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Continuous phase transition in polydisperse hard-sphere mixture
Ronald Blaak and José A. Cuesta
Grupo Interdisciplinar de Sistemas Complicados (GISC), Dpto. de Matema´ticas, Univ. Carlos III de Madrid,
Avda. de la Universidad 30, 28911 Legane´s, Spain

~Received 14 March 2001; accepted 27 April 2001!

In a previous paper@Zhanget al., J. Chem. Phys.110, 5318 ~1999!# we introduced a model for
polydisperse hard-sphere mixtures that is able to adjust its particle size distribution. Here we give
the explanation of the questions that arose in the previous description and present a consistent theory
of the phase transition in this system, based on the Percus–Yevick equation of state. The transition
is continuous, and like Bose–Einstein condensation, a macroscopic aggregate is formed due to the
microscopic interactions. A treatment based on the equation of state by Boublı´k, Mansoori,
Carnahan, Starling, and Leland leads to the same conclusion with slightly more accurate predictions.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1380210#
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I. INTRODUCTION

Monodisperse colloidal suspensions are rare in nat
Whether these colloidal particles are artificially prepared
not, in the best case the particle size distribution is a nar
distribution around an average size. It is obvious that suc
polydisperse nature will influence the physics and proper
of these systems, and one could easily imagine that, by
use of very asymmetric mixtures, it is possible to create s
tems with a behavior that cannot be described by the sim
monodisperselike approximation. In fact, one does not e
need to consider extreme cases as was illustrated in the
of phase equilibria in a polydisperse van der Waals mod1

Conceptually, we can distinguish between two types
polydispersity. One of them, which we could refer to as ‘
trinsic polydispersity,’ arises from the fact that the partic
present in the system are different by construction~in size,
charge, or any other feature! and their characteristics are n
changed by the interaction with other particles. This kind
system is like multicomponent mixtures in which, at least
principle, the composition can be externally imposed. T
new phenomenology that we can expect from this system
its origin in fractionations into phases with differe
compositions2–5 ~constrained by particle conservation! and
their coupling with other transitions already present in
monodisperse system.6,7

The second kind of polydispersity can be found in se
assembling systems8 ~surfactants forming micelles, mono
mers forming chains, vesicles, etc.!. The aggregates prese
in these systems can be identified as the particles, each
different size, shape, conformation, etc. the difference w
the intrinsically polydisperse systems being that the com
sition is determined by the chemical equilibrium between
constituents of the aggregates. As a consequence, the
librium is not constrained by conservation of the number
particles, and therefore, no fractionation is to be expected
principle, the system can compensate losses of entrop
adjusting its composition. There are, however, other c
straints in the system~the number of small constituents, fo
instance!, and these may induce new kinds of transitio
9630021-9606/2001/115(2)/963/7/$18.00
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characterized by the appearance of one or a few macrosc
aggregates. As such can be cataloged phenomena as th
pearance of lamellar and columnar phases in surfac
solutions,9,10 emulsification failure in micro-emulsions,11,12

or long chain formation in polymer solutions.13

A study of polydisperse mixtures of either type is f
from trivial. In the case of intrinsic polydispersity there is th
experimental problem of how to fabricate colloidal particl
according to a given particle size distribution. Although
simulations this seems to be somewhat under better con
one could easily run into the problem of finite size effec
due to an insufficient or inadequate sampling of parti
sizes. This is not the case in self-assembling systems
though experimentally, their polydispersity cannot be eas
characterized.

Theoretical descriptions of polydisperse systems
mainly based on a small set of moments of the particle s
distribution,4,5,14–17and it is assumed that mixtures with th
same set of moments show a corresponding behavior.
seems to be a rather successful approach, although it is
obvious that it could still be applied to very asymmetr
mixtures.

In two previous articles, we analyzed the behavior
idealized versions of polydisperse mixtures. The system
assumed to be composed ofN spherical aggregates whic
only interact via hard-core repulsion. The chemical equil
rium of the underlying constituents is accounted for by
lowing particles to exchange size in such a way that the t
volume18 ~compact aggregates! or surface19 ~surfactant mi-
cellar membranes! of the particles remains fixed at all time
and the number of particles is constant.

Under the influence of the applied pressure, the part
size distribution of these systems changes. In the case o
constrained surface, the particle size distribution chan
from an exponentially decaying function in the low dens
limit to a single-peaked distribution in the denser liqu
phase. For sufficiently high pressures, this system can for
number of different mechanically stable crystals, a monod
perse face-centered cubic crystal, or a bidisperseAB or AB2

crystal.
© 2001 American Institute of Physics
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For the system with the constraint on the total volume
the particles, it was found by theory and simulations that
a rather low volume fraction of approximately 0.26, the s
tem could no longer be described by Percus–Yevick type
equation of state, due to the formation of macroscopica
large particles. In the present work, we will show that th
phenomenon is a true phase transition and provide a
consistent theory for this sort of system. The nature of t
transition has recently been studied in ideal systems20 and
found to be connected to Bose–Einstein condensation,
from this work we can conclude that interaction on
changes the details, not the essential features. The conne
of the present model with Bose–Einstein condensation
earlier suggested by Frenkel.21

The remainder of this paper is organized as follows.
Sec. II we will show the results of computer simulations w
have performed, and explain some of the details involv
These results are compared with a theory based on
Percus–Yevick equation of state in Sec. III. As we show
Sec. IV, the treatment based on the heuristic equation of s
due to Boublı´k, Mansoori, Carnahan, Starling, and Lela
~BMCSL!,25,26 leads to a slightly better theoretical descri
tion. In Sec. V, we finish with a brief discussion on some
the issues raised in this paper.

II. SIMULATIONS

The system under consideration here is one formed bN
spherical particles with different sizes. These particles
only interacting via a hard-core repulsion, and hence, te
perature is not a relevant parameter. We allow, howe
pairs of particles to exchange volume under the constr
that the total volume occupied by all particles remains fix
As a consequence, the system has the freedom to exp
different size-distribution functions and relax to the ‘‘op
mal’’ one. In the previous work,18 we found by computer
simulations that, beyond a relative small pressure or den
some of the particles became macroscopically large. F
theoretical arguments, an upper bound to the pressure
obtained for fixed volume fraction, above which a single-s
distribution is unstable. However, simulations indicated
discrepancy with this result.

The formation of macroscopic particles~in simulations
of the size of the simulation volume! beyond a critical
value20 is, in fact, comparable to Bose–Einstein conden
tion, or alternatively, as a sort of sedimentation. In order
describe and simulate this phenomenon in our system
correct manner, one has to eliminate the finite size effe
that originate from the relatively small number~typically of
the order 1000! of particles that is being used in comput
simulations. This could easily be solved by increasing
number of particles by one or several orders of magnitu
but this is seldom a preferred option. Moreover, in this p
ticular case, there exists a much more elegant solution to
problem.

The introduction of huge particles in a sea of smal
ones has two effects. The first is the reduction of the av
able volume that can be occupied by the smaller ones,
the second is the introduction of a hard wall formed by
big particles. It turns out that it is the second effect th
Downloaded 13 Jul 2001 to 147.96.22.181. Redistribution subject to AI
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caused the discrepancy between the simulation results
the upper bound of the equation of state.18 The natural solu-
tion is, therefore, to eliminate this particular effect, whic
can be done by extracting the big particle~s! out of the simu-
lation box.

We will assume that there is only a single big partic
~aggregate! with a volumeV0>0, but it can easily be ex-
tended to include several aggregates, albeit their num
with respect to the simulation is not relevant. The total v
ume that can be occupied by theN particles plus the aggre
gate, is denoted byVf5V01N(p/6) ^s3&5N (p/6) s f

3 ,
where ^s3& is the average diameter cubed of the partic
ands f defines a natural length scale. The choice ofs f in this
formulation is based on the infinite dilute system for whi
the size of the aggregate is zero. The volume that is ac
sible to the particles is denoted byV. But since we have
extracted the aggregate out of the system, the total ther
dynamical volume of the system is given byVT5V1V0 .

On this system we have performed Monte Carlo~MC!
simulations using the isothermal-isobaric constant~NPT! en-
semble. For a detailed description on Monte Carlo simu
tions, we refer the reader to Ref. 22; here we will only l
the main features. As positional order will play no role, w
will assume the simulation volumeV to be cubic and we will
be using four different types of moves.

The first and simplest move is randomly selecting a p
ticle and displacing it isotropically. The second type of mo
was introduced before.18 It randomly selects a pair of par
ticles and attempts to exchange a finite amount of volume
adding this to one, and subtracting it from the other partic
Hereafter, their new volumes are used in order to obtain
appropriate diameters. Obviously, if this process led to
negative volume, the move could not be accepted. Ap
from that, both moves are accepted, provided that no ove
is caused by these changes. Moreover, the amount of
placements and volume exchanges are drawn hom
neously from an interval, of which the size is continous
adjusted in order to obtain an average acceptance per m
between 35%–50%.

In the third move, we allow the simulation box to shrin
or expand isotropically, in order for the system to equilibra
with respect to the applied pressure. This is also, in princip
a standard move in MC simulations using the NPT ensem
However, in this case, it is required to modify the accepta
criterion of this move. This is caused by the fact that t
thermodynamical volumeVT and the volume of the simula
tion box V, although related, are not identical.

The weight of any nonoverlapping configuration in th
NPT ensemble is proportional to exp(2bPVT), where b
51/(kBT) the inverse temperature. In addition to that, the
is, in MC simulations, a correction factorVN due to the use
of scaled coordinates in order to facilitate the volume mo
and periodic boundary conditions. As a result, the volu
move, if no overlaps are produced, is accepted with the pr
ability

Min ~1,exp@bP~VT
(n)2VT

(o)!2N ln~V(n)/V(o)!# !, ~1!

where the labelsn and o refer to the new and old configu
ration, respectively.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The fourth type of move is the exchange of volume b
tween a particle and the aggregate. Although this seems t
equivalent to the volume exchange between particles, the
a subtle difference. Provided that no overlap is produced,
both volumes remain positive, this move is allowed. Ho
ever, if the aggregate changes its volume, this results
change of the available volumeV for the N particles, while
the thermodynamic volumeVT remains fixed. As a result thi
move needs to be accepted with probability

Min~1,exp@2N ln~V(n)/V(o)!# !. ~2!

We have performed a series of simulations on this s
tem withN51000 particles. In each simulation run, we us
105 sweeps, where in each sweep~on average! we try N
particle moves,N/2 volume exchanges, one volume mov
and five exchanges of volume between the aggregate and
of the normal particles. Average quantities were obtain
from a single run after equilibrium was reached. The tim
required to reach equilibrium strongly depends on the ini
configuration. In simulations where an equilibrium config
ration of a slightly higher or lower applied pressure is us
usually one run is sufficient. If started from a monodispe
simple cubic lattice, one or several runs are required,
pending on the initial choice of the size of the aggregate
volume of the simulation box.

The results of the equation of state are shown in Fig
where the the reduced pressureP* 5bPs f

3 is plotted as a
function of the volume fractionh5Vf /VT . The results ob-
tained from expansion and compression runs, as wel
started from monodisperse systems, all lead, within the e
mated errors, to the same results. Near the volume frac
0.26, where the critical value was found,18 a change in slope
can be observed.

A natural order parameter for this system is the relat
amount of fixed total volume of the particles found in t
aggregateV0 /Vf and is shown in Fig. 2. Comparison wit
simulations on systems with less particles, and the abse
of hysteresis in the equation of state, suggests the possib
of a continuous phase transition.

FIG. 1. Equation of state. The solid and dotted line are the theore
predictions above and below the transition, respectively. The points are
tained from MC simulations on a 1000 particle system. The inset show
enlargement of the transition point.
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The simulation results below the critical value are co
sistent with those obtained previously.18 Above this value,
the results are different. The presence of the aggregate se
to prevent the formation of other macroscopic particles. N
that the difference is not so much the fact that there is
aggregate, but the way it is treated as an external buffer,
eliminating the surface effects.

III. PERCUS–YEVICK THEORY

In order to describe the system under consideration th
retically, one should realize that the presence of a thermo
namic volume (VT) as well as an available volume (V) for
the particles should carefully be taken into account. The s
tem can be described by a polydisperse system ofN hard
spheres in a volumeV, which is in contact with an externa
bath, because, in addition to the exchange of volume
tween the particles themselves, this can also be done
this bath or aggregate.

We will describe the polydisperse system within t
Percus–Yevick approximation of a polydisperse hard–sph
mixture,23 from which the equation of state yields

p

6
bP5

j0

12j3
1

3j1j2

~12j3!2 1
3j2

3

~12j3!3 , ~3!

wherejk is thekth moment of the particle size distributio
function

jk5
p

6
rE dvW~v !sk5

h

12~V0 /Vf !h
^sk&
s f

3 . ~4!

Herer5N/V is the number density defined with respect
the available volume,h5Vf /VT the volume fraction, and
W(v) is the continuous particle size distribution functio
which due to the type of interaction, is a function of th
particle volumev. The Helmholtz free energy functiona
F(N,VT ,T) of this system, however, is a function of th
thermodynamic volumeVT

bF

N
5 ln~rL3!211E dvW~v !ln W~v !1

bFex

N
, ~5!

al
b-
n

FIG. 2. The solid line is the theoretical prediction of the order parame
V0 /Vf . The circles are results of MC simulations on a 1000 particles s
tem. The inset shows an enlargement of the area near the phase tran
and in addition, simulation results of a 512 particle system are indicated
squares.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where the excess free energy per particle is given by

bFex

N
52 ln~12j3!1

3j1j2

j0~12j3!
1

3j2
3

2j0~12j3!2 . ~6!

In order to obtain the equilibrium distribution,W(v), we
need to minimize this free energy functional, taking into a
count that there are two constraints which need to be s
fied. This is solved by adding the following two terms to t
free energy functional

2L0E dvW~v !2L3S E dvW~v !v1
V0

N D , ~7!

whereL0 andL3 are Lagrange multipliers. The first term
due to the requirement that the particle size distribution fu
tion should be normalized to unity, and the second is that
combined volume of all particles and the aggregate is fi
to beVf .

The equilibrium particle size distribution can now b
obtained by minimizing the free energy functional with r
spect toW(v) and the free parameterV0 . Stationarity with
respect to changes inW(v) leads to

ln@W~v !#2 ln~12j3!1
3j2

~12j3!
s1S 3j1

~12j3!

1
9j2

2

2~12j3!2Ds21
p

6
bPs32L02L 3

p

6
s350, ~8!

from which we can immediately derive the functional for
of the functionW(v) that will minimize the free energy

W~v !5expS (
i 50

3

a is
i D , ~9!

where the coefficientsa i are determined by

a152
3j2

~12j3!
, ~10!

a252S 3j1

~12j3!
1

9j2
2

2~12j3!2D . ~11!

The values ofa3 and a0 are fixed by the constraint on th
total combined volume of the particles and the aggreg
and the normalization of the particle size distribution, resp
tively. Formally, however, the coefficienta3 is given by

a352
p

6
~bP2L3!. ~12!

In addition to these equations, we have to minimize w
respect to the volume of the aggregate. Note that thej i de-
pend on the value ofV0 through the number density. There
fore we obtain

]bF

]V0
52

]bF

]VT
2L35bP2L350. ~13!

This result does not automatically imply thata350. The
reason is that we have to minimize the free energy w
respect to the volume of the aggregate under the additi
condition that the aggregate has a non-negative volume.
consequence, this can result in the possibility that the m
Downloaded 13 Jul 2001 to 147.96.22.181. Redistribution subject to AI
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mum is found forV050 and the stationarity equation~13!
not being satisfied. This leads to a natural splitting of t
behavior of this system. For low pressures, the volume of
aggregate will be zero, and the particle size distribution is
exponential of a third order polynomial in the particle diam
eter. On increasing the pressure, the coefficienta3 , which
can only be nonpositive in order to allow a proper norm
ization, goes to zero. In this region, the behavior is as
plained before.18 According to the theoretical description i
the Percus–Yevick approximation, the coefficienta3 be-
comes zero at volume fractionh50.260 198 pressureP*
51.343 442. At this point the valueV050 not only mini-
mizes the free energy, but also satisfies the stationarity e
tion ~13!. For pressures larger than this value, the stationa
equation can always be satisfied with a positive volume
the aggregate and hence, the coefficienta3 remains zero.

It turns out that this point is the location of a continuo
transition. Beyond this point, the system relaxes by trans
ring volume to the aggregate, and effectively scaling
polydisperse system to a smaller size. If we denote b
scriptc the values of the critical system, this can be shown
the following way. If we replace the coefficientsak in the
particle size distribution byqkack , where q is a positive
number, and fixa0 by the normalization to unity, it follows
directly from the special form~9! of W(v) that the moments
of the size distribution are given bŷsk&5^sk&c /qk. This
results in

a152q3
3hc

~12hc!

^s2&
s f

3 , ~14!

and provided thatq is determined by

q35
h

12h

12hc

hc
, ~15!

this is a solution of Eq.~10!. Applying this procedure toa2

leads to the same expression forq. Therefore the scaled siz
distribution function leads to a minimum free energy, alb
for a different applied pressure.

The pressure equation of state beyond the critical po
also becomes fairly simple now. If we rewrite the pressu
~3! using the solutions~10! and ~11!, we obtain

p

6
P* 5

j02 1
3 a1j12 2

3 a2j2

12j3
s f

35
2h

12h
, ~16!

where we used that fora350, the functional form ofW(v)
leads to the identity 3̂s0&1a1^s&12a2^s

2&50. We can
also derive a simple expression for the order param
V0 /Vf of the system

V0

Vf
512

^s3&
s f

3 512
Pc*

P*
. ~17!

The curves of the equation of state and the order param
are shown in Figs. 1 and 2 respectively, and show a per
agreement with the simulation results. In Fig. 1 the dot
line represents the equation of state below the transition,
Eq. ~3!, while the solid line is the one above, as given by E
~16!. The latter one is extended to the zero density limit
order to visualize the difference between both branches.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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From these results, two additional illustrative propert
can be derived for the system beyond the point of the tr
sition. Given that the particle size distribution only chang
according to a dimensional scaling or from the order para
eter ~17!, we find that

P^s3&5Pcs f
3 . ~18!

This simply states that the system becomes scale invar
with a constant pressure if it is defined in terms of the av
age particle volume. The other result is thatj3 , which can be
identified with the local volume fraction of the particles, r
mains fixed, i.e.,j35hc . These results can be used in ord
to determine the point of transition from simulations. This
illustrated in Fig. 3, whereP* ^s3&/s f

3 as a function ofh,
and the applied pressureP* as a function ofj3 are shown, as
measured in our MC simulations. According to these sim
lations, the transition is found at a volume fractionh
50.262360.0003 and pressureP* 51.36060.003.

The prediction of the particle size distributionW(v) is
compared with the simulation results in Fig. 4. By plottin

FIG. 3. Comparison of the simulation results for a 1000 particles sys
with the theoretical predictions. The circles represent the applied pres
P* as function of the volume fractionh. The squares the local pressu
P* ^s3&/s f

3 as function ofh, and the diamonds the applied pressureP* as
function of the local volume fractionN^v&/V.

FIG. 4. The particles size distributions are shown by plotting ln(W(v)/P* ) as
a function ofP* v. Due to this scaling, all distributions above the transiti
should coincide, without using the actual values of the pressure and vo
fraction at the transition. The solid curve is the predicted curve by
Percus–Yevick approach.
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ln (W(v)/P* ) as a function ofP* v, the distributions above
the transition coincide and perfectly agree with the predic
curve from Percus–Yevick. The discrepancy at higher val
for P* v is merely a consequence of an insufficient sampl
of the largest particles in the system. ForP* 51.50, there is
the additional effect that this is close to the transition, wh
the system tends to probe larger particles.

It turns out that within the Percus–Yevick approxim
tion, the system shows a continuous phase transition, w
is characterized by the nonzero volume of an aggregate
fact, it shows some similarities to Bose–Einstein conden
tion, because what actually happens is that the interactio
microscopic particles leads to the formation of a mac
scopic aggregate.20

IV. BMCSL-THEORY

It is a well known fact that the Percus–Yevick equati
of state in a monodisperse hard-sphere system can be
proved by combining it with the virial equation of state. Th
results in the Carnahan–Starling equation of state.24 A simi-
lar approach can be made for polydisperse sphere mixtu
and the resulting heuristic equation of state is due to Boub´k,
Mansoori, Carnahan, Starling, and Leland25,26

p

6
bP5

j0

12j3
1

3j1j2
2

~12j3!2 1
3j2

3

~12j3!3 2
j3j2

3

~12j3!3 .

~19!

A straightforward integration of this equation of state sho
that the excess free energy up to a constant is given by23

bFex

N
5S j2

3

j0j3
2 21D ln~12j3!1

3j1j2

j0~12j3!

1
j2

3

j0j3~12j3!2 . ~20!

The additional constant is independent of the volume,
could, in principle, depend on the moments of the size d
tribution, without changing the equation of state. Such a c
stant would be relevant for this particular model, since
size distribution of the system can be changed, and there
an additional change in free energy can be produced. F
general applicability of the free energy functional to differe
models, however, it can be shown that this contribution n
essarily vanishes.

We can now apply the same procedure as was used in
case of the Percus–Yevick approximation. The functional
rivative of the free energy with respect toW(v) leads to the
same functional form~9! as before, but the stationarity equ
tions on the coefficientsa i need to be modified

a152
3j2

~12j3!
, ~21!

a252
3j1

~12j3!
2

3j2
2

j3~12j3!2 2
3j2

2

j3
2 ln~12j3!, ~22!

a352
p

6
~bP2L3!1S j2

j3
D 3F2 ln~12j3!1

j3~22j3!

~12j3! G .
~23!
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The derivative of the free energy with respect to the volu
of the aggregate leads again to

]bF

]V0
52

]bF

]VT
2L35~bP2L3!50. ~24!

The second term on the right hand side of Eq.~23! is, except
in the zero density limit, always positive. As a conseque
Eq. ~24! can never be satisfied, because such a solu
would lead to a positivea3 and hence a nonnormalizab
size distribution function. The minimum free energy f
given volume fraction will, therefore, not be a solution of a
the stationarity equations simultaneously.

Since the stationarity equations~21!–~23! are directly
related to the equations for chemical equilibrium between
different particle sizes, they need to be fulfilled. If we fixe
the volume of the aggregateV0 , these equations would b
sufficient to obtain the unique distribution function that min
mizes the free energy. In Fig. 5 we have plotted the f
energy per volume for several fixed values ofV0 ~solid
curves!. On these curves the stationarity equations are sa
fied, hence the value ofV0 that leads to the minimum fre
energy corresponds to the equilibrium situation. The
curves are bounded by lower and upper limit of the volu
fraction. The lower limit corresponds to the case wherea1

5a250, and the upper limit corresponds to the case wh
a350. Outside this interval no self-consistent solution of t
stationarity equations can be obtained.

Similar to what we found in the Percus–Yevick a
proach, we can scale the particle size distribution function
such that we obtain a solution to the stationarity equati
for a different volume fraction by replacingak by qkak and
by fixing the normalization constant. The free energy p
volume for several of these scaled solutions is also show
Fig. 5 as dotted curves. Both sets of curves are similar,
use a different parameter to describe them.

The equilibrium situation of our model is the one th
corresponds to the lowest free energy for given volume fr
tion and will correspond to the envelope of the set of cur
in Fig. 5. One can show that we have two regions, which
illustrated by this figure. Below the transition, the equili

FIG. 5. The Helmholtz free energy per volume as a function of the volu
fraction for fixed order parameterV0 /Vf , i.e., constant size of the aggrega
~solid curves! and for scaled distribution functions~dotted curves!. Both sets
are similar but use only a different parameter for characterization.
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rium situation corresponds to the curve for whichV050, i.e.,
without a macroscopic aggregate. Above the transition,
will follow the branch of a scaled solution, emerging fro
the end point of this curve determined bya350. The transi-
tion point is therefore obtained by self-consistently solvi
the case forV05a350 and leads to a volume fractionh
50.262 611 and pressureP* 51.356 275.

Actually the same reasoning could have been used
the Percus–Yevick approach. But since for that case all
tionarity equations could be solved simultaneously, there w
no need to follow this line of argumentation.

The numerical predictions of the transition point for th
BMCSL approach are slightly better in agreement with t
simulation results than the results from Percus–Yevick. T
difference between both predictions is however too smal
order for it to be visible in any of the figures. Also, in prin
ciple, the size-distribution function can be used to distingu
both theories, however, in order to do so, the number
particles should be increased several orders of magnitude
order to obtain sufficient statistics for the larger particles a
to make the difference in the tail of the distribution visible

V. DISCUSSION

We have demonstrated how to obtain a self-consis
theory for a polydisperse hard-sphere system, where part
are able to change their size by exchanging volume. Wit
the Percus–Yevick approximation, this system shows a c
tinuous phase transition, in which the microscopic inter
tions lead to the formation of a macroscopic aggregate
behavior similar to Bose–Einstein condensation. The th
retical results have been compared with a new series of c
puter simulations and show an excellent agreement, bec
in the new treatment we have eliminated the finite size eff
that previously led to discrepancies between theory
simulation.

This peculiar system, which at best can be considere
be an extremely idealized version of spherical micelles,
poses an unusual behavior in the BMCSL approach. T
equilibrium state of the system is one which does not sat
the stationarity equations, but is determined by the bound
conditions on the problem, i.e., a normalizable particle s
distribution. The difference between both approximations
minor, and in order to determine which one is better, sim
lations would be required with several orders of magnitu
more particles.
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