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Optimal packing of polydisperse hard-sphere fluids
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We consider the effect of intermolecular interactions on the optimal size-distributidh hafrd
spheres that occupy a fixed total volume. When we minimize the free-energy of this system, within
the Percus—Yevick approximation, we find that no solution exists beyond a quite low threshold
(7~0.260). Monte Carlo simulations reveal that beyond this density, the size-distribution becomes
bimodal. Such distributions cannot be reproduced within the Percus—Yevick approximation. We
present a theoretical argument that supports the occurrence of a nonmonotonic size-distribution and
emphasize the importance of finite size effects. 1899 American Institute of Physics.
[S0021-960609)50111-9

I. INTRODUCTION sults for the size distribution with an analytical estimate that
is obtained by solving the Percus—Yevi@dRY) equation for
Synthetic colloids are never perfectly monodisperse. Ofan N-component hard-sphere mixtur@lot surprisingly, the
ten, this polydispersity is a drawback, for instance, polydisPY equation works very well at low densities. However, the
persity is a problem in the preparation of high-quality colloi- theory breaks down at a surprisingly low dengjiy~0.26).
dal crystals, that are needed in photonic band gap material®f course, the fact that an approximate theory fails at a given
However, occasionally, polydispersity is desirable, because dlensity, does not imply that there is anything special going
allows us to achieve material properties that cannot be reabn in the system at that density. Yet, our simulations indicate
ized with monodisperse colloids. For instance, monodispersthat there is—the size distribution that was initially unimo-
colloidal systems can fill at most 74.05% of space in thedal, becomes bimodal. We present a theoretical argument
crystalline phasdregular close packingand some 63% in supporting this scenario.
the liquid/glassy statérandom close packingIn contrast, The remainder of this paper is organized as follows: in
colloids with a properly chosen particle-size distribution canSec. Il we describe the constant-pressure Monte Carlo simu-
be made essentially space filling, both in the crystalline solidations. The Percus—Yevick expression for the free energy of
(Appolonian packingand in the liquid. In practice, perfect a system of polydisperse hard spheres with variable size dis-
space filling structures are never achieved because this ré&dbution is discussed in Secs. Ill and IV. Section V is de-
quires an infinite number dfpredominantly smallparticles voted to the derivation of analytical results turning useful
per unit volume. Here, we consider a somewhat simplewhen interpreting the simulation data. The mechanism be-
problem, namely the filling of a given volumé by a fixed  hind the transition from unimodal to bimodal size distribu-
number of particle®, that occupy a prescribed total volume tion is also discussed.
fraction . We assume that the particles are free to exchange
volume. As we have fixed both the number and the total
volume of the particles, the average volume per particle is
fixed—it defines the natural length-scale in the model, MONTE CARLO SIMULATIONS
Clearly, the Helmholtz free energy of the system will depend
on the nonfixed particle-size distribution. The distribution, Monte Carlo simulations were performed in the
however, is restricted by the two constraints of fixed numbefsothermal—isobari¢constantN PT) ensemblé&. This means
of particles and fixed total volume. We define the optimalthat the number of particle, the pressur®, and the tem-
size distribution to be the one that minimizes the HelmholtzperatureT are fixed. We attempt three distinct types of trial
free energy under both constraints. In the Monte Carlo simumoves. We change the positions of the particles and allow
lations (performed in the isothermal—isobaric ensembitet  the volume of simulation box to fluctuate, in order to equili-
we report in this paper, we study the density dependence dfrate with respect to the applied pressure. Since we do not
the particle-size distribution. We compare the simulation reexpect any crystalline order at low pressures, a cubic box
shape is maintained. The third type of move is the one re-
dpresent address: Laboratoire de Physiquéofihee et Hautes Energies lated to sampling the polydispersity of the system. To this
(URA D00063 du CNR§ Batiment 211, UniversitParis-Sud, 91405 Or- end, we select two particles at random, between which we
b)SPZ);n?aer?:r:(t’ Zggr?s.s Grupo Interdisciplinar de Sistemas Complicad exchange an amount of VO-Iume drawn un?formly from the
(GISO), Departament.o de Matetias, Escuela Politmica Superior, Uni- Fhterval [ — AVimax,AVimad (Fig. 1). The maximum volume
versidad Carlos Il de Madrid, c/Butarque, 15, 28911-Légandadrid, ~ CNangeAVm,,was chosen such that the acceptance of a vol-
Spain. ume exchange move is between 35% and 50%. The relative
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TABLE |. Equation of state of polydisperse hard spheres, obtained from
MC simulations with 1000 particles. The estimated error in the last digit of

the packing fractiony is indicated in parentheses.

A B 7 p*

FIG. 1. Schematic drawing of the Monte Carlo trial used to sample the 0.00523) 0.01
polydispersity. Of two randomly chosen particles the volume of one is in- 0.2441) 1.00
creased, while the other is decreased in volume by the same amount. 0.3143) 2.00
0.3742) 2.50
0.4254) 3.00
; : 1 - [ 0.4842) 4.00

frequency of the three moves is given Ny1:N/2. The ini-
q y 9 Ny 0.5413) 5.00

tial configurations are made by monodisperse spheres on a
simple cubic lattice.
Simulations were performed for system sizes Mf

=512 or 1000, and several different reduced pressBes gpneres, surrounded by a sea of small particles containing the
=(ksT) 'P(c°), whereo is the diameter of particles, and remaining volume. In the 512 particle system, only one or
(+) denotes an average over particle-size distribution. Aswo big particles remain for the lower pressurd®* 2.5

(0 is fixed, we choosgs®)'? to define the unit of length  and P* =3.0). For higher pressures the number of big par-
that we will use in the remainder of this paper. We g€ ticles can stabilize at higher values as well. For the 1000
as our unit of energy. All other units that we need, follow particle System the maximum number Of b|g partic'es ob_
from these definitions. The equation of staR* as a func-  served at the lower pressures is three. In addition, the size of
tion of p* (=p(0®))] and the particle size distribution func- these big particles is not the same. It is not clear whether this
tiOI’I were determined in the Simulations. The I‘esu|tS fOI’ th%uggests a further possib'e fractionation or that it is a conse-
equation of state are shown in Fig. 2. The simulation datgjuence of the slow equilibration and that one or more of the
have been collected in Table I. At low pressures the particlebig particles are still shrinking.

size distribution function is a Single-peaked function with its Be|ow, we discuss these simulation results in the context
maximum atv=0 (Figs. 3, 4 and b At higher pressures of the relevant theoretical predictions, but first let us stop to

(typically, P*>2.0), the particle-size distribution develops a make certain considerations on the ideal entropy associated
second peak. Actually, this second peak is quite siiall,  ith this system.

only a small fraction of all particles becomes “large”
However, these particles contribute appreciably to the total
volume fraction(Fig. 6). Depending on the pressure this con- !ll- IDEAL ENTROPY OF A POLYDISPERSE SYSTEM

tribution can get as large as 75%. Strictly speaking, the ideal entropy of a polydisperse

~ The formation of big particles in these MC simulations gystem is infinité. In a multicomponent system such an en-
is a rather slow “dynamical” process. In order to speed Upyqpy is exactly given by

calculations, we did additional simulations, in which we

started with a bidisperse distribution, with one or several bi
: ICISP \ 9 —Nkg > w;In(Adpw,), 1)
particles containing 99% of the total volume occupied by the i
6.0 T T T ' i 10_3
om ,'/
n /S
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FIG. 3. The Monte Carlo results for the distribution of particle volumes,
FIG. 2. The equation of state of the polydisperse system. The solid line i$V(v), as a function ob, for several reduced pressures for a 1000 particle
the PY prediction, which can not be extended beyond the cross. The circlesystem. FoP* >2.0 the distribution develops a second péaith statistical
correspond to a system initially prepared monodisperse, while the squaremise at much larger volumegote the change in scale on the right-hand
are final values in which we initially started with one big particle. The solid side of the figurg Although there are only one or several of these big
squares and the open symbols are from a 512 and 1000 particle systemarticles, they can contribute over 30% of the total volume of all particles.
respectively. The dashed line is the upper bo(28) for the pressure. The diameters can get larger than a third of the length of the simulation box.
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FIG. 4. Comparison of the numerical resultiashed lingfor the particle-
size distributionW(v), with the corresponding prediction of the PY theory
(solid line). These results were obtained at a relatively low pressBie (
=0.5), which corresponds to a volume fractigr- 0.151. Note that at this
density, simulation and theory are in quite good agreement.

FIG. 6. Snapshot of a typical configuration at reduced pre®Rtire3.0 and

Wherewi is the molar fraction of speciésandAi its thermal volume fractionyp=0.425. In this case there are two big particles.

wavelength. The usual path towards the entropy of a poly-
disperse systetn(or for that matter, towards the entropy of
continuous signals in Information Thedys to classify the
species into “boxes” according to a certain property which
distinguishes them(diameter, volume, molecular weight,
etc). If x denotes such a property speciesill denote the
box having particles withkx betweeniAx and (+1)Ax, for

a given Ax which defines the boxes. W(x) denotes the
probability density of a particle having the valueor that
property, thenw;=W(x;)Ax wherex; is a typical value of
theith box. Then Eq(1) adopts the form

The entropy of the polydisperse system is obtained from Eq.
(2) taking the limitA—0, and we can clearly see that, be-
sides obtaining the usual expression

Spoly=—N st dx W) IN[ A (x)*W(x)], ()

there is also a divergent In Ax, which is simply taken as a
“constant” ignorable term.

But expression(3) is not well defined. Suppose we sim-
ply change coordinates to label the species frota y (say,
from the diameter to the volumeThen the probability den-
sity in the new variable will bdV(y)=W(x)|dx/dy]|. It is
straightforward to show that in the new labeling the entropy
becomes

—Nkg >, W(x;)Ax In(AZpW(x;)/Ax). 2

Spoly= — NKg f dyW(y)In[A(x(y))*W(y)]

~ d
#Nkg [ dyity)i d—i‘ @
which is different of what we would have obtained had we
began with the labeling.

This is a well known fact in Information TheofRyin the
study of fluid equilibria ofquenchedpolydisperse systems
this fact turns out to be irrelevant because the new term
simply adds the same constant to both sides of the equilib-
rium equationd. However when studyingnnealedpolydis-
persity this results tells us that the labeling is crucial and has
to be dictated by the physical process underlying the poly-
dispersity. In our case the Monte Carlo movements described
in Sec. Il are a large scale description of a hypothetical mi-
croscopic system of tiny particles of exactly the same size
distributed amongdN aggregates of a variable number of par-
ticles. The constant volume constraint would correspond to
FIG. 5. Snapshot of a typical configuration at reduced pres@tire1.0and ~ the conservation of the number of tiny particles, and the
volume fractiony=0.244. natural labeling of the aggregates would be the number of
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tiny particles which form it. As this number is proportional less than one. Hencey; and a, are always negative. The
to the volume of the aggregate, in the continuum descriptioast coefficientas, should be negative or zero, because oth-
is the volume, instead of the diameter, what turns out to berwise the particle-size distribution cannot be normalized.
the natural labeling. Sincea;, a, anda; are always negative the Percus—Yevick
Notice that we could have described another model inequation predicts thatV(v) is a monotonically decreasing

which the tiny particles aggregated into spherical surfaces. Ifnction ofv. This implies that the size-distribution given by
that case it would be the total surface what would be PreEq. (8) can never be bimodal.

served and the natural labeling of aggregates would be their Note that these conclusions also hold for the more accu-
respective surfaces. As we will discuss in the conclusions

the DhVsi  thi del d b letely diff ; rate equation of state of Mansoat al® This equation adds
€ physics of this model would be completely diflerent. 5, extra term to the pressure given in E§). depending on

&;. Thus Eq.(7) is the same with the new expression fr
which turns out to be irrelevant because Rieterm is con-
The Percus—Yevick equation for amcomponent hard- trolled by the Lagrange multiplier associated with the con-
sphere mixture can be solved analytically, to yield the fol-straint on the total solid particle volume. In other respect, the
lowing equation of staté: analysis for the Mansoori equation-of-state is identical to

IV. PERCUS-YEVICK THEORY

- ¢ 3¢.¢ 343 that for PY.
Zpr=_50 %2 2 (5) In practice, we solve Eq@8) numerically. To this end,
6 1=86 (1-&)% (1-&)° we representW(v) as a histogram. Initially, the value of
Thejth moment of the particle-size distributigp is defined ~W(v) in the different bins is assigned an arbitrary non-
as negative value, compatible with the constraint ti#tv) is
60,1173 normalized and thatv) is fixed. We fix the density at the
f,:fE Pi(i) , (6) desired value. We determine the optim& v) using the
65 ™ following scheme: we select a bisay i) at random and

wherep;=N;/V, the indexi is used to denote the different change the value oiV(v;) by a random amourAW, dis-
particle species, andl is the volume of theth species. tributed uniformly in the interval — AWpax, AWmad. We
Equation(5) is also valid for a continuous size distribu- first check if the new valug/(v;) is non-negative. If it is, we
tion, in which case the sum in E@6) is replaced by an satisfy the constraints by scaling the width of all bins and the
integral. The corresponding expression for the chemical poheight of the function by two appropriately chosen factors.
tential of a species with radiR is® We then compute all momengs, the pressure and the free
6£,R 12¢,R? energy, and we check if the Helmholtz free energy is smaller

w*=In[pA3W(v)]—In(1— &)+ than the previous one. If it is, we accept the new value for

(1-¢3) (1-4y) W(v;), otherwise we reject it. We repeat the procedure until
18§§R2 . the free energy no longer decreases. We have verified that
— ?P* RS, (7)  W(v) is indeed of the form given by Eq&)—(10). Figure 4
(1-¢&3) shows a comparison of the PY estimate Wiv), deter-

where A is the de-Broglie thermal wavelength, mined in this way, with the results of the full Monte Carlo
Vh?/(277mkT), andW(v) is the probability density to find a simulations. We find thatrz is a monotonically increasing
particle with a volume around = (47/3)R®. The pressure function of density. A comparison between simulation and
P* is given by Eq.(5). PY theory for the equation of state is shown in Fig. 2. Note
In an (NPT) description, the Gibbs free energy of the that, in this figure, the PY solution terminates at pressure
system fulfilling the constraints, must be at a minimum. TheP_~1.34 (the cross in Fig. 2 This is the point wherevg
conservation of the number of particles and of the solid volhecomes zero. Beyond this point we can no longer find a

ume fraction, imply thatV(v) must be of the form, solution for W(v) that is of the form given by Eq@®). In
3 Appendix A, we consider the breakdown of the PY theory in
W(v)= exp[ E aiR‘} , (8) more detail and obtain the packing fraction beyond which the
1=0 PY approximation breaks downj,=0.260, the correspond-

where ing pressure beind} =1.343. This breakdown of the PY
equation at a relatively low density is surprising, as the PY

= — 6% , 9) equation works well up to quite high densities foted par-
1-¢ ticle size distributioné=° That it breaks down regardless the
& 3¢2 accuracy of the equation of state can be inferred from the
ar=— ZL_ 21. (100  fact that Mansooriet al's equation of state undergoes ex-
& 2(1-&) actly the same breakdown, though for slightly different val-

The coefficientsy, anda; are determined by the constraints ues of » and P. Besides, from the analysis that we have
that the number of particles and the solid volume fraction arearried out, it can be seen that a similar breakdown will
fixed. Note that al;(i=1,2,3) are positive. Moreoveég is  appear for any other theory yielding an equation of state
equal to the volume fractiom, and is therefore necessarily depending only org;,i=0,1,2,3.
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V. ANALYTICAL RESULTS whereW' is the derivative ofW.

The variation of the excess free energy reduces to the

In this section, we derive a theoretical bound for the o, ersible work needed to perform the transformation, and is
pressure of the polydisperse system, providing the equatiogarived in Appendix B

of state at the packing fraction where the size distribution

becomes bimodal. To this end, we work in té\(T) en- 5w, oot o 0\?  Paycess
semble and take advantage of the extremality of the HeImﬁZPkBTJ dUW(v)g( 5 )(1+ U_o) T,
holtz free energy under the constraints of constduand »; (21)
the “grand potential”

whereg(oo/2+ a/2) denotes the radial distribution function
R=]—"{W}—/30f W(v)dv —£1J vW(v)do, (1) evaluated at contact between species of diametgfhaving
volumev,) and o (having volumev). Whenoy>{o), we
can replace the density at the surface of partigldy that at
'a planar wall, and Eq21) becomes

where Ly and £, are Lagrange multipliers, has to be mini-
mum for the optimal size distribution. In the above relation
the free energy functionaF can be cast into the usual ideal
and excess contributions

W=
FW=N kBTf doW(v)[In(A3pW(v))—1]

P
P— e:;eﬁ Svg. (22)

In this limit vy>(v)

+feXCES£W}' (12)
We attempt the following change in the system: the vol- R _ 8% | _[W'(o) 1| o Pexces 23
ume of a given patrticle is increased by an amou@v g, vy vy B | W(vg)  (v)

before a rescaling of all volumes by a facthr(e.g., v ) _ o )
—\v) such that the overall volume change vanishes. Thi©r the optimal size distributionjF vanishes so that
imposes ,

P W' (vg) | 1— 7] 2pksT
+O([ 6001 (13 (o) = 7 7

AssumingW(v) to be a normalizable distribution)V’ (v)
has to be negative for large arguments, which sets the upper

P|=0. (24)

N=1 51)0
T N(v)
The effect of the expansion of particke, on the size-
distribution can be written

bound,
1
=— —Un— —S5(v— kgT 12
OW(v) =L (v —vo=dvo) = 8(v—vo) ], (14 pooPKel o 127 25
_ o , 1-79 m(1—7)
where §( - - -) denotes the Dirac distribution. The scaling
procedure affect¥V according to for the rescaled pressure. For low packing fractions (
1 < 7.) Where the PY solution is available, the above inequal-
SW(v)= _W<2 —W(v) (15) ity is fulfilled (Fig. 2). At the thresholdn= 7. where the
AN second polydispersity peak appeaf$, changes sign which
v d[vW] , means
=———+ .
N<U> dv O([EUO] ) (16) . 12 e (26)
The corresponding variation of the ideal contributionfo ¢ m(l-n)
reads

The above relation is remarkably well obeyed within the PY
OFi{ W} approximation[see the data of Sec. IV or Fig. 2; the PY
SW(v) W(v), 17 expression crosses the line given by E2p) exactly atz].
. . - For »> 7., the upper bound is violated by the simulation
with the functional derivative results reported in Table | and Fig. 2. However, the data

5'7}d: f dU

SF AW} 3 suggest non-negligible finite-size effects; increadihghifts
W: NkgT InN[A°W(v)]. (18  the pressure closer to the theoretical bound. Besides, starting
. from bidisperse initial conditiongcf. the procedure de-
We then get the entropic term scribed in Sec. )| supposed to be closer to the expected
polydispersity, has the same effect. According to expressions
5Jﬂd=kBTf dov In[ A3W] (23) and (24), the violation of Eq.(25 means thatéR
= J§F<0 for Svy>0, so that the biggest particle tends to
Svg d[vW] expand. Its growth is however necessarily limited by the
X 5("_”0_5"0)_5(U_00)+HT (19) length L of the simulation box. This is supported by the

, observation that, even for the largest system investigated
W (vo) n i Sv (20 (N=10® particles, the size of the biggest particle obtained is
W(vo) ()] % determined byl (oyiggest>L/3, irrespective of the packing
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fraction, see, for example, Fig).6This suggests that system it is essential thatv; be nonpositive. Hence, the pressure at
sizes that would presumably allow the system to reach themvhich a3=0 defines the end point of the theory. To locate
modynamic equilibriunfand fulfill inequality (25)] are nu-  this point, consider the form of the solution at the point
merically out of reach. Consequently, the question of thevhereas;=0. Then the distribution function reduces to
extensivity/intensivity of the number of large particles can- 2

not be addres;ed by S|mulgt|ons; a theoretical |nv'est|gat|.on W(v)=ex 2 R,

seems to require the detailed knowledge of the interfacial i=0

free energy between “large” and “small” species. At this
stage, we cannot tell whether a true phase transition is ass’EglhereR hereafter denotes a reduced radius measured in units

3 1/3
ciated with the occurrence of the second peak in the particle of (¢%)™. Using the two constraints for normalization and

size distribution. The available data certainly do not rule outf r the average volume of the particles, we can express the
this possibility. coefficientsay and a5 in terms ofa,. If we combine Egs.

Finally, the integration of Eq(24) yields the tail of the (9) and(10) to eliminate¢;, we obtain

optimal size-distribution &1
ary=201 5 — > ai
INW(v)e—uv/{v) for v>(v). (27) &
Equation (8) obeys this relation, which cannot be tested <R) 1,
against simulation results because of the lack of statistics for - <R2> T (A1)

very large particlegnot more than 5 in a typical rgn
where the ratio of the momentg/ ¢, does not depend ex-
VI. CONCLUSION plicitly on the densityp or on «q, but it only depends or;

itself. In the second line we have used the definition
At this stage, we can only speculate what will happen at

larger N and/or larger densities. Conceivably, once the
volume-fraction of the large particles exceeds a certain
threshold, proliferation of still larger particles can occur, and
so on, until eventua"y an “Appo|0nian” packing of the ||q_ But we have another relation between the moments of the
uid is achieved. The theoretical analysis of this scenario ifarticle-size distribution; partial integration §R"W(v)dv
nontrivial, as the small particles now induce attractive depleyields
tion forces between the large particles. Unfortunately, the o
systems that we can conveniently study by simulation are too  [R""'W(v)]5= J 2a,R" 2+ o R
small to allow us to investigate this regime.

We stress that the specific model we have chosen to +(n+1)RMHW(v)dR=0 (A3)
study is somewhat arbitrary. For instance, rather than fixing
the number of particles, one might have chosen to fix thdor n=0. This leads to the identities
total surface area of the particles. The latter constraint would

(RY= f:RiW(v)47TR2d R. (A2)

—a;

be logical if one aims to model the size distribution of drop- <R3)— R?)— (R) (A4)
lets covered with a fixed amount of surfactant. In addition,

we assume that the surface free energy of the spheres is

negligible. Again, this constraint can be removed. We hope (RZ)— <R°> (A5)

that the rather surprising results of the present study will
stimulate research into these related models. This allows us to writg{R) and(R?) as a function ofa;,
a,, (R% and(R3); i.e.,
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Substituting this expression in E¢ALl), we can eliminate
(RY/{R?) to obtain

APPENDIX A:
. 2
Let us consider the range of densities where a solution of +Z ! Salt (1/2) ap (A9)
i ion i i i 2T M T M (1 '
the Percus—Yevick equation is possible. As stated in Sec. 1V, (1/4) aya,
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For what follows, it is convenient to introduce two new vari- tween o and o+do). They exert a pressure
ablesf andc, pksT W(v)dvg(oo/2+0/2) on particlevg, involving the
radial distribution function at contact between speeigand

a=-fe, (AL0) o. For the above pairdy,o), the excluded volume sphere
a,=—12% has diametetry+ o, and sweeps a volume
then , 900 ag\?
Nsweep= (00t 0) ——=| 1+ —| vy (B5)
1 2 70
(R)= fi+3<R'>f:1- (A1D) during the growth of particle,. Summing over all species
v, the work performed by the operator takes the form
We can use this relation to expresas function ofc. We use N 2
. . . _ gogT 0O g
;tlcreit;act that the average volume per particle is fixed, to r€ SWoyrowtn vozpkBTéuof doW(v)g — 1+ 0'_0) :
, , (B6)
@: lz EM—:KC)EEY( ), (A12)  For the size modification considered in Sec. V, the global
(R 8 f3(R%_,(c) f3 volume change of the particles vanishes, such

+ 6vy=0. Summing the contributions arising from E¢B4)

where the second line defines the funct . Hence
ofe) and(B6), the results of Eq(21) is recovered,

f=2YYc). (A13)

As Y(c) can be expressed explicitly in terms of error func-~g
tions, we now knowf as a function ofc. Equation(A10)
allows us to express boit; and «, as explicit functions of . )
c. We can then use EGA9) to determinec numerically. We Note that a similar argument can be invoked to compute
find that this equation has a unique solution. Once the valul!® reversible work needed to rescale all particle diameters,
of ¢ has been determined, we knaw, @, and aq (from the at constantV. Afte_r integration of Eq.(B6) over all
normalization condition Equation (9) finally yields the (Vo) dvo, we obtain

rev

2
0') _ Pexcess

_ J oggto
=pkgT dvW(v)gT 1+ .

Og

packing fraction beyond which the PY approximation breaks o+o'
down, 7,=0.260198. The corresponding pressureP% 5Wv—>)\v:pkBTJ' dvdv'W(v)W(v')g( > )
=1.343442.
2 NV
APPENDIX B: X(o+o') UW- (B8)

We first note that the reversible work done by an opera- . . . . .
tor rescaling both particle volumes >\v; , Vi) and con- Inserting this result into Eq(B4) provides the equation of

tainer volume Y—V' =\V), is state for a polydisperse fluid of hard spheres

p oto’
OW1= — PigeadV = — pkgT oV, where 6V=(A—1)V. —— =1+ nf dvdv’W(v)W(v’)g(—)
(B1) pkgT 2
In the transformation, the total volumé, of the particles o
changes according to X(o+ U,)ZW. (B9)
(o

oV, oV . .

~ = =60V,=7ndV. (B2) For a monodisperse fluidV(v) = 6(v —vy) and we recover

Vp V the well known relation
Keeping the particle volumes fixed and going back to the
original container volume\("—V'/\) requires the revers- T 1+4 ng(oy). (B10)
ible work pkgT

SW,=—P(V—V')=P4V. (B3)
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