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Optimal packing of polydisperse hard-sphere fluids
Junfang Zhang, Ronald Blaak, Emmanuel Trizac,a) José A. Cuesta,b) and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam,
The Netherlands

~Received 14 October 1998; accepted 9 December 1998!

We consider the effect of intermolecular interactions on the optimal size-distribution ofN hard
spheres that occupy a fixed total volume. When we minimize the free-energy of this system, within
the Percus–Yevick approximation, we find that no solution exists beyond a quite low threshold
(h'0.260). Monte Carlo simulations reveal that beyond this density, the size-distribution becomes
bimodal. Such distributions cannot be reproduced within the Percus–Yevick approximation. We
present a theoretical argument that supports the occurrence of a nonmonotonic size-distribution and
emphasize the importance of finite size effects. ©1999 American Institute of Physics.
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I. INTRODUCTION

Synthetic colloids are never perfectly monodisperse.
ten, this polydispersity is a drawback, for instance, polyd
persity is a problem in the preparation of high-quality collo
dal crystals, that are needed in photonic band gap mater
However, occasionally, polydispersity is desirable, becaus
allows us to achieve material properties that cannot be r
ized with monodisperse colloids. For instance, monodispe
colloidal systems can fill at most 74.05% of space in
crystalline phase~regular close packing! and some 63% in
the liquid/glassy state~random close packing!. In contrast,
colloids with a properly chosen particle-size distribution c
be made essentially space filling, both in the crystalline so
~Appolonian packing! and in the liquid. In practice, perfec
space filling structures are never achieved because this
quires an infinite number of~predominantly small! particles
per unit volume. Here, we consider a somewhat simp
problem, namely the filling of a given volumeV by a fixed
number of particlesN, that occupy a prescribed total volum
fractionh. We assume that the particles are free to excha
volume. As we have fixed both the number and the to
volume of the particles, the average volume per particle
fixed—it defines the natural length-scale in the mod
Clearly, the Helmholtz free energy of the system will depe
on the nonfixed particle-size distribution. The distributio
however, is restricted by the two constraints of fixed num
of particles and fixed total volume. We define the optim
size distribution to be the one that minimizes the Helmho
free energy under both constraints. In the Monte Carlo sim
lations~performed in the isothermal–isobaric ensemble! that
we report in this paper, we study the density dependenc
the particle-size distribution. We compare the simulation
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Spain.
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sults for the size distribution with an analytical estimate th
is obtained by solving the Percus–Yevick~PY! equation for
an N-component hard-sphere mixture.1 Not surprisingly, the
PY equation works very well at low densities. However, t
theory breaks down at a surprisingly low density~h'0.26!.
Of course, the fact that an approximate theory fails at a gi
density, does not imply that there is anything special go
on in the system at that density. Yet, our simulations indic
that there is—the size distribution that was initially unim
dal, becomes bimodal. We present a theoretical argum
supporting this scenario.

The remainder of this paper is organized as follows:
Sec. II we describe the constant-pressure Monte Carlo si
lations. The Percus–Yevick expression for the free energ
a system of polydisperse hard spheres with variable size
tribution is discussed in Secs. III and IV. Section V is d
voted to the derivation of analytical results turning use
when interpreting the simulation data. The mechanism
hind the transition from unimodal to bimodal size distrib
tion is also discussed.

II. MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed in th
isothermal–isobaric~constantNPT) ensemble.2 This means
that the number of particlesN, the pressureP, and the tem-
peratureT are fixed. We attempt three distinct types of tri
moves. We change the positions of the particles and al
the volume of simulation box to fluctuate, in order to equi
brate with respect to the applied pressure. Since we do
expect any crystalline order at low pressures, a cubic
shape is maintained. The third type of move is the one
lated to sampling the polydispersity of the system. To t
end, we select two particles at random, between which
exchange an amount of volume drawn uniformly from t
interval @2DVmax,DVmax# ~Fig. 1!. The maximum volume
changeDVmax was chosen such that the acceptance of a v
ume exchange move is between 35% and 50%. The rela

os
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frequency of the three moves is given byN:1:N/2. The ini-
tial configurations are made byN monodisperse spheres on
simple cubic lattice.

Simulations were performed for system sizes ofN
5512 or 1000, and several different reduced pressuresP*
5(kBT)21P^s3&, wheres is the diameter of particles, an
^•& denotes an average over particle-size distribution.
^s3& is fixed, we choosês3&1/3 to define the unit of length
that we will use in the remainder of this paper. We usekBT
as our unit of energy. All other units that we need, follo
from these definitions. The equation of state@P* as a func-
tion of r* ([r^s3&)] and the particle size distribution func
tion were determined in the simulations. The results for
equation of state are shown in Fig. 2. The simulation d
have been collected in Table I. At low pressures the parti
size distribution function is a single-peaked function with
maximum atv50 ~Figs. 3, 4 and 5!. At higher pressures
~typically, P* .2.0), the particle-size distribution develops
second peak. Actually, this second peak is quite small~i.e.,
only a small fraction of all particles becomes ‘‘large’’!.
However, these particles contribute appreciably to the t
volume fraction~Fig. 6!. Depending on the pressure this co
tribution can get as large as 75%.

The formation of big particles in these MC simulatio
is a rather slow ‘‘dynamical’’ process. In order to speed
calculations, we did additional simulations, in which w
started with a bidisperse distribution, with one or several
particles containing 99% of the total volume occupied by

FIG. 1. Schematic drawing of the Monte Carlo trial used to sample
polydispersity. Of two randomly chosen particles the volume of one is
creased, while the other is decreased in volume by the same amount.

FIG. 2. The equation of state of the polydisperse system. The solid lin
the PY prediction, which can not be extended beyond the cross. The ci
correspond to a system initially prepared monodisperse, while the squ
are final values in which we initially started with one big particle. The so
squares and the open symbols are from a 512 and 1000 particle sy
respectively. The dashed line is the upper bound~26! for the pressure.
s
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spheres, surrounded by a sea of small particles containing
remaining volume. In the 512 particle system, only one
two big particles remain for the lower pressures (P* 52.5
and P* 53.0). For higher pressures the number of big p
ticles can stabilize at higher values as well. For the 10
particle system the maximum number of big particles o
served at the lower pressures is three. In addition, the siz
these big particles is not the same. It is not clear whether
suggests a further possible fractionation or that it is a con
quence of the slow equilibration and that one or more of
big particles are still shrinking.

Below, we discuss these simulation results in the cont
of the relevant theoretical predictions, but first let us stop
make certain considerations on the ideal entropy associ
with this system.

III. IDEAL ENTROPY OF A POLYDISPERSE SYSTEM

Strictly speaking, the ideal entropy of a polydisper
system is infinite.1 In a multicomponent system such an e
tropy is exactly given by

2NkB (
i

wi ln~L i
3rwi !, ~1!

e
-

is
les
res

m,

TABLE I. Equation of state of polydisperse hard spheres, obtained fr
MC simulations with 1000 particles. The estimated error in the last digi
the packing fractionh is indicated in parentheses.

h P*

0.0052~3! 0.01
0.244~1! 1.00
0.314~3! 2.00
0.374~2! 2.50
0.425~4! 3.00
0.484~2! 4.00
0.541~3! 5.00

FIG. 3. The Monte Carlo results for the distribution of particle volume
W(v), as a function ofv, for several reduced pressures for a 1000 parti
system. ForP* .2.0 the distribution develops a second peak~with statistical
noise! at much larger volumes~note the change in scale on the right-han
side of the figure!. Although there are only one or several of these b
particles, they can contribute over 30% of the total volume of all partic
The diameters can get larger than a third of the length of the simulation
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wherewi is the molar fraction of speciesi andL i its thermal
wavelength. The usual path towards the entropy of a po
disperse system1 ~or for that matter, towards the entropy o
continuous signals in Information Theory3! is to classify the
species into ‘‘boxes’’ according to a certain property whi
distinguishes them~diameter, volume, molecular weigh
etc.!. If x denotes such a property speciesi will denote the
box having particles withx betweeniDx and (i 11)Dx, for
a given Dx which defines the boxes. IfW(x) denotes the
probability density of a particle having the valuex for that
property, thenwi5W(xi)Dx wherexi is a typical value of
the i th box. Then Eq.~1! adopts the form

2NkB (
i

W~xi !Dx ln~L i
3rW~xi !/Dx!. ~2!

FIG. 4. Comparison of the numerical results~dashed line! for the particle-
size distributionW(v), with the corresponding prediction of the PY theo
~solid line!. These results were obtained at a relatively low pressureP*
50.5), which corresponds to a volume fractionh50.151. Note that at this
density, simulation and theory are in quite good agreement.

FIG. 5. Snapshot of a typical configuration at reduced pressureP* 51.0 and
volume fractionh50.244.
-

The entropy of the polydisperse system is obtained from
~2! taking the limit D→0, and we can clearly see that, b
sides obtaining the usual expression1,3

Spoly52NKBE dxW~x!ln@L~x!3W~x!#, ~3!

there is also a divergent2 ln Dx, which is simply taken as a
‘‘constant’’ ignorable term.

But expression~3! is not well defined. Suppose we sim
ply change coordinates to label the species fromx to y ~say,
from the diameter to the volume!. Then the probability den-
sity in the new variable will beW̃(y)5W(x)udx/dy u. It is
straightforward to show that in the new labeling the entro
becomes

Spoly52NKBE dyW̃~y!ln@L~x~y!!3W̃~y!#

1NkBE dyW̃~y!lnUdy

dxU, ~4!

which is different of what we would have obtained had w
began with the labelingy.

This is a well known fact in Information Theory.3 In the
study of fluid equilibria ofquenchedpolydisperse system
this fact turns out to be irrelevant because the new te
simply adds the same constant to both sides of the equ
rium equations.4 However when studyingannealedpolydis-
persity this results tells us that the labeling is crucial and
to be dictated by the physical process underlying the po
dispersity. In our case the Monte Carlo movements descri
in Sec. II are a large scale description of a hypothetical
croscopic system of tiny particles of exactly the same s
distributed amongN aggregates of a variable number of pa
ticles. The constant volume constraint would correspond
the conservation of the number of tiny particles, and
natural labeling of the aggregates would be the numbe

FIG. 6. Snapshot of a typical configuration at reduced pressureP* 53.0 and
volume fractionh50.425. In this case there are two big particles.
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tiny particles which form it. As this number is proportion
to the volume of the aggregate, in the continuum descrip
is the volume, instead of the diameter, what turns out to
the natural labeling.

Notice that we could have described another mode
which the tiny particles aggregated into spherical surfaces
that case it would be the total surface what would be p
served and the natural labeling of aggregates would be t
respective surfaces. As we will discuss in the conclusio
the physics of this model would be completely different.

IV. PERCUS–YEVICK THEORY

The Percus–Yevick equation for ann-component hard-
sphere mixture can be solved analytically, to yield the f
lowing equation of state:1

p

6
P* 5

j0

12j3
1

3j1j2

~12j3!2
1

3j2
3

~12j3!3
. ~5!

The jth moment of the particle-size distributionj j is defined
as

j j5
p

6(
i

r i S 6v i

p D j /3

, ~6!

wherer i5Ni /V, the indexi is used to denote the differen
particle species, andv i is the volume of theith species.

Equation~5! is also valid for a continuous size distribu
tion, in which case the sum in Eq.~6! is replaced by an
integral. The corresponding expression for the chemical
tential of a species with radiusR is5

m* 5 ln@rL3W~v !#2 ln~12j3!1
6j2R

~12j3!
1

12j1R2

~12j3!

1
18j2

2R2

~12j3!2
1

4p

3
P* R3, ~7!

where L is the de-Broglie thermal wavelength
Ah2/(2pmkT), andW(v) is the probability density to find a
particle with a volume aroundv5(4p/3)R3. The pressure
P* is given by Eq.~5!.

In an (NPT) description, the Gibbs free energy of th
system fulfilling the constraints, must be at a minimum. T
conservation of the number of particles and of the solid v
ume fraction, imply thatW(v) must be of the form,

W~v !5expH (
i 50

3

a iR
iJ , ~8!

where

a152
6j2

12j3
, ~9!

a25212F j1

12j3
1

3j2
2

2~12j3!2G . ~10!

The coefficientsa0 anda3 are determined by the constrain
that the number of particles and the solid volume fraction
fixed. Note that allj i( i 51,2,3) are positive. Moreover,j3 is
equal to the volume fractionh, and is therefore necessari
n
e

n
In
-

eir
s,

-

o-

e
l-

e

less than one. Hence,a1 and a2 are always negative. The
last coefficient,a3 , should be negative or zero, because o
erwise the particle-size distribution cannot be normaliz
Sincea1 , a2 anda3 are always negative the Percus–Yevi
equation predicts thatW(v) is a monotonically decreasin
function ofv. This implies that the size-distribution given b
Eq. ~8! can never be bimodal.

Note that these conclusions also hold for the more ac
rate equation of state of Mansooriet al.6 This equation adds
an extra term to the pressure given in Eq.~5! depending on
j3 . Thus Eq.~7! is the same with the new expression forP,
which turns out to be irrelevant because theR3 term is con-
trolled by the Lagrange multiplier associated with the co
straint on the total solid particle volume. In other respect,
analysis for the Mansoori equation-of-state is identical
that for PY.

In practice, we solve Eq.~8! numerically. To this end,
we representW(v) as a histogram. Initially, the value o
W(v) in the different bins is assigned an arbitrary no
negative value, compatible with the constraint thatW(v) is
normalized and that̂v& is fixed. We fix the density at the
desired value. We determine the optimalW(v) using the
following scheme: we select a bin~say i ) at random and
change the value ofW(v i) by a random amountDW, dis-
tributed uniformly in the interval@2DWmax,DWmax#. We
first check if the new valueW(v i) is non-negative. If it is, we
satisfy the constraints by scaling the width of all bins and
height of the function by two appropriately chosen facto
We then compute all momentsj j , the pressure and the fre
energy, and we check if the Helmholtz free energy is sma
than the previous one. If it is, we accept the new value
W(v i), otherwise we reject it. We repeat the procedure u
the free energy no longer decreases. We have verified
W(v) is indeed of the form given by Eqs.~8!–~10!. Figure 4
shows a comparison of the PY estimate forW(v), deter-
mined in this way, with the results of the full Monte Car
simulations. We find thata3 is a monotonically increasing
function of density. A comparison between simulation a
PY theory for the equation of state is shown in Fig. 2. No
that, in this figure, the PY solution terminates at press
Pc'1.34 ~the cross in Fig. 2!. This is the point wherea3

becomes zero. Beyond this point we can no longer fin
solution for W(v) that is of the form given by Eq.~8!. In
Appendix A, we consider the breakdown of the PY theory
more detail and obtain the packing fraction beyond which
PY approximation breaks down:hc50.260, the correspond
ing pressure beingPc* 51.343. This breakdown of the PY
equation at a relatively low density is surprising, as the
equation works well up to quite high densities forfixedpar-
ticle size distributions.7–9 That it breaks down regardless th
accuracy of the equation of state can be inferred from
fact that Mansooriet al.’s equation of state undergoes e
actly the same breakdown, though for slightly different v
ues of h and P. Besides, from the analysis that we ha
carried out, it can be seen that a similar breakdown w
appear for any other theory yielding an equation of st
depending only onj i , i 50,1,2,3.
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V. ANALYTICAL RESULTS

In this section, we derive a theoretical bound for t
pressure of the polydisperse system, providing the equa
of state at the packing fraction where the size distribut
becomes bimodal. To this end, we work in the (NVT) en-
semble and take advantage of the extremality of the He
holtz free energy under the constraints of constantN andh;
the ‘‘grand potential’’

R5F$W%2L0E W~v !dv2L1E vW~v !dv, ~11!

whereL0 andL1 are Lagrange multipliers, has to be min
mum for the optimal size distribution. In the above relatio
the free energy functionalF can be cast into the usual ide
and excess contributions

F$W%5NkBTE dvW~v !@ ln~L3rW~v !!21#

1Fexcess$W%. ~12!

We attempt the following change in the system: the v
ume of a given particlev0 is increased by an amountdv0 ,
before a rescaling of all volumes by a factorl ~e.g., v
→lv) such that the overall volume change vanishes. T
imposes

l512
dv0

N^v&
1O~@dv0#2!. ~13!

The effect of the expansion of particlev0 on the size-
distribution can be written

dW~v !5
1

N
@d~v2v02dv0!2d~v2v0!#, ~14!

whered( • • • ) denotes the Dirac distribution. The scalin
procedure affectsW according to

dW~v !5
1

l
WS v

l D2W~v ! ~15!

5
dv0

N^v&

d@vW#

dv
1O~@dv0#2!. ~16!

The corresponding variation of the ideal contribution toF
reads

dFid5E dv
dFid$W%

dW~v !
dW~v !, ~17!

with the functional derivative

dFid$W%

dW~v !
5NkBT ln@L3W~v !#. ~18!

We then get the entropic term

dFid5kBTE dv ln@L3W#

3Fd~v2v02dv0!2d~v2v0!1
dv0

^v&

d@vW#

dv G ~19!

5kBTH W8~v0!

W~v0!
1

1

^v&J dv0 , ~20!
on
n

-

,

-

is

whereW8 is the derivative ofW.
The variation of the excess free energy reduces to

reversible work needed to perform the transformation, an
derived in Appendix B,

dWrev

dv0
5rkBTE dvW~v !gS s01s

2 D S 11
s

s0
D 2

2
Pexcess

h
,

~21!

whereg(s0/21s/2) denotes the radial distribution functio
evaluated at contact between species of diameterss0 ~having
volume v0) and s ~having volumev). Whens0@^s&, we
can replace the density at the surface of particlev0 by that at
a planar wall, and Eq.~21! becomes

dWrev5FP2
Pexcess

h Gdv0 . ~22!

In this limit v0@^v&

dR
dv0

5
dF
dv0

5kBTH W8~v0!

W~v0!
1

1

^v&J 1P2
Pexcess

h
. ~23!

For the optimal size distribution,dF vanishes so that

kBT
W8~v0!

W~v0!
1

12h

h F2rkBT

12h
2PG50. ~24!

AssumingW(v) to be a normalizable distribution,W8(v)
has to be negative for large arguments, which sets the u
bound,

P,2
rkBT

12h
or P* ,

12h

p~12h!
~25!

for the rescaled pressure. For low packing fractionsh
,hc) where the PY solution is available, the above inequ
ity is fulfilled ~Fig. 2!. At the thresholdh5hc where the
second polydispersity peak appears,W8 changes sign which
means

Pc* 5
12hc

p~12hc!
. ~26!

The above relation is remarkably well obeyed within the P
approximation@see the data of Sec. IV or Fig. 2; the P
expression crosses the line given by Eq.~25! exactly athc].
For h.hc , the upper bound is violated by the simulatio
results reported in Table I and Fig. 2. However, the d
suggest non-negligible finite-size effects; increasingN shifts
the pressure closer to the theoretical bound. Besides, sta
from bidisperse initial conditions~cf. the procedure de-
scribed in Sec. II!, supposed to be closer to the expect
polydispersity, has the same effect. According to express
~23! and ~24!, the violation of Eq.~25! means thatdR
5dF,0 for dv0.0, so that the biggest particle tends
expand. Its growth is however necessarily limited by t
length L of the simulation box. This is supported by th
observation that, even for the largest system investiga
(N5103 particles!, the size of the biggest particle obtained
determined byL (sbiggest.L/3, irrespective of the packing
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fraction, see, for example, Fig. 6!. This suggests that system
sizes that would presumably allow the system to reach t
modynamic equilibrium@and fulfill inequality ~25!# are nu-
merically out of reach. Consequently, the question of
extensivity/intensivity of the number of large particles ca
not be addressed by simulations; a theoretical investiga
seems to require the detailed knowledge of the interfa
free energy between ‘‘large’’ and ‘‘small’’ species. At th
stage, we cannot tell whether a true phase transition is a
ciated with the occurrence of the second peak in the parti
size distribution. The available data certainly do not rule
this possibility.

Finally, the integration of Eq.~24! yields the tail of the
optimal size-distribution

ln W~v !}2v/^v& for v@^v&. ~27!

Equation ~8! obeys this relation, which cannot be test
against simulation results because of the lack of statistics
very large particles~not more than 5 in a typical run!.

VI. CONCLUSION

At this stage, we can only speculate what will happen
larger N and/or larger densities. Conceivably, once t
volume-fraction of the large particles exceeds a cert
threshold, proliferation of still larger particles can occur, a
so on, until eventually an ‘‘Appolonian’’ packing of the liq
uid is achieved. The theoretical analysis of this scenario
nontrivial, as the small particles now induce attractive dep
tion forces between the large particles. Unfortunately,
systems that we can conveniently study by simulation are
small to allow us to investigate this regime.

We stress that the specific model we have chosen
study is somewhat arbitrary. For instance, rather than fix
the number of particles, one might have chosen to fix
total surface area of the particles. The latter constraint wo
be logical if one aims to model the size distribution of dro
lets covered with a fixed amount of surfactant. In additio
we assume that the surface free energy of the sphere
negligible. Again, this constraint can be removed. We ho
that the rather surprising results of the present study
stimulate research into these related models.
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APPENDIX A:

Let us consider the range of densities where a solutio
the Percus–Yevick equation is possible. As stated in Sec
r-
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it is essential thata3 be nonpositive. Hence, the pressure
which a350 defines the end point of the theory. To loca
this point, consider the form of the solution at the po
wherea350. Then the distribution function reduces to

W~v !5expH (
i 50

2

a iR
iJ ,

whereR hereafter denotes a reduced radius measured in u
of ^s3&1/3. Using the two constraints for normalization an
for the average volume of the particles, we can express
coefficientsa0 anda2 in terms ofa1 . If we combine Eqs.
~9! and ~10! to eliminatej3 , we obtain

a252a1

j1

j2
2

1

2
a1

2

5a1

^R&

^R2&
2

1

2
a1

2 , ~A1!

where the ratio of the momentsj1/j2 does not depend ex
plicitly on the densityr or ona0 , but it only depends ona1

itself. In the second line we have used the definition

^Ri&5E
0

`

RiW~v !4pR2dR. ~A2!

But we have another relation between the moments of
particle-size distribution; partial integration of*RnW(v)dv
yields

@Rn11W~v !#0
`5E

0

`

~2a2Rn121a1Rn11

1~n11!Rn!W~v !dR50 ~A3!

for n>0. This leads to the identities

^R3&5
2a1

2a2
^R2&2

4

2a2
^R&, ~A4!

^R2&5
2a1

2a2
^R&2

3

2a2
^R0&. ~A5!

This allows us to writê R& and ^R2& as a function ofa1 ,
a2 , ^R0& and ^R3&; i.e.,

^R&5
23a1^R

0&14a2
2^R3&

a1
228a2

, ~A6!

^R2&5
12̂ R0&22a1a2^R

3&

a1
228a2

. ~A7!

But ^R0&51 and^R3&51/8; hence

^R&

^R2&
5

23a11 ~ 1
2! a2

2

122 ~ 1
4! a1a2

. ~A8!

Substituting this expression in Eq.~A1!, we can eliminate
^R&/^R2& to obtain

a21
1

2
a1

25a1

23a11 ~1/2! a2
2

122 ~1/4! a1a2
. ~A9!
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For what follows, it is convenient to introduce two new va
ablesf andc,

a152 f c, ~A10!

a252 f 2;

then

^Ri&5
1

f i 13
^Ri& f 51 . ~A11!

We can use this relation to expressf as function ofc. We use
the fact that the average volume per particle is fixed, to
write

^R3&

^R0&
5

1

8
5

1

f 3

^R3& f 51~c!

^R0& f 51~c!
[

1

f 3
Y~c!, ~A12!

where the second line defines the functionY(c). Hence

f 52Y1/3~c!. ~A13!

As Y(c) can be expressed explicitly in terms of error fun
tions, we now knowf as a function ofc. Equation~A10!
allows us to express botha1 anda2 as explicit functions of
c. We can then use Eq.~A9! to determinec numerically. We
find that this equation has a unique solution. Once the va
of c has been determined, we knowa1 ,a2 anda0 ~from the
normalization condition!. Equation ~9! finally yields the
packing fraction beyond which the PY approximation brea
down, hc50.260198. The corresponding pressure isPc*
51.343442.

APPENDIX B:

We first note that the reversible work done by an ope
tor rescaling both particle volumes (v i→lv i , ; i ) and con-
tainer volume (V→V85lV), is

dW152PidealdV52rkBTdV, where dV5~l21!V.
~B1!

In the transformation, the total volumeVp of the particles
changes according to

dVp

Vp
5

dV

V
⇒dVp5h dV. ~B2!

Keeping the particle volumes fixed and going back to
original container volume (V8→V8/l) requires the revers
ible work

dW252P~V2V8!5PdV. ~B3!

It is then straightforward to obtain the work associated w
a rescaling of particle volumes at constant accessible vol
V,

dWv→lv5dW11dW25
Pexcess

h
dVp , ~B4!

valid for all polydispersitiesW(v).
In the remainder, they shall derive the work needed

grow a particlev0 by an amountdv0 (dv05ps0
2ds0/2). We

assume the normalization*Wdv51 to hold. Consider spe
cies having volumes betweenv and v1dv ~diameters be-
-

e

s

-

e

e

o

tween s and s1ds!. They exert a pressure
rkBT W(v)dvg(s0/21s/2) on particlev0 , involving the
radial distribution function at contact between speciess0 and
s. For the above pair (s0 ,s), the excluded volume spher
has diameters01s, and sweeps a volume

dVsweep5p~s01s!2
ds0

2
5S 11

s

s0
D 2

dv0 ~B5!

during the growth of particlev0 . Summing over all species
v, the work performed by the operator takes the form

dWgrowth v0
5rkBTdv0E dvW~v !gS s01s

2 D S 11
s

s0
D 2

.

~B6!

For the size modification considered in Sec. V, the glo
volume change of the particles vanishes, such thatdVp

1dv050. Summing the contributions arising from Eqs.~B4!
and ~B6!, the results of Eq.~21! is recovered,

dWrev

dv0
5rkBTE dvW~v !gS s01s

2 D S 11
s

s0
D 2

2
Pexcess

h
.

~B7!

Note that a similar argument can be invoked to comp
the reversible work needed to rescale all particle diamet
at constantV. After integration of Eq. ~B6! over all
W(v0) dv0 , we obtain

dWv→lv5rkBTE dvdv8W~v !W~v8!gS s1s8

2 D
3~s1s8!2s

dVp

^s&3
. ~B8!

Inserting this result into Eq.~B4! provides the equation o
state for a polydisperse fluid of hard spheres

P

rkBT
511hE dvdv8W~v !W~v8!gS s1s8

2 D
3~s1s8!2

s

^s&3
. ~B9!

For a monodisperse fluid,W(v)5d(v2v0) and we recover
the well known relation

P

rkBT
5114 hg~s0!. ~B10!
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