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A previously developed fundamental measure functiphaChem. Physl07, 6379(1997)] is used

to study the phase behavior of a system of parallel hard cubes. The single-component fluid exhibits
a continuous transition to a solid with an anomalously large density of vacancies. The binary
mixture has a demixing transition for edge—length ratios below 0.1. Freezing in this mixture reveals
that at least the phase rich in large cubes always lies in the region where the uniform fluid is
unstable, hence suggesting a fluid—solid phase separation. A method is developed to study very
asymmetric binary mixtures by taking the limit of zero size ratio at fixed solvent fugacity. With this
procedure the mixture is exactly mapped onto a one-component fluid of parallel adhesive hard
cubes. At any density and solvent fugacity the large cubes are shown to collapse into a close-packed
solid. Nevertheless the phase diagram contains a large metastability region with fluid and solid
phases. Upon introduction of a slight polydispersity in the large cubes, the system shows the typical
phase diagram of a fluid with an isostructural solid—solid transitieith the exception of a
continuous freezing Consequences about the phase behavior of binary mixtures of hard core
particles are then drawn. @999 American Institute of Physids$0021-960809)52024-3

I. INTRODUCTION about the fluid of PHE& 8 scattered in the last forty years, but
the relevance of this model has only recently become appar-
ent when it has been proposed as a model of a fluid able to
demix by a purely entropic mechanish’

Entropic demixing has been a long standing question

This paper is the sequel of a previous bileenceforth
referred to as)lin which the so-calledundamental measure
theory (FMT) was applied to build a density functional for
the multicomponent system of parallel hard cuteslC). In . . k
| we explained all fundamentals of the theory and gave a ful hich only r(_acently begm; to be understood. It is well
account of the technical details involved in the derivation of .nown. that dlfferent atiractions betwegn tvyo types of par-
the functional. We also discussed the pros and cons of thiéicles in a fluid can produce segregation into two phases,
theory, as compared with more standard density functionaf@ch rich in one type of particlés.The question remains
theories(DFTs), and suggested some possible extensions. Whether hard particles, for which only an entropic balance

In this paper we apply the formalism developed in | to can drive a phase transition, ever demix and how. It is clear
study the phase behavior of the PHC fluid, with special emthat nonadditive mixture@mixtures in which particles of dif-
phasis in its relevance for the understanding of the phasterent types interact as if they had a larger volyinde
behavior of mixtures. The PHC fluid is a rather academicdemix?~'°but they have the segregation mechanism intro-
model and it possesses a bunch of “peculiarities” which areduced at the interaction potential. So the nontrivial question
rather odd for a fluid model, e.g., the uniform fluid is aniso-concerns additive hard-particle mixtures. The question is
tropic at small scalesthe cubes are kept parallel to each icky pecause the simplest model of this type, HS, was
othey, ffeeZi”Q oceurs a_t very IOW packing f'ractiofwound _solved in Percus—YevickPY) approximatio® and shown
0.'3_0'4’ and it is a continuous, msteao_l of first order, trar‘S"never to demix! It had to wait almost thirty years until the
tion (a consequence of the lack of isotropy of the fluid PY result was questioned. By solving numerically the

hase, and the depletion in the binary mixture is very stron . ) . . .
phase P Y y gOrnsteln—Zernlke equation with closure relations more accu-

compared to hard spher@dS). But in spite of these pecu- h he PY inodal | bil h
liarities, which certainly make of this model a caricature of a"at€ than the PY one, a spinodal instability was shown to

fluid, the physics one can learn from its phase behavior cafCCUr In @ binary mixture of HS™* for a diameter ratio

be easily extended to more reasonable fluids, and it has tHlow 0.1-0.25depending of the authors

important added value of being a much simpler model to It was then believed that a sufficiently asymmetric HS

carry out analytical calculationg@ven more: FMT seems to binary mixture undergoes fluid—fluid demixing in a certain

be somehow optimal for this modét? region of the phase diagram. But successive experiments per-
There have been a few previous studies in the literaturéormed in suspensions of polystyrene or silica spheres

(which to a large accuracy can be considered Kisowed
3Electronic mail: yuri@alum.math.uc3m.es cumulative evidence that demixing is coupled to freezing,
YElectronic mail: cuesta@math.uc3m.es and so one of the phases shows up as a crystal, sometimes a
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glass, of large particléd 24 Recent theoretical calculations
confirm this schemé&2°

Direct computer simulations have run into trouble when
dealing with this problem due to the extremely low probabil-
ity of moving a large particle in a sea of small ones without
overlapping any of them. Simulations are still possible for
not too dissimilar diameters, but they do not show
demixing?”-?® With the help of specially designed cluster
moves, the first evidence of demixing has recently been
found in simulations for diameter ratios smaller than 05.
Unfortunately these cluster moves do not help above the per-
colation threshold, and this sets a relatively low upper bound
for the total packing fraction of the fluid. Besides, this
method does not allow the identification of the coexisting
phases, so it does not distinguish fluid—fluid or fluid—solid
demixing.

In order to elucidate the nature of demixing for very
asymmetric mixtures the attention has shifted to understand
the depletion interaction. An effective pair potential between
the large spheres can be obtained by different
procedures®—33 Its shape reveals a very deep and narrow
(one small-sphere diamejewell followed by a couple of n
small oscillations extending two or three small-sphere diam-
eters. The depth and the amplitude of the oscillations depeneG. 1. Equation of state of the PHC fluid. Solid lines correspond to the
on the small spheres packing fraction. In view of the phaseressure of the stable phadlid or solid) at the given packing fraction.
behavior of spheres with narrow and deep attractivdotted line is the unstable fluid branch beyond freezing. Dashed line is the

. 134,354 . L . solid branch computed without accounting for vacancies in the lattiee
potentlals's, fluid—fluid demlxmg is ruled out for sufficient text). Full circles are the simulations of Ref. 6 and empty circles those of

asymmetry, and instead fluid—solid demixing or evenRref. 7 (actually we have averaged the two data sets reported for the largest
expanded—dense solid demixir(@e., demixing once the system sizp

large component has crystallizeshould appear. Simulations

of a system of HS supplemented by the depletion

potentiaf~33 confirm this conjecture if the diameter ratio is
below 0.1. Expanded—dense solid demixing is indeed show
in some of these simulations for ratios O(Ref. 32 or

this information is that the virial expansion is very poorly

EOnvergent. For the 3D fluid, the seventh order virial expan-
33 o : ion exhibits a maximum in the pressurezat 0.6, and then

0.05° This phase behavior has been recently corroborateéOes down very quickly to reach negative valfiés. behav-

by direct simulations OT th? binary mixturé, V_Vh'Ch have ior at moderate densities strongly deviates from that of a
been shown to be possible in the relevant region of the phassq

. xth-order virial expansion, in contrast to what happens for
diagram thanks to the small amount of small spheres Presefls This is the fingerprint of a nearby divergence. In fact
in those statepoints. '

the simulations of the fluid of PHC3D)®’ show a continu-
bus freezing into a simple cubic lattice’ aj=0.48+0.02(in
%ontrast with the first order nature of the HS freezinthis
result has been proven to be exact in infinite dimensfons.
The reason for a continuous freezing is the lack of rotational
§ymmetry of this system even in the disordered phébers
freezing does not break this symmetrllowing the cubes

c{o rotate restores the first-order nature of the freezing
ransition’

packing fraction the depletion potential becomes Baxter
adhesive potential*® By applying a similar limit to the
FMT functional of a binary mixture of PHE we have re-
cently obtained a functional for parallel adhesive hard cube
(PAHC).2® By avoiding the singularities of this potentiale
will treat this point in detail later orwe show that the phase
behavior of this fluid is consistent with the above describe
picture for the mixture of HS, with the difference that FMT's equation of state of the uniform PHC fluid is
expanded—dense solid demixing is the most common SC%‘lmpIy that of the scaled particle theof@PT), i.e., from
nario because PAHC freezing occurs at rather low packin%qs_ (60) and (61) of I, BP/p="1/(1— 3)? for'D=’2 and

fractions. BPIp=(1+n)l(1— ) for D=3, with A the inverse abso-
lute temperature in Boltzmann constant unghe pressure,
p the number density, anglthe packing fractionp=po®, o
There are relatively few results in the literature concern-being the cube edge-length. In Fig. 1 the SPT equation of
ing the fluid of PHC. As concerns the uniform fluid the virial state forD=3 is compared with the simulation data.
coefficients, both in 2D and 3D, have been exactly obtained On the other hand freezing can be studied as usual in
through diagrammatic expansions up to the sevéffihey = DFT by parametrizing the local density with a sum of Gaus-
have also been obtained for different approximate integrasians centered at the lattice poifisSince the lattice is
equation theorie3.The main consequence one draws fromsimple cubic, this can be easily achieved by setting

Il. THE ONE-COMPONENT FLUID
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p(r)=s(x)s(y)s(z), (18 This simplification occurs because of the factorization of the
density(1a), and hence of9).
- The free energyper particle ¥=pBF/N, of the solid
s(u)En:E_m g(u—nd), (1D phase can be obtained as the integral over a unit cell of the
lattice of the free energy density. Hence the ideal part turns

12 out to be

a 2
g(UI)E(;) e Y, (1o

dr2 dr2 dr2
id_ _
with d= 2" the lattice spacing, and a variational pa- v f_d/ZdX f—d/zdy f_d/Zde(r)[ln Vp(r)—1]
rameter determining the localization of particles at the lattice
sites. _ _ =|n(V/o-3)—1+3f dx g In[os(x)]. (1)
In | we expressed the free-energy functional of a multi- —w

component system with density profilgr) (i labeling the The integrand is written in a suitable way to use Gauss
species asF[{p;)}]=F"9{pi}1+F®{{pi}], where ; . cesT
pecies (e} it Tkl w Hermite numerical quadratursAs for the excess contribu-

BFIp1=S jdrpi(r)[lnvipi(r)—l], @ tion, similar manipulations lead to
I 1 [dr2 dr2
=g f dxqgx) | dyay)
~di2 ~di2
BF*Tip1= | drain, ). ® -
V; being the thermal volume of species and n, Xf_dlzdzq(z)l//(x,y,z)

=3pi*w{® a set of four weighted densitigstar denotes
convolution defined by the weights

=5 axon [ avaw [ dzga)

w¥=80/57, w=(616/57,56)57,56)67),
W =(507 67,615 67,0°0Y67), wP=060"67,  (4) X% Y(xtol2y*ol2zxol2), (12

with 6'=0(o;/2—|u]), and 8!'=(1/2)8(o;/2—|u|). As in |
we will also need the two scalar densities=n; ,+n;
+n; ., Nj,, v=X,Y,z, being the vector components wof,
i=1,2. The functiond(r) is given in terms of then,’'s as
(see)

where the last summation runs over all combinations of
signs. Again the latter expression is suitable for Gauss—
Hermite integration, which is crucial this time becay4@)
involves a three-dimensional integration.

We can now minimize with respect toto determine the
equilibrium profile. This yields a continuous freezing at
(5)  5=0.348. As the transition is continuous we can make
a more accurate determination of the transition density via

Ni-Ny  NaxNoyNy,
=-— —ng)+
®(r)=—ngIn(1—ny) Tn,  (1-ny?’

with n,,, v=Xx,y,z, the components afi. a standard bifurcation analysis. This is equivalent to find-
For convenience let us introduce the functions ing the density at which the structure factor diverges
for some wavevectok.. The structure factor is expressed
e(u)= erf(\au), (6) in terms of the direct correlation functiodDCF) as
- S(k)=111-p&(k)], and the Fourier transform of the DCF,

— —nd+ o/2)—e(u—nd—o/2)], v ¢(k), is obtained through Ed56) of | for a one-component
p(w) n;oc [e(u=nd+of2)~e(u-nd-o/2)] @) fluid. In order to simplify the final expression we exploit the
symmetry of the crystal by choosing = (k.,0,0) (the result
would be the same if we chode along theY or Z axes.

q(u)sn;m [g(u—nd+o/2)+g(u—nd=0o/2)], () 11,5 the condition to determine the critical point is

. . . . 2 2
(notice thatg(u)=e’(u)). The latter two are periodic with 4=3nct+ ;. , 9= 4nct g )
periodd. In terms of these functions +27c (1—7.)° Jo(ko)+ ¢ (1— 703 jo(kal2)
n3=p(X)p(y)p(2), (93 =0, (13

n,=2(q(x)p(y)p(2),p(x)q(y)p(z),p(x)p(y)q(z)), (9b)  the equality holding only folk=k.; jo(X)=sinx/x is the
. zeroth order spherical Bessel function. The solution to this
n1=z(P(X)d(y)a(z),q(x)p(y)d(z),q(x)acy)p(z)), (99 equation isy,=0.3143-- andk.o=4.8276-- .

_1 The discrepancy is noticeable between the valugof
Mo=5d()a(y)q(2). d obtained from the divergence of the structure factor an(g that
and accordingly® (r)=nq(r) (r), where obtained using the profil€l). The reason for this discrep-

N 2 ancy can be inferred if we obtain froky the lattice spacing,
g=—In(1—ng)+ — 3 (10 dc/o=2mlk;=1.3015+; thus 7e(de/0)3=0.6929- -,

+ .
1-ng  (1-ny)* which means that the resulting crystal has a large fraction of
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vacanciegaround 31% of the lattice sitgsThis is a strong

effect that can be accounted for by simply multiplying the

r.h.s. of(1a) by an average occupancy ratiband minimiz-

ing with respect to this new variational parameter. In the

calculation process this simply amountgifoadd a term Iny

to the ideal free energgll), and(ii) replacens by 9n3 in

the definition ofy [Eq. (10)]. Notice thatd is now given by

d=o(9/ 7)Y As a result we obtain the value of. given

by the bifurcation analysis as well as an occupancy ratio of

9~0.694, consistent with the value obtained alfdvghe

small discrepancy is due to the Gaussian parametrization we

have taken, which is less accurate the larger the mean-square

displacement of the particles ‘
The solid equation of state, with and without vacancies, 0.0 0.5 1.0

is plotted in Fig. 1 and compared with the simulations. It is X

obtained ag3Po>= 520¥/97n. We can see that the overall

agreement is good, although the freezing point is shiftedrG. 2. Phase diagram of the demixing transition of parallel hard cupiss;

down with respect to the simulations because the SPT equéhe fraction of volume occupied by all cubes, whereasy, /7 is the frac-

tion of state overestimates the pressure of the fluid phase tion of volume occupied by the large cubes. Short-dashed lines represent the
" spinodals for different values of the edge-to-edge ratio; solid lines are the

corresponding coexistence linébe actual transition lingsthe dotted line

IIl. STABILITY OF THE BINARY FLUID MIXTURE is the line of critical points of the demixing transition for all valuesrof
' >r; finally, the long-dashed segments joining black dots are two examples

There are two requirements for a fluid mixture to be of coexisting states.
stable®? (i) the positiveness of the specific heat at constant

volume (c,), and(ii) the positive definiteness of the matrix 7 41 317
5*f 1 . M:W 1+;+7—fx(1—x) . (17
Mijj=B————=—6;—¢;(0), (14)
Tpidpi P for D=3.
wheref=F/V,F being the Helmholtz free energy, is the From(16) it follows that the 2D mixture is stable which-

number density of speciesandc;j(k) is the Fourier trans- ever the values ofy, r, and x. Accordingly, parallel hard

form of the DCF of the mixtur¢see Eq(7) of I]. Condition  squares never demix into twiuids with different composi-

(i) is trivially fulfilled, because any hard core model is ather-tions. Equation(17), however, tells us that the mixture of

mal, which means that the dependence of the free energy dPHC will be stable provided the expression in square brack-

temperature is that of an ideal gas; hence the positiveness efs is positive, i.e.,

¢, . Condition(ii) is a consequence of the equilibrium state 1 3(r-1)2

being a minimum of the free energy. 1+ —+ —5>——x(1—X). (18)
Now, for a binary mixture, M is a 2 matrix with all /A r

its elements positive; thus the mixture will be stable providedsjnce the minimum of the function A4/9+1/7?, for O

IM|>0. The solution to the equatioM|=0, if it exists at < y<1, is 6 (reached whenp=1) and the maximum of

all, will represent a spinodal curve. Such a condition can bS((l—x), for 0<x<1, is 1/4 (reached wherx=1/2), (18

understood in terms of the structure factor matrix of the mix-will hold for any n» andx whenever?—10r +1<0, i.e., for

ture, given by any 1<r<r. =5+ 24~9.98. Forr =r there will exist val-
pS(K) =[P 1= &(k)] 2 (15) ues of » and x for which (18) does not hold, and thus the

mixture demixes. From(18) it is very simple to find that

Whereéijzeij and R=p;8;. Then, after(14), [M|=0 is  those values correspond to the region above the curve
the condition for the structure factor to diverge at zero 1 —7

. . (r—1)
wavevector(the uniform fluid. = \/5\/1+ X(1—X)—2, (19)

In order to work out the expression M| let us intro- 7 r

duce the following notationy;=o7p; , the packing fraction which therefore defines the spinodal. Figure 2 shows this
of species; 7=n;+ 7,=¢p, the total packing fraction of curve for a few values of. It is interesting to notice the
the fluid; r=0,/0,, the large-to-small edge ratic£1);  symmetry of the spinodal with respectxte- 1/2. This means
andx= 7./, the relative packing fraction of the large com- that for a given packing fractiony, the stability of the mix-
ponent. With these definitions as well as the short-hatd  ture depends on the fraction of occupied volume of any of
=p1p,|M| we obtain, after a tedious but straightforward cal-the particles, regardless their type, large or small.

culation, The existence of a spinodal instability of this type means
1+ that if the system is kept at constant pressure, there is a
= W (16) certain region in the density-composition phase diagram in

which the fluid is stable in two coexisting phases, one rich in
for D=2, and® small particles and the other one rich in large particles. In
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order to determine the values gfandx of the two coexist- 1.0 T T T
ing phases we must solve the equilibrium equations | "-.‘ L
P(ﬂS!XS):P(nlvxl):pr Mi(’]svxs):Mi(ﬂlyxl)n i=12, I "-‘ /!
where the subindexs(l) labels the small-particlélarge- 08 ¢ 4
particle rich phase, ang is the externally fixed pressure. \ ol
The critical point of this transition for a given ratio is A 57 !
determined as the point of the spinoda®) where the pres- 06 } Sl - N A
sure reaches a minimum. — ‘\ 20 x /
The phase diagraifirig. 2) shows a few features that are N -7 R
worth noticing. First of all, it is interesting to see that the 04 ~ - - 30%.
critical line collides, whem — o, with thex=1 edge of the
phase diagram at a nonzero packing fraction. What this sug-
gests is that in this limit the packing fraction of the small 0.2
component goes to zero but it still remains a residual deple-
tion between the large cubes. This depletion forces the one-
component effective fluid of large cubes to collapse beyond a 0.0 ‘
certain packing fraction. We will explore this matter in full 0.0 0.2 0.4 0.6 0.8 1.0
detail in Sec. V. X
Another interesting feature of the phase diagram is th%IG. 3. Phase diagram of the demixing transition of parallel hard cupiss;
remaining impurity of the two separated phases even whethe fraction of volume occupied by all cubes, whereasy, /7 is the frac-
the system undergoes an infinite pressure. This reflects thign of volume occupied by the large cubes. Dashed lines represent the
fact that the coexistence lines end up at valuesather than coexistence ‘Iine_s of the demixin_g tran_sition for different valuesr of
1 or O (pure componenisvhen =1 (actually, this effect is fallaz; solid Imgs are the .freezmg‘ '_spmodgls for the same values of
. ! . finally, the dotted line is the line of critical points for alb>r. .
noticeable only for the values of the large-cube rich phase,
although it is also present in the other pha3éne prominent
asymmetry of the coexistence line is another striking feature, o
but easy to understand: it arises from the enormous volumgYStem phase separates, the one rich in large cubes must

difference between large and small cubes necessary to prgiways be a solid. Notice, on the other hand, that the other
duce demixing(notice that demixing begins far~ 10, and phase is also unstable for size ratios smaller tha80. One

this means that large cubes occupy a volume 1000 timelS then tempted to conclude that fluid—fluid demixing is pre-

larger than the small onpsThis forces the large-cube impu- empted by freezing in this system. However coexistence be-

rities in the small-cube rich phase to be in an extremely lowfV€€N & large-cube rich solid phase and a small-cube rich
concentration. The wide metastability region in the small-fluid phase may change drastically the compositions of the

cube rich side means that for those compositions the mixtur0€Xisting phases and thus make a fluid—solid demixing
is less sensitive to variations in composition. more stable than just a freezing of the whole system. The

only conclusion we can draw from Fig. 3 is that the fluid—
fluid demixing transition found in Sec. Il is always meta-
IV. FREEZING OF THE BINARY MIXTURE stable.

In order to check to which extent the demixing scenario
found in the previous section holds, we have to determing/ INEINITELY ASYMMETRIC BINARY MIXTURE:
whether the fluids are stable against spatial modulations EBARALLEL ADHESIVE HARD CUBES '
the coexisting compositions. Spatial inhomogeneities cause a
divergence of the structure factor matri5) at a certain A The binary mixture as an effective one-component
nonzero wavevector. Thus for a given compositisnthe fluid

spatial instability is found as the lowest total packing fraction  |n order to study the phase behavior of a very asymmet-
at which the determinantt(k)=|P~*—C(k)| vanishes for ric binary mixture let us first consider the effect on the inter-
at least one vectdt. We can use the expression for the DCF action of the big particles induced by the small of@sple-
found in I [Egs. (53), (54), and (57) of I] and simplify the tion). To this purpose let us use a semigrand ensemble in
problem by simply looking for instabilities along the three which the small particlegsolven} are kept at constant
coordinate axes. By symmetry, this amounts to taking chemical potential. In this situation the element of the
=(k,0,0). structure—factor matrixX15) corresponding to the correla-
The value ofy at which M(k) =0, as a function ok, is  tions between large particles can be considered as the struc-
plotted in Fig. 3 for different values of, these lines of in- ture factor of an equivalent one-component fluid made of the
stability are compared with the coexistence lines of the delarge particles interacting via the effective potential induced
mixing transition(Fig. 2). It is clear from the figure that the by the solvent. This turns out to be a very useful viewpoint.
critical points of the latter are always in the unstable regionjiet us see how this comes about.
therefore, for any pair of coexisting fluids, at least dtree The appropriate thermodynamic potential for the semi-
large-cube rich oneis always unstable against spatial inho- grand ensemble is obtained through a Legendre transforma-
mogeneities. In other words, of the two phases in which theion of the Helmholtz free energy, namely
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Y(Mz,[pl])=F[p1,pz]—sz P2, (20
oF ex
= = -1 + —
M2 51 B~ InVapy(r) pa(1)" (21

where EQq.(21) provides the equilibrium density of the sol-
vent for a given chemical potential, and a solute density
profile p4(r), thus allowing us to eliminate,(r) from the
r.h.s. of (20). The thermodynamic potentidl can also be
looked at as thédelmholtz free energfunctional of an ef-
fective one-component fluid, for which, is just an external

parameter tuning the interaction between its particles. Ac

cordingly we can separate out the ideal and excess parts,

Y=gt ooy -1+ Y% (22
where, upon comparison witt20),
Yexzﬁflf p2lIN(Vapa) — 1]+ F&— sz P2, (23
with p, determined by Eq(21).
Now, the DCF of the effective fluid will be
52Yex
Cef(r,r')=—p (24

op1(r)dpa(r')’

Then, from(24), the usual DCF matrix definition;;(r,s)=
—,852F9X/5pi(r)5pj(s), and introducing the shorthand
A(r,9)=p,(s)/ 5p,(r), the effective DCF can be expressed
as

ceﬁ(r,r’)=cll(r,r’)+f dsA(r,s)ca(s,r’). (25)
The functionalA(r,s) can be readily obtained by deriving
(21) with respect top4(r), which leads to

J o

ool1) §(r—t)—c22(r,t)]A(t,s)=clz(r,s). (26)
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(&) o

og/23 og/2

i

FIG. 4. Increment in the total volumdV, available to the small particles
when two large particles come to touch each otfstraded region If v,
denotes the volume of a large particley is (a) voe?(3/2+ €) for HS, and
(b) voe(1+€)?, for PHC.

Further insight can be gained if we expaf&y):

Ceri(k)=C11(k) +pznzo p2C1AK)[E2a(K)]"Eoa(k), (29)

where it can be explicitly seen that while the first term in
(27) represents the direct correlation between two solute par-
ticles via the direct potential between them, the second term
accounts for the indirect contributions to this correlation due
to interaction with one, two, three, etc., intermediate solvent
particles. This is the effect that accounts for depletion in the
binary mixture of hard particles.

B. Depletion in the binary mixture of parallel hard
cubes

Let us first compare the effective attraction between
large particles induced by the small oné&depletion. A
simple way to achieve this is by computing the work we
have to make against the system in order to separate two big
particles further than the diameter of a small one. This work
will be simply PAV, with P the pressure of the fluid anklvV
the free volume lost by the small particles due to the disap-

These expressions have full generality: they are valid foP€arance of the overlap between the excluded regions of the

any binary mixture of any kind and in any particular phase
But we can get a bit further if we particularize for the uni-

larg

e particleqshaded in Fig. ¥
In the case of HSAV=(3v/2)e?+ O(€%), with v, the

form fluid. In this case the density profiles are constant andfo/ume of a big sphere ane the small-to-large diameter
all the above functions depend on the difference of theif@tio- It means that in the diluted regime of the small par-

arguments, because of translational invariance. Then, Fouridfles

transforming Eqs(25) and (26) we can elliminateA and
write
p2C1x(K)?
1—poCok)’
In order to understand the meaning of E87) let us
compute the structure factor of the effective fluid:

Ceft(k) =C1a(k) + 27

_ P2 k).
~Cer(K)  |P1=E(k)|

P1Ser(k) = (28)

-1
P1

the resulting expression is but th@,l)-element of the
structure-factor matrixpS(k), according to its definition
(15). This was, by the way, the starting point from which the
effective fluid was defined in Ref. 38.

(P~py) this work can be estimated
~ B Y(3/2)n,/e. In the case of PHCAV=vqe+O(€?),
with vg the volume of a big cube anethe small-to-large
edge-length ratio. Again in the diluted regime of the small
cubes the work is- 87 17,/€2. In other words, the depletion
induced by PHC is much stronger than that induced by HS.
In the infinite asymmetry limit, the binary mixture HS has
been shown to reduce to the fluid of adhesive HS, provided
7, is kept constant® According to our estimation, in order
to have a similar limit for the binary mixture of PHC we
must scale the packing fraction of the small cubes»as
= ¢, with £ a constant.

We can now assume this scaling g5 and take thee
—0 limit in Eq. (27). A tedious but straightforward calcula-
tion leads to

Ceff(1) =CppdI) +Cad1),

as

(30
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é where we have defined the renormalized fugacity
caa(r)=m{as(r)erS(r)wLGyZV(r)}, B =lexpBu), uS=u,—B 1InV,. Equation(36) is just
the ideal Helmholtz free energy of the effective fluid, and
where y=7,/(1= 1), Cpudr) is the DCF of the one- ¢(r) is given by (5), where, in the current notatiom,

component PHC fluidEq. (56) of 1], and =yl +e 2&r 0l . But &r) is a dependent variable
Ss(1=A(X,Y,2) +A(Y,Z,X) + A(Z,X,Y), (32)  which should be eliminated in terms efr) and u, via Eq.
(21), which in our case reads
A(u,v,W)=8(a,—|u)L(v)L(W), (33 2D
L(u)=(a1—|u})® (o1 —|ul). (34) Iné(r=inz-2, - —w'*(r). (37)

Equation(32) represents a delta function at contact of two
large cubes, multiplied by the contact surface. The function
S(r) and V(r) are the overlap surface and volume, respec-  &é=é&y+ & e+ &,e2+ O(€?), (38
tively, which already appear in the definition ofyc [EQ.
(53) of 1]. In the zero density limicgu(r)~f(r)+ &d4(r),
with f(r) the Mayer function of the large cubes; so, as in HS
in the infinitely asymmetric mixture depletion induces an
adhesive potentidiin this case, of strength).

Notice that in both case#iS* and PHQ the e—0 limit Y =—Iy(€)V+ ug(€)N+F+F24+0(e) (39)
has been taken such that the structure factor of the resulting _
effective fluid differs from that of the one-component fluid in (the details appear in the Appenglixn this equatiorF is the
a finite nonzero correction. To define the adhesive HS moddfMT free-energy functional of the fluid of the large PHC;
Baxter made the same assumption with respect to the secodéd N are, respectively, the system volume and the number
virial coefficient(in this case the limit is that of an infinitely Of large cubesFa%= @2, with
deep and narrow square welBoth assumptions are equiva-
lent. For this reason we will henceforth refer to our effective @2
fluid as the fluid ofparallel adhesive hard cubg®AHC).

gor &(r) to have a well-defined expansion in powersepf

we are forced to assunze= O(1). Then we can expan(87)
and determine the functiorss in terms ofz andz (the actual
‘expression foré, turns out to be unnecessary in the final
expressions By further expanding Eq:35) we finally obtain

z |Vng?—4ny- 1y
=8 1-m (40
is the new adhesive term; aidl; and . are functions ofz
and e, but not of %.
C. Free-energy functional of the fluid of parallel The term —IIy(e)V+ uo(€e)N diverges withe—0 as
adhesive hard cubes O(e ?). Itis the contribution of the small cubes to the free
energy(as a matter of fact, their density is infinite in this
limit). However it is irrelevant for the phase behavior of the
effective fluid because it simply addk, to the pressure and

Let us now take the— 0 limit in the functional(20) to
obtain the Helmholtz free-energy functional for the fluid of

PAHC. In the limit we will find thatY —; however, this is Mo to the chemical potential; as these two terms are indepen-

not a problem as long as faveryfixed e there is a well- : : . o
defined functional giving rise to a phase behavior which doesdent of the density, they just cancel out in the equilibrium

have a finite limit whene— 0. We will show that this is the cduations. Accordingly the final free-energy functional for
. . X . . the effective one-component PAHC fluid turns out to be

case, and thus this functional will be the effective functional

we are looking for. We will see that the infinite contribution Feanc[pl;2)=Fpud p1+F¥[p];2). (42)

is just aconstantshift in the origin of free energies, abso-

lutely irrelevant for the phase behavior.

Let us begin by recalling what FMT prescribes for the
semigrand potential20). It is convenient to introduce two
dimensionless  densities, n(r)eafpl(r), and &(r)
Eofezpz(r). [There is no possible confusion between the
function #(r) and the total packing fraction, because whenD. Phase behavior of the infinitely asymmetric binary
e—0 the total packing fraction is simply the packing fraction mixture

of the large component, i.e., the averagesgf).] In what The phase behavior of a very asymmetric binary mixture
follows we will fix the unit length of our system by cho0siNg o pyc can be understood from that of the effective fluid of

01=1. In terms of these functions the FMT form of the papc whose FMT free-energy functional we have just de-
functional (20) is

As a selfconsistency test, it is straightforward to sHasing
Eq. (A1)] that c®(r—r")=—B8°FY 6p(r)Sp(r'), for the
¢ function defined in(31).

rived.
i As concerns the phase behavior of the uniform PAHC
BY =BF +f dr &(r) fluid, from (42), (5), and(40) we can readily obtain the free
energy per unit volume,
+e*2f dr £(r)(In[&(r)/z]—-1), (35 Bf=n{inV,—1+Iny+3(1—2/2)y+y?}. (42

The pressureP = — gF/aV=y?a3(f/ )/ dy, turns out to be
— B
BFI _J dr ﬂ(r)(m[vlﬁ(r)] 1)1 (36) szy+3(1_2/2)y2+2y3. (43)
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p’(u)?—q(u)?=—4s(u+1/2)s(u—1/2); (45)
hence the adhesive free energy per particle can be written
3 ©
\Ifad=—§ﬂzf dx g(x)s(x+1)U(x+ 1/2), (46)

whereU(x) is defined as

(ae dr2 p(Y)?p(2)?
U(X):f—d/zdyf—d/zdzl—ﬁp(X)P(y)P(Z)’ 4"

and it is periodic with periodl [we have made use of peri-
odicity in obtaining(46)].
It is convenient to rewrite Eq47) integrating by part

FIG. 5. Solvent fugacityz, vs solute packing fractiony, of the infinitely ~ With respect to both variableg,andz in doing so this equa-
asymmetric binary mixture of PHC, both witho(&) and with (b) polydis- tion becomes

persity (Aa/o=4.5%). (a) The thick solid line separates the unstable re-

gion (U) from the metastable one; the thin one marks tbentinuous dr2 dr2

transition from a metastable fluitMF) to a metastable solidMS); the U(X)_f dy p/(Y)j dz p'(2)V(x,y,2), (48
dashed one is the fluid—fluid spinodéh) The thick solid line marks the di2 —di2

fluid—solid or solid—solid coexistence; the thin one marks again(¢be-
tinuous fluid—solid transition below the coexistence region; the dotted line _

is the metastable fluid—fluid coexistence. V(r)—T(y)p(y)T(z)p(z)

4—3n5(r)+3n3(r)?
1—n3(r) ’

whereT(u)=u if ue (—d/2,d/2) [the only relevant interval
This equation has a van der Waals loop with a critical pointn (48)] and it isd-periodic. FunctionV(x,y,z) is then also
(0P1an=0, 3*Plan?=0) at z.=2(1+/2/3)~3.63 andyp,  d-periodic in all its three arguments; accordingly E48)
=1/(1+/6)~0.29. On the other hand, the equation of thecan be rewritten as
spinodal ¢P/d»n=0) of this vapor—liquid transition is

(49)

Citdptp? U(X)=J:dy g(y)f:dz 92W(x.y,2), (50

Z_ —Y
3n(1-7n)
it is plotted in Fig. %a). Notice that this spinodal could have W(X'y,Z)ET 7_2:+ 1TV (XY + 71/22+ 75/2),  (5))
been obtained directly frorfil7) by taking the limitr —oo, e

x—1, under the constraint 7(1—x)=&—z(1— ) [the and therefore
limit follows from (Al)]. Thus it is not surprising that the

(44)

3 © o0 o
line of critical points in Fig. 2 reacheg, for x—1. This Ppad= Eﬂzf dx g(x)f dy g(y)f dz gz
makes clear the double interpretation of this transition: as a - o o
vapor-liquid transition of the PAHC fluitwith z~* playing Xs(x+1)W(x+1/2y,2), (52)

the role of a temperatureor as a demixing transition of the ] i o .
infinitely asymmetric binary mixture. also suitable for Gauss—Hermite numerical integration.

Freezing of this system into a simple cubic lattice is !N order to understand the effect of the adhesive contri-

again a continuous transition. Hence the transition line caution (46) let us see its asymptotic behavior whem-
be determined by the procedure described in Sec. I, i.e., Andd—17 (equivalently— 7'), a limit which would rep-
the divergence of the structure factor, now given by the eff€sent a close-packed solid. From its definiti@h p(u)~1
fective DCF(30). The result is the line shown in Fig(#. In this limit; thusU(x)~1/(1- 7). On the other handy(u)
As it occurred for the general binary mixtuteee Sec. I), 1S very sharply peaked, so
the freezing line crosses the demixing spinodal at a packing o a2
fraction smaller thany,; in other words fluid—fluid demix- f dx g(x)s(x+ 1)“9(0)=(;) ,
ing is a metastable transition. ”

So far we have gone no further than we did in Secs. il therefore¥ 2~ — (3/2)z(a/ )% (1— 7). On the other hand
IV. However this time we can study fluid—solid coexistenceW®=0(1) in this limit, while ¥'9~3 Ing(0)~(3/2)Ina. In
because the density profile of the solvent is absent from thether words, the total free energy per particle of the effective
description. To proceed we again parametrize the density dfuid monotonically decreases as the system approaches the
the large cubes as ifi), also with a prefactod to account close packing, regardless the value of density and solvent
for vacancies. We recall that the lattice parameter is relatefligacity. This means that the system always collapses, i.e.,
to this occupancy ratio b= (/7). The ideal contribu- the equilibrium phase behavior is always a close-packed
tion to the free energy per particl#, is again given by11) solid coexisting with an infinitely diluted gas. This singular
(adding I from the vacancigs and the hard-core part of phase diagram is not exclusive of PAHC. For adhesive HS,
the excess contribution is given byl2) [with ns(r) the adhesiveness vs. packing fraction phase diagzatays
=9p(x)p(y)p(z)]. We now need to work out the adhesive the role of adhesiveness for PAKlCas recently been
term. To this purpose first notice that mapped out from simulations of the square-well fluid in the



J. Chem. Phys., Vol. 111, No. 1, 1 July 1999 Fundamental measure theory . . . 325

limit of narrow and deep well¥ These simulations prove the size of the particle¥:*® It is clear that this prevents the
that the only stable phases of this system are also a closeystem from forming a perfectly packed solid. We can specu-
packed solid and an infinitely diluted gas. The reason for thidate what its effect is on the binary mixture by introducing a
pathology was put forward some years ago by Sfeltho  small amount of polydispersity in the size of the large cubes.
showed that the partition function of the adhesive HS modelt is very easy to realize that starting off from a mixture of
diverges if the number of particles 8=12. In his work  polydisperse large cubes and small cubes and repeating the
Stell discusses a new limit in which the adhesiveness goes farocess described in Sec. VC we end up with exactly the
zero (hence the second virial coefficient reduces to that osame form of the functiond#1), with then,’s now replaced
HS) in such a way that there appears a critical temperaturby those corresponding to the polydisperse mixture.
separating the singular phase behaviselow) from a HS- In order to make the simplest choice we consider the
like phase behavidfabove. It is not clear how this limit can cubes as parallelepipeds and choose the length of each axis
be implemented in our formalism without completely su-independently from a Gaussian distribution of mean 1 and
pressing depletion, so in what follows we will just limit our- varianceAo. This particular choice has two important advan-
selves to the analog of Baxter's model we have defined anthges(they will be made clear below(i) the free energy of
will try to extract some consequences. the fluid phase is the same as that of the monodisperse sys-
In spite of the singular phase behavior we have seen thatem (hence its phase behavior as welind(ii) formally the
as a function oftxr and ¥, the free energy per particle exhibits expressions for the free energy of the solid phase change
local minima at any value af for some range of densities, very little. It also has two drawbacksgi) particles are not
the smallerz the wider this range. These local minima cor- cubic anymore, andi) there is a nonzero contribution in the
respond to metastable phases. Although we cannot rule ouegative lengths. As these two inconvenients disappear when
that the existence of these states is but an artifact of thAoc—0 they can be overcome by choosidgr<1. This
particular parametrization we have chosen, they are likely te&hoice also allows us to make two more simplifying assump-
exist in view of the very long times clusters of large particlestions: (i) the ordered phase must be a substitutional solid,
take to evolve in simulation®. The upper bound to the pack- i.e., the density profile can be expresseg@sP(o), with P
ing fractions at which local minima exist for a givertan be  the normalized size distributiong=(0oy,0,0,), and (ii)
determined as the point where the compressibility vanisheghase separation induced by polydispeféigan be ignored.

This upper bound, as a function af appears in Fig. ). Then, according to the definition of thg,’'s

This figure shows the metastable phases. Notice that the re-

gion of metastability widens asdecreases. At low these ﬁa(r):J doP(o) p wﬁj”(r):p*'d)(“)(r), (53)
metastable phases are separated from the “collapse” by a

large free-energy barrier, so the system spends a long ime jn, it has the same definition as in the monodisperse case,
them before eventually becoming a close-packed solid. As But the weights are redefined &(“(r)=/doP(0)
matter of fact, if the system is prepared as a metastable solig(a)(r)_ This amounts to replacing® and 8" in (4) by
at low z, for a long time it will show a pseudocoexistence “

between two solid phasgan expanded solid and a close-  _ lu|-1/2

packed solifl The situation resembles the isostructural — 9"=3 l—erf(\/i Ao ) ) (549

solid—solid transition reported to occur in some colloidal flu-

ids with a narrow and deep attractive w&t°> At higher z B 1 (Ux1/2)2

the same pseudocoexistence should be observed between a 6= > ex —2—2), (54b)
V2mAo {5} Ao

diluted fluid and a close-packed solid.

It is interesting to compare this phase behavior withyhich are like smoothed counterparts of the original weights.
what has been determined to occur for adhesive HS using ince [~ dud'=[*_dud'=1, it follows that the free en-

effective-liquid DFT.” Fluid and solid also appear as local ergy of the uniform fluid is the same as that of the monodis-

minima of the free energy per particle as a function of theperse system. Hence the fluid—fluid spinodal is the same as

Gaussian width; however, above a certain line the free e hat shown in Fig. &)

ergy becomes concave up to close packing. This puzzling We can determine the coexistence between the two fluid
behavior was interpreted in Ref. 45 as a percolation transi- :
tion. In the light ofpour findings it is the e?quivalent to the phases by means of the usgal doub!e tangent constriftion.
S . . ) Figure 8b) shows the resulting coexistence line.

instability line of Fig. %a). The fluid of adhesive HS also We can also assume a solid-like density profile as in the

collapses into a close-packed sclftiThe reason why this monodisperse case. Surprisingly enough, in spite of the strik-

collapse has not been observed in Ref. 45 is that the theor}qg difference of the smoothed weights defined(59) with

“Se_d there does not account for vacancies, af’d this f(_)rces tbgspect to the original ones, when we obtain the correspond-
lattice parameter to be larger than laaty packing fraction.

) . . ; ing weighted densities and work out the expressions a little
The_ instability manifests itself as the reported loss of CONyit it turns out that the free energy per particle of the poly-
vexity of the free energy. disperse solid is simply given byy=WwPoy iy gex
+Wad where the last three contributions are given by Egs.
(11), (12, and (52), with the slight modification that the

It has been suggested that the singularity of the adhesivearameter appearing in the definitiond.c) and(6) must be
potential might be avoided by introducing polydispersity inreplaced bya = a/(1+ aAc?/2) (of course, in these expres-

E. Polydispersity in the large cubes
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sionso=1, the mean value, an#'® carries the additional fective depletion potentidf,** and very recently also in di-
|nﬂ to account for Vacancias and Where \I}pOIY rect Simu|ati0nS on the true binary mIXtLﬁ%The Simula-

_ —3In(\/ﬁA0)—3\/m is the entropy of mixingan tions also show that the solid—solid transition disappears as
irrelevant constait the asymmetry of the two components decreases, but it is

From the definition oft it can be seen that no matter @nyhow categoric with respect to the fluid—solid nature of
how smallAc be, for smalle’s (a<Ao 2)a~a, and the ~demixing. _ _ _
system is “blind” to polydispersity, whereas for largés A final remark concerns the tv_vo-dl_rnen_smnal mixture.
(a>Ao )a~2A0 2, i.e., the system never collapses. As We have made pre_:llmmary (_:alcglatlon_s in this case and have
a consequence the singular behavior of the monodisperdg@und an adhesive contribution similar to the three-
system is removed, and we can readily determine phase eqtglmensmnal one. We have not carried out a detailed analysis
libria. yet, but the same collapse is present in this case, thus indi-

Clearly this behavior is a consequence of the metastabledting a behavior qualitatively simil_ar to the one s_hown here,
phase diagram discussed in the previous section, and, as §#Cept that we cannot say anything on the existence of a
that case, it can be argued to be an artifact of the approx§°|'d—50|'d trgnsmon. Thgse rgsults are in perfect qualitative
mations of the theory. Again we believe the stabilization by@dreement with recent simulatioffs.
polydispersity to be a real effect because it precludes singu-
lar clusters to form. Anyway a confirmation by computer
simulations would be desirable to clarify this point. ACKNOWLEDGMENTS

A typical result for a small value ako is shown in Fig.

5(b). This figure reveals several remarkable features. Firstly, ~We like to thank Daan Frenkel, Richard Sear, and Pedro
it shows that the fluid—fluid transition is metastable. Sec-Tarazona for very useful discussions, and Eduardo Jagla for
ondly, there is an isostructural solid—solid transition for akindly sending us his simulations data. JAC's work is part of
certain interval ofz In this interval the expanded soli®{)  the research project PB96-0119 of the Direocteeneral de
appears after a continuous transition from the fluid plfese ~ Ensémnza SuperiotSpain.

The expanded solid;) —dense solid $,) transition ends at

a critical point,zg, below which we can only find a fluid and

a single solid, separated by a continuous transition. Thirdly,ppenDix

asz increases frongs the expanded solid packing fraction

decreases down to meeting the freezing packing fraction. Let f(u) be an arbitrary function of a single variable
Above the point where this occurs coexistence is between a. Then [U*€2f(t) dt=ef(u)+O(€%), and 3[f(u+e/2)

fluid and a dense solidS;), the former quickly becoming +f(u— e/2)]=f(u)+ (€%/8)f"(u) + O(e*. Accordingly, if
highly diluted and the latter highly packed. Notice the strongf(r) is an arbitrary function of, from the definitiong4) and
resemblance between this true equilibrium phase behaviahe expansions above, it follows* w$®=f+ (€%/8)V2f

and the metastable behavior described as occurring in the O(e%) andf*w(za)ze“f+0(e“+2), the latter fora=3 or

monodisperse PAHC flui@Sec. VD. any vector component af=2 and 1. Then

VI. DISCUSSION AND CONCLUSIONS No=épe ?+ &€+ {Not+ &+ § V240 +0(e),

The fluid of PHC is a rather academic one which how- ny=&ue t+{&u+nt+0(e),
ever has the great advantage of being analytically tractable in
contexts where the fluid of HS is not, thanks to its adequacy  n,={g,u+n,}+ &ue+O(€?),
to a fundamental measure description. Yet, with some pecu-
liarities due to the lack of rotational symmeftythe physics Na=Tis+ eéot €2, + 38, + O(€Y),
it reveals is similar to that of more realistic fluids. It then
allows for theoretical investigation on fluid phase behaviorwhereu=(1,1,1),n,= 7* w(la), and the functiong; are de-
otherwise very difficult. The main contribution of the fluid of fined in (38).
PHC is to the understanding of the phase diagram of a binary ~ Using these expansions we can obtain
mixture. This fluid proved to undergo stronger depletion than
HS 2 However, as it has been shown in this work, this o _ 8&tn, )
feature is irrelevant when the effect of depletion in the solid ; on @2 = —In(1—ng)+ 1-ng €+0(€%).
phase is accounted for. Spatial order of the large component ¢
strongly enhances demixing, so that fluid—solid demixing beon the other hand, lé=In &+ (& /&)e+O(€), hence(37)
comes the main scenario of the phase diagram of binary mixmplies
tures. But this transition can be preempted by the freezing of

the large component, and when this happens the system ¢,=z(1—nj), (A1)
phase separates into two fcc solids with a different lattice
parameter. This effect, very clearly shown here for the mix-  ¢,=—z7n,—8z2(1—ny). (A2)

ture of PHC(in the limit of infinite asymmetry, has also
been confirmed in simulations of HS interacting via an ef-  We can now proceed to expaiditself:
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O+ e ?¢In(¢lz)—1]

—2(1-N3)e 2+{Zmp+472(1-N3)}e !

_ 55 _
+1{Zm—62°n,— 323(1—n3)

z —
+§v-[|n(1—ﬁ3)vm]+q>+cpad +0(e).

where®® s defined in Eq(40) and® is given by(5) with
then, replaced byn,, (i.e., it is the excess free-energy func-
tional of the one-component PHC flgicExpression(39) fol-
lows from this equation if we notice thafV-[In(1

—ng)Vng]=0, which holds if the density is constant at the

boundaries or if it is a periodic function.
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