuracy of the mom
method:20 adding moment densities untild<1024 ensures
that the results are essentially indistinguishable from the
act ones.

Beyond the calculation of phase boundaries, one wo
also like the moment method to give reliable results for

FIG. 7. Cloud point and shadow curves found using the moment met
The exact results~compare Fig. 1! are shown in bold for comparison. Eve
when only the minimal number of moment densities (n53) is retained in
the moment free energy, the isotropic cloud point and corresponding n
atic shadow are found exactly; the moment method results therefore ov
the corresponding exact curves. The nematic cloud point and isotr
shadow are not found exactly, but their accuracy increases asn ~indicated by
the upper row of symbols! increases. The other symbols show the points
the moment method curves where the log-errord first reaches the value
1024 ass is increased from zero; see text for discussion.
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properties of coexisting phases inside the coexistence reg
In Fig. 8, we therefore show the analogue of Fig. 5 for t
moment method: the densities of the coexisting isotropic
nematic phases in the coexistence region, as a function o
parent densityr (0). Again, exact results are obtained only
the isotropic cloud point; but as the number of moment d
sities, n, is increased, the results across the whole of
coexistence region become progressively more accurate

We compare different choices for the additional weig
functions in Fig. 9, in terms of the dependence of the lo
errord on n at a point deep within the coexistence region
the phase diagram. Results for two sets of additional we
functions are shown. The first set consists of the exponen
weight functions considered above. For the second set,
chose increasing powers ofl, w21 j ( l )5 l j 21e2cl ( j
51 . . .n23). Note the exponential factor, which ensur

d.

-
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FIG. 8. The densitiesr of the coexisting isotropic~solid! and nematic
~dashed! phases as a function of the parent densityr (0), for polydispersity
s50.5. We show here the results calculated from the moment method
n53,4,5 ~thin lines!, and the exact results of Fig. 5~bold lines!. As ex-
pected, the densities beyond the isotropic cloud point are not exact,
become increasingly more accurate asn is increased. The results forn55
are indistinguishable from the exact ones on the scale of the plot.

FIG. 9. The dependence of the log-errord on the numbern of moment
densities retained in the moment free energy, at the pointr (0)52, s51 in
the phase diagram. The two lines correspond to different choices of
additional weight functions: exponential~solid! and power-exponential
~dashed!; see text for precise functional forms.
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the required asymptotic behavior;c was again chosen as 0.
We call these weight functions ‘‘power-exponential.’’

In this example, the exponential weight functions a
seen to lead to a faster decrease ofd with n. However, fur-
ther experimentation with other choices of weight functio
may well lead to even better results, and it would clearly
desirable to have a more systematic way of constructing
timal additional weight functions. The following adaptiv
approach is a first step in this direction~see also Ref. 20!.
Consider a given point in the phase diagram, characterize
the present case by the densityr (0) of the parent and its
polydispersitys. Performing a moment method phase eq
librium calculation without additional weight functions, on
will find a certain log-lever rule violation lnrtot( l )/r

(0)( l )
~called ‘‘log ratio’’ for short in the following!. One then
expects that adding a weight function@w3( l ), in our case#
which has the samel-dependence as this log-ratio shou
significantly reduce the log-error: it extends the family E
~29! of density distributions ‘‘in the right direction.’’ Of
course, constructingw3( l ) to fit the log-ratio exactly would
be computationally costly. Instead, we represent it as a lin
combination(ckck( l ) of some simple basis functionsck( l ).
These could be the exponential or power-exponential fu
tions used above, for example. The coefficientsck are chosen
to minimize the squared deviation from the log-ra
~weighted by the normalized parent distribution!,

E dl P(0)~ l !S (
k

ckck~ l !2 ln
r tot~ l !

r (0)~ l !
D 2

.

This is a straightforward weighted least squares problem,
the ck can easily be found in closed form, thus determini
w3( l ). One can now repeat the phase equilibrium calculat
with the momentr3 defined byw3( l ) included, and fit a new
weight function w4( l ) to the resulting log-ratio~which is
expected to be rather smaller in magnitude than before!. Re-
peating this process should lead to a steady decrease o
log-error d. However, a large number of additional weig
functions may still be required befored reaches an accep
ably small value, and this can cause numerical problem25

To avoid this problem, we note from the discussion at
end of the previous section that asingle additional weight
function can reproduce the exact results within the mom
method, if only itsl-dependence can be found appropriate
Rather than keeping a large number of additional wei
functions, we can thus continually adapt a single wei
function, as follows. We choose the first additional weig
functionw3( l ) by fitting the initial log-ratio, rerun the phas
equilibrium calculation withr3 included, and fit a ‘‘tempo-
rary’’ additional weight functionw4( l ) to the resulting de-
creased log-ratio. With bothr3 and r4 included, we again
run the calculation; this produces values of the Lagra
multipliersl3 andl4 ~which, being associated with mome
densities not appearing in the excess free energy, are c
mon to all phases!. The key point is now that if we merg
w3( l ) and w4( l ) into the linear combinationw38( l )
5l3w3( l )1l4w4( l ), and discardw4( l ), repeating the cal-
culation would give exactly the same results.~All moment
phase equilibrium conditions are still satisfied, and the le
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rule for r38 obviously follows from that forr3 andr4 .) We
are now back to a situation with only a single addition
weight function and can repeat the process: obtainw48( l ) by
fitting to the current log-ratio, rerun withr38 and r48 , com-
bine w38( l ) and w48( l ) into w39( l ) and so on. This method
avoids the computational problems associated with usin
large number of additional moment densities; indeed, it
quires at most two additional weight functions at any tim
The number of basis functions, however, is unrestricted
principle and can feasibly be made quite large. In fact, o
can show that for an infinitely large set of basis function
which allows arbitrary functional forms of the log-ratio to b
fitted, the method must converge to the results of the ex
phase equilibrium calculation~assuming it converges at all!.
For finite but sufficiently large sets of basis functions, o
thus expects excellent approximations to the exact results
long as the set of basis functions is sufficiently ‘‘flexible’’ t
approximate thel-dependence of the log-ratio, the preci
choice of the basis functions should also be relatively un
portant, thus reducing the effect of the remaining heuris
element of the method.

In Fig. 10, we show the results for the adaptive meth
just described, at the same point in the phase diagram a
Fig. 9. As basis functions we considered the exponential
power-exponential weight functions described above. T
number of basis functions was chosen such that if~in the
previous nonadaptive, ‘‘brute-force’’ approach! all basis
functions are retained as additional weight functions, the l
errord is less than 1025. As can be read off from Fig. 9, this
leads ton23572354 exponential basis functions andn
235102357 power-exponential basis functions. The co
responding ‘‘brute-force’’ values ofd are shown as horizon
tal lines in Fig. 10. They provide natural baselines for t
results of the adaptive method: because the latter only ret
a single additional weight function~a linear combination of
the basis functions!, it can obviously do no better than th
brute-force method which allows the coefficients of all ba
functions to be adjusted individually. Figure 10 confirm
this; the adaptive method converges after a few iteration
a value of d above the brute-force baseline. While th

FIG. 10. The dependence of the log-errord on the number of iterations of
the ‘‘adaptive’’ weight function algorithm described in the text, at the po
r (0)52, s51 in the phase diagram. Left: using four exponential basis fu
tions; right: using seven power-exponential basis functions. Dotted lin
Value ofd reached by the ‘‘brute-force’’ approach where all basis functio
are retained as weight functions.
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slightly larger final value ofd is, of course, a disadvantag
the adaptive method more than makes up for this by be
much faster and numerically more stable. We therefore p
to study this method in more detail in future. In particular,
one is interested in performing calculations for a number
points in the phase diagram~along a dilution line, for ex-
ample, where the densityr (0) of the parent is varied! one
could imagine a dynamical version of the algorithm whi
adapts the single additional weight function wheneve
threshold value of the log-errord is crossed. As long as th
chosen set of basis functions is sufficiently powerful, t
should lead to uniformly precise results across the wh
phase diagram.

Finally, we illustrate in Fig. 11 the geometrical intuitio
provided by the moment free energy. We plotf mom as a
function of the ‘‘essential’’ moment densitiesr1 , r2 , for a
parentr (0)( l ) whose density was chosen to be exactly at
isotropic cloud point. As expected, the tangent plane dra
at the parent touches the surface at a second point: the
atic shadow phase. The moment free energy thus allow
simple geometrical interpretation of this phase transition i
polydisperse system, in terms of a double-tangent plane
conventional two-dimensional free energy surface. We e
phasize that the properties of the cloud and shadow ph
are found exactly, even though the moment free energ
only a low-dimensional projection of the true free ener
@which ‘‘lives’’ in the infinite-dimensional space of densit
distributionsrd( l )].

V. CONCLUSION

We have studied the phase behavior of the Zwan
model of suspensions of hard rods, allowing for polydisp
sity in the lengths of the rods. The model assumes that

FIG. 11. Moment free energyf mom versus the ‘‘essential’’ moments dens
ties r1 and r2 , for a Schulz parent withs50.5 and densityr (0)50.959
corresponding to the isotropic cloud point. Constant and linear terms h
been added tof mom to make its tangent plane at the parent~represented by
the pointr15r (0)m(0)50.959, r250) coincide with thexy-plane. As ex-
pected, this tangent plane touches the free energy surface at a second
the nematic shadow, whose values ofr1 andr2 are found exactly.
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rods are restricted to lie along one of three orthogonal ax
In spite of this drastic simplification~compared to the On-
sager model, where rod orientations are unrestricted!, the re-
sults we obtain are in qualitative agreement with experim
tal observations:7,8 the coexistence region broaden
significantly as the polydispersity~the width of the rod
length distribution of the parent! increases; fractionation is
also observed, with long rods found preferentially in t
nematic phase. These conclusions were obtained from an
act analysis of the phase equilibrium equations, starting fr
the free energy of the model within the second virial a
proximation.

At this point, we pause briefly for a somewhat mo
detailed comparison with experimental observations. Bu
ing and Lekkerkerker7 found that the rod volume fractions a
the isotropic and nematic cloud points of their system w
f I54.7% andfN518%, respectively. For a monodisper
system, within our theroretical framework, one would pred
thatf I'6% andfN'10% for the experimental rod dimen
sionsD'10 nm andL0'200 nm~see Ref. 7!; these num-
bers can be read off from Fig. 4, bearing in mind that t
volume fractions shown there are rescaled byL0 /D. This
confirms again that polydispersity broadens the region of
existence.

Buining and Lekkerkerker7 then compared their result
with the predictions of a bidisperse Onsager model~long
hard rods of two different lengthsL1 and L2). They chose
L2 /L152.5 and assumed that there were 25 times more s
rods in the system than long ones. This choice, which co
sponds to a polydispersity ofs'0.27, was made in order to
reproduce a striking feature of the experimental obser
tions: As the overall~parent! volume fraction of rods was
increased across the coexistence region, the rod volume
tion in the nematic phasedecreased. However, the quantita-
tive fit to the observed volume fractions was poor: The b
isperse Onsager theory with parameters as above andL1

5200 nm predictsf I'12% andfN'27% for the volume
fractions at the isotropic and nematic cloud points,7 much
higher than observed. The mismatch cannot just be du
errors in estimating the rod dimensions~which could affect
the overall scaling of the volume fractions!, because the pre
dicted ratiofN/f I is also too small.

Buining and Lekkerkerker7 acknowledged that the dis
crepancy might be due to the fact that their system was
fact polydisperse rather than bidisperse. Unfortunately, t
provided no details of the length distribution, so we cann
investigate this suggestion quantitatively here~within the ap-
proximation of the Zwanzig model!. Instead, consider two
candidate rod length distributions, the bidisperse scenari
Buining and Lekkerkerker7 and the fully polydisperse Schul
distribution ~which has a single maximum!. In the former
case, one finds predictions which are very similar to the O
sager model. The decrease offN across the coexistence re
gion is reproduced, but the predictions for the cloud po
volume fractions are poor. For a Schulz distribution, on
other hand, we never find a decrease offN; instead, plots of
f I and fN versusf (0) ~not shown! look similar to Fig. 5,
with fN increasing across the coexistence region. But a r
sonable fit to the observed volume fractionsis possible with
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a Schulz distribution. The experimental ratiofN/f I'3.8 re-
quires from Fig. 4 a polydispersity ofs'0.74; with the
experimental values for the rod dimensions (L05200 nm,
D510 nm!, we then predictf I'4% andfN'14% at the
respective cloud points. Considering the simplifying assum
tions inherent in the Zwanzig model, the agreement with
experimental values quoted above is quite satisfactory
summary, the fact that the assumed Schulz and bidisp
distributions both only reproduce parts of the experimen
data suggests that the experimental system may indeed
been polydisperse, but with a length distribution which w
peaked around the lengths identified by Buining a
Lekkerkerker.7 It should be clear from this discussion th
experiments on hard rod systems with well characterized
length distributions would be highly desirable.

In the second part of the paper, we considered the ap
cation of the moment method to the polydisperse Zwan
model. This involved extending the construction of the m
ment free energy to models with both conserved and nonc
served degrees of freedom. We showed that most of the
actness statements obtained previously for systems
conserved densities carry over to this case: the onset of p
coexistence is still found exactly from the moment free e
ergy, as long as it is approached from a single phase re
where there is no ordering of the nonconserved degree
freedom. With the same restriction, spinodal instabilities a
critical points are also located exactly. Our concrete res
for the cloud and shadow curves bear this out; the isotro
cloud point and corresponding nematic shadow are fo
exactly, while the nematic cloud point and isotropic shad
are approximate. The accuracy of the approximation
creases as the number of moment densities retained in
moment free energy is increased. The log-errord is a useful
criterion for monitoring the increase in accuracy; crucially
can be computed without knowing the exact results befo
hand. Finally, we have discussed methods for choosing
weight functions of the additional moment densities. A
adaptive technique, which requires at most two additio
weight functions at any given time, and is therefore ve
cheap to implement computationally, gives promising
sults.

In future work, it is obviously desirable to remove th
simplications of the Zwanzig model and move toward
study of the polydisperse Onsager model, with unrestric
rod orientations. A direct numerical solution of the pha
equilibrium equations for this model is infeasible, so an a
proach based on the moment method suggests itself.
complication is that the excess free energy does not ha
simple moment structure: the excluded volume between
rods at anglesu andu8 with the nematic axis is a nontrivia
function of these angles. Its expansion in terms of Legen
polynomials26 shows that the moment free energy actua
depends on an infinite number of moment densities. As
intermediate step, we therefore plan to consider the poly
perse Maier–Saupe model,27 which truncates the eigenfunc
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tion expansion after the leading term and leads to an ex
free energy depending on only two moment densities. T
approach should be of independent interest as a phenom
logical description of polydisperse suspensions of rodl
particles with more complex~soft! interactions. Finally, it
would also be interesting to study the effect of diamet
polydispersity on hard rod systems. Novel features such
isotropic–isotropic phase coexistence have previously b
found for the bidisperse case~rods with two different
diameters!,21–24and it will be interesting to see how these a
modified for truly polydisperse systems.
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