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Continuous phase transition in polydisperse hard-sphere mixture
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In a previous papefZhanget al, J. Chem. Phys110 5318(1999] we introduced a model for
polydisperse hard-sphere mixtures that is able to adjust its particle size distribution. Here we give
the explanation of the questions that arose in the previous description and present a consistent theory
of the phase transition in this system, based on the Percus—Yevick equation of state. The transition
is continuous, and like Bose—Einstein condensation, a macroscopic aggregate is formed due to the
microscopic interactions. A treatment based on the equation of state by Boldnsoori,
Carnahan, Starling, and Leland leads to the same conclusion with slightly more accurate predictions.
© 2001 American Institute of Physic§DOI: 10.1063/1.138021]0

I. INTRODUCTION characterized by the appearance of one or a few macroscopic
aggregates. As such can be cataloged phenomena as the ap-
Monodisperse colloidal suspensions are rare in naturggearance of lamellar and columnar phases in surfactant
Whether these colloidal particles are artificially prepared orsolutions®*? emulsification failure in micro-emulsiorts*2
not, in the best case the particle size distribution is a narrowsr long chain formation in polymer solutiod3.
distribution around an average size. It is obvious that such a A study of polydisperse mixtures of either type is far
polydisperse nature will influence the physics and propertiefrom trivial. In the case of intrinsic polydispersity there is the
of these systems, and one could easily imagine that, by thexperimental problem of how to fabricate colloidal particles
use of very asymmetric mixtures, it is possible to create sysaccording to a given particle size distribution. Although in
tems with a behavior that cannot be described by the simplgimulations this seems to be somewhat under better control,
monodisperselike approximation. In fact, one does not evenne could easily run into the problem of finite size effects
need to consider extreme cases as was illustrated in the cadge to an insufficient or inadequate sampling of particle
of phase equilibria in a polydisperse van der Waals mbdel. sizes. This is not the case in self-assembling systems, al-
Conceptually, we can distinguish between two types ofthough experimentally, their polydispersity cannot be easily
polydispersity. One of them, which we could refer to as ‘in- characterized.
trinsic polydispersity,” arises from the fact that the particles  Theoretical descriptions of polydisperse systems are
present in the system are different by constructionsize, mainly based on a small set of moments of the particle size
charge, or any other featyrand their characteristics are not distribution**>#~1’and it is assumed that mixtures with the
changed by the interaction with other particles. This kind ofsame set of moments show a corresponding behavior. This
system is like multicomponent mixtures in which, at least inseems to be a rather successful approach, although it is not
principle, the composition can be externally imposed. Theobvious that it could still be applied to very asymmetric
new phenomenology that we can expect from this system hasixtures.
its origin in fractionations into phases with different In two previous articles, we analyzed the behavior of
composition§™ (constrained by particle conservatjoand  idealized versions of polydisperse mixtures. The system was
their coupling with other transitions already present in theassumed to be composed Nf spherical aggregates which
monodisperse systefr. only interact via hard-core repulsion. The chemical equilib-
The second kind of polydispersity can be found in self-rium of the underlying constituents is accounted for by al-
assembling systefigsurfactants forming micelles, mono- lowing particles to exchange size in such a way that the total
mers forming chains, vesicles, etcThe aggregates present volume® (compact aggregatesr surfacé® (surfactant mi-
in these systems can be identified as the particles, each witdellar membrangsof the particles remains fixed at all times
different size, shape, conformation, etc. the difference withand the number of particles is constant.
the intrinsically polydisperse systems being that the compo-  Under the influence of the applied pressure, the particle
sition is determined by the chemical equilibrium between thesize distribution of these systems changes. In the case of the
constituents of the aggregates. As a consequence, the eqgbnstrained surface, the particle size distribution changed
librium is not constrained by conservation of the number offrom an exponentially decaying function in the low density
particles, and therefore, no fractionation is to be expected. Itimit to a single-peaked distribution in the denser liquid
principle, the system can compensate losses of entropy hyhase. For sufficiently high pressures, this system can form a
adjusting its composition. There are, however, other connumber of different mechanically stable crystals, a monodis-
straints in the systertthe number of small constituents, for perse face-centered cubic crystal, or a bidisp&Beor AB,
instance, and these may induce new kinds of transitionscrystal.
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For the system with the constraint on the total volume ofcaused the discrepancy between the simulation results and
the particles, it was found by theory and simulations that, athe upper bound of the equation of st&t&he natural solu-
a rather low volume fraction of approximately 0.26, the sys-tion is, therefore, to eliminate this particular effect, which
tem could no longer be described by Percus—Yevick type ofan be done by extracting the big partis)eout of the simu-
equation of state, due to the formation of macroscopicallylation box.
large particles. In the present work, we will show that this  We will assume that there is only a single big particle
phenomenon is a true phase transition and provide a selfaggregatewith a volumeVy=0, but it can easily be ex-
consistent theory for this sort of system. The nature of thigended to include several aggregates, albeit their number
transition has recently been studied in ideal syst8raad  with respect to the simulation is not relevant. The total vol-
found to be connected to Bose—Einstein condensation, angme that can be occupied by thieparticles plus the aggre-
from this work we can conclude that interaction only gate, is denoted byw;=Vy+N(7/6){c®) =N (7/6) af3,
changes the details, not the essential features. The connectiaere (o) is the average diameter cubed of the particles
of the present model with Bose—Einstein condensation waando; defines a natural length scale. The choice pn this
earlier suggested by Frenkel. formulation is based on the infinite dilute system for which

The remainder of this paper is organized as follows. Inthe size of the aggregate is zero. The volume that is acces-
Sec. Il we will show the results of computer simulations wesible to the particles is denoted By. But since we have
have performed, and explain some of the details involvedextracted the aggregate out of the system, the total thermo-
These results are compared with a theory based on thdynamical volume of the system is given by=V+V,.
Percus—Yevick equation of state in Sec. lll. As we show in  On this system we have performed Monte CaitC)
Sec. IV, the treatment based on the heuristic equation of stagmulations using the isothermal-isobaric constiRT) en-
due to Boubk, Mansoori, Carnahan, Starling, and Leland semble. For a detailed description on Monte Carlo simula-
(BMCSL), %% |eads to a slightly better theoretical descrip-tions, we refer the reader to Ref. 22; here we will only list
tion. In Sec. V, we finish with a brief discussion on some ofthe main features. As positional order will play no role, we

the issues raised in this paper. will assume the simulation volumé to be cubic and we will
be using four different types of moves.
Il. SIMULATIONS The first and simplest move is randomly selecting a par-

ticle and displacing it isotropically. The second type of move

The system under consideration here is one formelN b ; :
y y yas introduced befor¥ It randomly selects a pair of par-

spherical particles with different sizes. These particles art | d att s h finit t of vol b
only interacting via a hard-core repulsion, and hence, tem®c 5> N0 atl€MpIS 10 exchange a fnite amount of voiume, by

perature is not a relevant parameter. We allow, however‘?‘dding this to one, and subtracting it frqm the other par_ticle.
pairs of particles to exchange volume under the constrain"f'ereaﬁ?r't ths!r ne\;v volugbes_ arel us_fec:h|_n order to Othl? the
that the total volume occupied by all particles remains fixeg @PPropriate diameters. viously, 1F this process 1ed 1o a

As a consequence, the system has the freedom to explo gatlr\]/e \L)oluhme, the move coul?j not bg Zc::]epted. Ap?rt
different size-distribution functions and relax to the “opti- rom that, both moves are accepted, provided that no overlap

mal” one. In the previous work® we found by computer is caused by these changes. Moreover, the amount of dis-

simulations that, beyond a relative small pressure or densitﬁlacerrer;ts and _vtolum:e ?‘Xd;lanhg(tar? are Qrawn t_homolge-

some of the particles became macroscopically large. Fro€OUSly from an interval, ol which the siz€ 1S continously

theoretical arguments, an upper bound to the pressure w. justed in order to obtain an average acceptance per move
. . ’ . ) ) . 05—500

obtained for fixed volume fraction, above which a single-size etv:/e?rr: 3’[?1A)d 50%. llow the simulation box to shrink

distribution is unstable. However, simulations indicated a n the third move, we allow the simtfation box to sarin

discrepancy with this result. or expand isotropically, in order for the system to equilibrate

The formation of macroscopic particlém simulations with respect to the applied pressure. This is also, in principle,
of the size of the simulation volumebeyond a critical a standard move in MC simulations using the NPT ensemble.

valué® is, in fact, comparable to Bose—Einstein condensaﬁowever' in this case, it is required to modify the acceptance

tion, or alternatively, as a sort of sedimentation. In order goeriterion of this move. This is caused by the fact that the

describe and simulate this phenomenon in our system in @errgod;\//nanllﬁal vslurré:’Tdand the :’%Iu"]f Olf the simula-
correct manner, one has to eliminate the finite size eﬁectgon_l_r?x ' f”‘htoufg related, arle not iden 'C]f" fion in th
that originate from the relatively small numbgypically of € weight of any nonoveriapping configuration in the

; ; ; ; NPT ensemble is proportional to expBPV;), where B
the order 100D of particles that is being used in computer T
Dot p g P =1/(kgT) the inverse temperature. In addition to that, there

simulations. This could easily be solved by increasing the - MC simulati tion factof due to th
number of particles by one or several orders of magnitude',s’ n simulations, a correction fac ue to the use

but this is seldom a preferred option. Moreover, in this Ioar_of scaled coordinates in order to facilitate the volume moves

ticular case, there exists a much more elegant solution to th%nd periodic boundary conditions. As a result, the volume

problem move, if no overlaps are produced, is accepted with the prob-
The introduction of huge particles in a sea of smallerablllty

ones has two effects. The first is the reduction of the avail- iy (1,ex;i,8P(V(T”)—V(T°))— N In(VM/V©)T), 1)

able volume that can be occupied by the smaller ones, and

the second is the introduction of a hard wall formed by thewhere the labels ando refer to the new and old configu-

big particles. It turns out that it is the second effect thatration, respectively.
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FIG. 1. Equation of state. The solid and dotted line are the theoreticaFIG. 2. The solid line is the theoretical prediction of the order parameter

predictions above and below the transition, respectively. The points are otV /V¢ . The circles are results of MC simulations on a 1000 particles sys-

tained from MC simulations on a 1000 particle system. The inset shows atem. The inset shows an enlargement of the area near the phase transition,

enlargement of the transition point. and in addition, simulation results of a 512 particle system are indicated by
squares.

The fourth type of move is the exchange of volume be- The simulation results below the critical value are con-
tween a particle and the aggregate. Although this seems to tsistent with those obtained previousfyAbove this value,
equivalent to the volume exchange between particles, there f§€ results are different. The presence of the aggregate seems
a subtle difference. Provided that no overlap is produced, antp Prevent the formation of other macroscopic particles. Note
both volumes remain positive, this move is allowed. How_that the difference is not so much the fact that there is an
ever, if the aggregate changes its volume, this results in @dgregate, but the way it is treated as an external buffer, thus
change of the available volumé for the N particles, while ~ eliminating the surface effects.
the thermodynamic volum¥; remains fixed. As a result this
move needs to be accepted with probability ll. PERCUS-YEVICK THEORY

; _ (n) )\ /(0) In order to describe the system under consideration theo-
Min(Lexd =N In(VEVE]). @ retically, one should realize that the presence of a thermody-
We have performed a series of simulations on this sysnamic volume Y1) as well as an available volum&/Y for

tem with N= 1000 particles. In each simulation run, we usedthe particles should carefully be taken into account. The sys-
10° sweeps, where in each sweém averagewe try N tem can be described by a polydisperse systen dfard
particle movesN/2 volume exchanges, one volume move,sSpheres in a volum¥, which is in contact with an external
and five exchanges of volume between the aggregate and ohath, because, in addition to the exchange of volume be-
of the normal particles. Average quantities were obtainedween the particles themselves, this can also be done with
from a single run after equilibrium was reached. The timethis bath or aggregate.

required to reach equilibrium strongly depends on the initial ~We will describe the polydisperse system within the
configuration. In simulations where an equilibrium configu- Percus—Yevick approximation of a polydisperse hard—sphere
ration of a slightly higher or lower applied pressure is usedmixture?® from which the equation of state yields

usually one run is sufficient. If started from a monodisperse 3

; ; ; ; m €o 3616 38
simple cubic lattice, one or several runs are required, de- —pgp= + 5+ 3

pending on the initial choice of the size of the aggregate and 6 1-& (1-&)° (1-¢&)
volume of the simulation box. where &, is thekth moment of the particle size distribution

The results of the equation of state are shown in Fig. 1function

where the the reduced pressU?é=/3Pcrf3 is plotted as a - (o¥)
funcnon of the volume fractiomy=V; /VT_. The results ob- fk:—PJ doW(v) o= — Y = (4)
tained from expansion and compression runs, as well as 6 1-(Vo/Ve)n o7

started from monodisperse systems, all lead, within the eStiHerep:N/V is the number density defined with respect to
mated errors, to the same results. Near the volume fractiofye gvailable volumey=V;/V; the volume fraction, and

0.26, where the critical value was foufftia change in slope W(v) is the continuous particle size distribution function,

can be observed. which due to the type of interaction, is a function of the

A natural order parameter for this system is the relativep‘,irtide volumev. The Helmholtz free energy functional
amount of fixed total volume of the particles found in the F(N,V;,T) of this system, however, is a function of the
aggregateVy/V; and is shown in Fig. 2. Comparison with thermodynamic volum&-

simulations on systems with less particles, and the absence
of hysteresis in the equation of state, suggests the possibility ﬁ _
of a continuous phase transition. N

()

Fex

In(pA?’)—l-i-fdvW(v)InW(v)+'8N , (5)
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where the excess free energy per particle is given by mum is found forVy=0 and the stationarity equatiqi3)
Fex 3 3¢ not being satisfied. This leads to a natural splitting of the
B = —In(1— &)+ £162 2 (6)  behavior of this system. For low pressures, the volume of the

N Eo(1— &)  2&(1—¢&9)* aggregate will be zero, and the particle size distribution is the
In order to obtain the equilibrium distributio®/(v), we exponential of a third order polynomial in the particle diam-
need to minimize this free energy functional, taking into ac-éter. On increasing the pressure, the coefficieqt which
count that there are two constraints which need to be satigan only be nonpositive in order to allow a proper normal-
fied. This is solved by adding the following two terms to the ization, goes to zero. In this region, the behavior is as ex-

free energy functional plained beforé? According to the theoretical description in
v the Percus—Yevick approximation, the coefficiemt be-
0 comes zero at volume fraction=0.260 198 pressur@*
—Ly| doW(v)—-L dvW +—, 7 . . -
OJ vW(o) 3(f vW(v)u N) @ =1.343442. At this point the valug,=0 not only mini-

mizes the free energy, but also satisfies the stationarity equa-
tion (13). For pressures larger than this value, the stationarity
quation can always be satisfied with a positive volume for
e aggregate and hence, the coefficiegtremains zero.

It turns out that this point is the location of a continuous
transition. Beyond this point, the system relaxes by transfer-
ring volume to the aggregate, and effectively scaling the
polydisperse system to a smaller size. If we denote by a
scriptc the values of the critical system, this can be shown in
the following way. If we replace the coefficients, in the

3¢&; particle size distribution byg“a.,, whereq is a positive
(1-&3) number, and fixxy by the normalization to unity, it follows
directly from the special fornf9) of W(v) that the moments

where L, and L3 are Lagrange multipliers. The first term is

due to the requirement that the particle size distribution func
tion should be normalized to unity, and the second is that th
combined volume of all particles and the aggregate is fixed
to beVs.

The equilibrium particle size distribution can now be
obtained by minimizing the free energy functional with re-
spect toW(v) and the free paramet&f,. Stationarity with
respect to changes W(v) leads to

3&;

IN[W(v)]—In(1—¢&3)+ =& o

+

9 0 T 4 T . of the size distribution are given bi*)=(o*)./g¥. This
- 2(1-&,)2)7 T AP Lom Lag =0, B osiisin
from which we can immediately derive the functional form 3 37c (a?)
of the functionW(v) that will minimize the free energy @=-q (1- 70 o3 (14)
W(v)zexp<§3‘, aiai), ) and provided that] is determined by
=0 s 7 1— 7, (15
where the coefficientg; are determined by =1 n N
B 3és this is a solution of Eq(10). Applying this procedure te,
1= (1-&5)" (10 leads to the same expression éprTherefore the scaled size

5 distribution function leads to a minimum free energy, albeit
[ 34 N 9¢5 for a different applied pressure.
@2= ' The pressure equation of state beyond the critical point

(1-&)  2(1-¢&y)° <ot e | f \
. . also becomes fairly simple now. If we rewrite the pressure
The values ofas and « are fixed by the constraint on the 6(3) using the solutiong10) and (11), we obtain

total combined volume of the particles and the aggregate,

(11)

a}nd the normalization of the particlg sjze djstripution, respec- - . Eo— ragé— Ly, , 27
tively. Formally, however, the coefficient; is given by —P*= o;= ) (16)
6 1-¢; 1-79
= — g(ﬁp_ﬁg)_ (120  where we used that far3=0, the functional form ot(v)

leads to the identity @°)+ a1(c)+2a,(a?)=0. We can

In addition to these equations, we have to minimize with@lso derive a simple expression for the order parameter
respect to the volume of the aggregate. Note thatithge- ~ Vo/Vy Of the system

pend on the value d¥, through the number density. There- Vo (03 p*
fore we obtain - T S A
v, TR TR an
JdBF JdBF .
v v L;=pBP—L;=0. (13 The curves of the equation of state and the order parameter
0 T

are shown in Figs. 1 and 2 respectively, and show a perfect
This result does not automatically imply tha=0. The agreement with the simulation results. In Fig. 1 the dotted
reason is that we have to minimize the free energy withine represents the equation of state below the transition, i.e.,
respect to the volume of the aggregate under the additiond&q. (3), while the solid line is the one above, as given by Eq.

condition that the aggregate has a non-negative volume. As(@6). The latter one is extended to the zero density limit in

consequence, this can result in the possibility that the minierder to visualize the difference between both branches.
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10 In (W(v)/P*) as a function ofP*v, the distributions above
the transition coincide and perfectly agree with the predicted
8 curve from Percus—Yevick. The discrepancy at higher values
for P*v is merely a consequence of an insufficient sampling
6 of the largest particles in the system. FRf=1.50, there is
. the additional effect that this is close to the transition, where
- the system tends to probe larger particles.
4 It turns out that within the Percus—Yevick approxima-
tion, the system shows a continuous phase transition, which
2 is characterized by the nonzero volume of an aggregate. In
fact, it shows some similarities to Bose—Einstein condensa-
0522 < sl o . L . oL tion, because what actually happens is that the interaction of

microscopic particles leads to the formation of a macro-
scopic aggregat®.

FIG. 3. Comparison of the simulation results for a 1000 particles system

with the theoretical predictions. The circles represent the applied pressur,

P* as function of the volume fractiom. The squares the local pressure R/ BMCSL-THEORY
P*(cr3)/¢r? as function ofz, and the diamonds the applied pressBrfeas

_ _ It is a well known fact that the Percus—Yevick equation
function of the local volume fractiohl(v)/V.

of state in a monodisperse hard-sphere system can be im-

proved by combining it with the virial equation of state. This
From these results, two additional illustrative propertiesresults in the Carnahan—Starling equation of stafesimi-

can be derived for the system beyond the point of the tranlar approach can be made for polydisperse sphere mixtures,

sition. Given that the particle size distribution only changesand the resulting heuristic equation of state is due to Baubli

according to a dimensional scaling or from the order paramMansoori, Carnahan, Starling, and Lel&hf

eter(17), we find that ™ o & N 36155 N 353 ) §3§§
P(a°)=Pco. (18 67 T g 162 (T &7 (1 &7

This simply states that the system becomes scale invariant, (19

with a constant pressure if it is defined in terms of the averA straightforward integration of this equation of state shows

age particle volume. The other result is tigt which can be that the excess free energy up to a constant is givéh by
identified with the local volume fraction of the particles, re-

ex 3
mains fixed, i.e.£3= 7. . These results can be used in order BF = iz_ 1) In(1— &)+ ﬁ
to determine the point of transition from simulations. This is N 0&3 €o(1- &)
illustrated in Fig. 3, wheré*(a®)/o} as a function ofz, £
and the applied pressuR as a function of; are shown, as + —22 (20)
measured in our MC simulations. According to these simu- $0é3(1—¢&3)
lations, the transition is found at a volume fraction The additional constant is independent of the volume, but
=0.2623-0.0003 and pressurie* =1.360+0.003. could, in principle, depend on the moments of the size dis-

The prediction of the particle size distributid(v) is  tribution, without changing the equation of state. Such a con-
compared with the simulation results in Fig. 4. By plotting stant would be relevant for this particular model, since the
size distribution of the system can be changed, and therefore,
-—— an additional change in free energy can be produced. From
1 general applicability of the free energy functional to different
. models, however, it can be shown that this contribution nec-
essarily vanishes.

We can now apply the same procedure as was used in the
case of the Percus—Yevick approximation. The functional de-
rivative of the free energy with respect W(v) leads to the
same functional fornf9) as before, but the stationarity equa-
tions on the coefficienta; need to be modified

3&;
a=— -, 21
20 N 1 " 1 " 1 " 1 " 1 " ' ( 1 N 63) ( )
0 5 10 PLSV 20 25 30 3¢, 3 §§ 3 §§
T Mg HA-&? g e @
FIG. 4. The particles size distributions are shown by plottingM@{/P*) as 8
a function ofP*v. Due to this scaling, all distributions above the transition T & 3 £3(2—¢&3)
should coincide, without using the actual values of the pressure and volumgaz — —(BP— £3) + ( _) {2 In(1— &)+ —F7-—|.
fraction at the transition. The solid curve is the predicted curve by the 6 (1_53)
Percus—Yevick approach. (23
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rium situation corresponds to the curve for whigg=0, i.e.,
without a macroscopic aggregate. Above the transition, we
will follow the branch of a scaled solution, emerging from

- the end point of this curve determined by=0. The transi-

tion point is therefore obtained by self-consistently solving

the case foVy=a3=0 and leads to a volume fraction

=0.262611 and pressuf®* =1.356 275.

Actually the same reasoning could have been used for
the Percus—Yevick approach. But since for that case all sta-
tionarity equations could be solved simultaneously, there was
no need to follow this line of argumentation.

! . The numerical predictions of the transition point for the
BMCSL approach are slightly better in agreement with the
simulation results than the results from Percus—Yevick. The

f'G-_5- fTh‘i_Him:‘;'trZ frfen?”tzrfgi’\fef_"o'umﬁ a2 fH”Cti?:‘hOf ther"o'utmedifference between both predictions is however too small in

(;a:)?it:jo(r:]urc\)/re;X;ndc}orescg?ez d?stri(t))uti(fjhIfﬁﬁcﬁ%ngttejlzirc\)/e)s g:t?lgsg?sae o_rder for It_tO b? VI_SIbI_e In any _Of the flgures. Also’_m_ prln_-

are similar but use only a different parameter for characterization. ciple, the size-distribution function can be used to distinguish

both theories, however, in order to do so, the number of
particles should be increased several orders of magnitudes in

The derivative of the free energy with respect to the volumePrder to obtain sufficient statistics for the larger particles and

L " 1 "
0 0.2 0.4 0.6 0.8

n

of the aggregate leads again to to make the difference in the tail of the distribution visible.
IBF = IBF Ly=(BP—L3)=0 24 V. DISCUSSION
EAr v 3=(B 3)=0. (24) :

We have demonstrated how to obtain a self-consistent

The second term on the right hand side of &) is, except . .

. T I theory for a polydisperse hard-sphere system, where particles

in the zero density limit, always positive. As a consequence o . o
2 .are able to change their size by exchanging volume. Within

Eqg. (24) can never be satisfied, because such a solutio

e . e Percus—Yevick approximation, this system shows a con-
would lead to a positivexr; and hence a nonnormalizable . S ) ) . o
. S . - tinuous phase transition, in which the microscopic interac-
size distribution function. The minimum free energy for

; : . . tions lead to the formation of a macroscopic aggregate, a
given volume fraction will, therefore, not be a solution of all . o . . .
the stationarity equations simultaneously. behavior similar to Bose—Einstein condensation. The theo-

Since the stationarity equationi@1)—(23) are directly retical results have been compared with a new series of com-

X . o uter simulations and show an excellent agreement, because
related to the equations for chemical equilibrium between th - N
: i . . . in the new treatment we have eliminated the finite size effect
different particle sizes, they need to be fulfilled. If we fixed

the volume of the aggrega¥,, these equations would be g?ritulzzﬁjvr:OUSIy led to discrepancies between theory and
sufficient to obtain the unique distribution function that mini- S . .

. . This peculiar system, which at best can be considered to
mizes the free energy. In Fig. 5 we have plotted the freebe

' . an extremely idealized version of spherical micelles, ex-
energy per volume for several fixed values 6§ (solid

. . . iJposes an unusual behavior in the BMCSL approach. The
curves. On these curves the stationarity equations are sati % quilibrium state of the system is one which does not satisfy
fied, hence the value of, that leads to the minimum free d Y

o L the stationarity equations, but is determined by the boundary
energy corresponds to the equilibrium situation. These o . ) . .

T conditions on the problem, i.e., a normalizable particle size
curves are bounded by lower and upper limit of the volume

) 2 distribution. The difference between both approximations is
fraction. The lower limit corresponds to the case where ) . : : . .
e C minor, and in order to determine which one is better, simu-
= a,=0, and the upper limit corresponds to the case wher

a3=0. Outside this interval no self-consistent solution of the?atlons WO.UId be required with several orders of magnitude
more particles.

stationarity equations can be obtained.
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