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Fundamental measure theory for mixtures of parallel hard cubes. II. Phase
behavior of the one-component fluid and of the binary mixture
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Grupo Interdisciplinar de Sistemas Complicados (GISC), Departamento de Matema´ticas, Universidad
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A previously developed fundamental measure functional@J. Chem. Phys.107, 6379~1997!# is used
to study the phase behavior of a system of parallel hard cubes. The single-component fluid exhibits
a continuous transition to a solid with an anomalously large density of vacancies. The binary
mixture has a demixing transition for edge–length ratios below 0.1. Freezing in this mixture reveals
that at least the phase rich in large cubes always lies in the region where the uniform fluid is
unstable, hence suggesting a fluid–solid phase separation. A method is developed to study very
asymmetric binary mixtures by taking the limit of zero size ratio at fixed solvent fugacity. With this
procedure the mixture is exactly mapped onto a one-component fluid of parallel adhesive hard
cubes. At any density and solvent fugacity the large cubes are shown to collapse into a close-packed
solid. Nevertheless the phase diagram contains a large metastability region with fluid and solid
phases. Upon introduction of a slight polydispersity in the large cubes, the system shows the typical
phase diagram of a fluid with an isostructural solid–solid transition~with the exception of a
continuous freezing!. Consequences about the phase behavior of binary mixtures of hard core
particles are then drawn. ©1999 American Institute of Physics.@S0021-9606~99!52024-2#
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I. INTRODUCTION

This paper is the sequel of a previous one1 ~henceforth
referred to as I! in which the so-calledfundamental measure
theory ~FMT! was applied to build a density functional fo
the multicomponent system of parallel hard cubes~PHC!. In
I we explained all fundamentals of the theory and gave a
account of the technical details involved in the derivation
the functional. We also discussed the pros and cons of
theory, as compared with more standard density functio
theories~DFTs!, and suggested some possible extensions

In this paper we apply the formalism developed in I
study the phase behavior of the PHC fluid, with special e
phasis in its relevance for the understanding of the ph
behavior of mixtures. The PHC fluid is a rather academ
model and it possesses a bunch of ‘‘peculiarities’’ which
rather odd for a fluid model, e.g., the uniform fluid is anis
tropic at small scales~the cubes are kept parallel to ea
other!, freezing occurs at very low packing fractions~around
0.3–0.4!, and it is a continuous, instead of first order, tran
tion ~a consequence of the lack of isotropy of the flu
phase!, and the depletion in the binary mixture is very stro
compared to hard spheres~HS!. But in spite of these pecu
liarities, which certainly make of this model a caricature o
fluid, the physics one can learn from its phase behavior
be easily extended to more reasonable fluids, and it has
important added value of being a much simpler model
carry out analytical calculations~even more: FMT seems t
be somehow optimal for this model!.1,2

There have been a few previous studies in the litera

a!Electronic mail: yuri@alum.math.uc3m.es
b!Electronic mail: cuesta@math.uc3m.es
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about the fluid of PHC3–8 scattered in the last forty years, bu
the relevance of this model has only recently become ap
ent when it has been proposed as a model of a fluid abl
demix by a purely entropic mechanism.9,10

Entropic demixing has been a long standing quest
which only recently begins to be understood. It is w
known that different attractions between two types of p
ticles in a fluid can produce segregation into two phas
each rich in one type of particles.11 The question remains
whether hard particles, for which only an entropic balan
can drive a phase transition, ever demix and how. It is cl
that nonadditive mixtures~mixtures in which particles of dif-
ferent types interact as if they had a larger volume! do
demix,12–15 but they have the segregation mechanism int
duced at the interaction potential. So the nontrivial quest
concerns additive hard-particle mixtures. The question
tricky because the simplest model of this type, HS, w
solved in Percus–Yevick~PY! approximation16 and shown
never to demix.17 It had to wait almost thirty years until the
PY result was questioned. By solving numerically t
Ornstein–Zernike equation with closure relations more ac
rate than the PY one, a spinodal instability was shown
occur in a binary mixture of HS18–20 for a diameter ratio
below 0.1–0.25~depending of the authors!.

It was then believed that a sufficiently asymmetric H
binary mixture undergoes fluid–fluid demixing in a certa
region of the phase diagram. But successive experiments
formed in suspensions of polystyrene or silica sphe
~which to a large accuracy can be considered HS! showed
cumulative evidence that demixing is coupled to freezin
and so one of the phases shows up as a crystal, sometim
© 1999 American Institute of Physics
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glass, of large particles.21–24 Recent theoretical calculation
confirm this scheme.25,26

Direct computer simulations have run into trouble wh
dealing with this problem due to the extremely low probab
ity of moving a large particle in a sea of small ones witho
overlapping any of them. Simulations are still possible
not too dissimilar diameters, but they do not sho
demixing.27,28 With the help of specially designed clust
moves, the first evidence of demixing has recently be
found in simulations for diameter ratios smaller than 0.0529

Unfortunately these cluster moves do not help above the
colation threshold, and this sets a relatively low upper bou
for the total packing fraction of the fluid. Besides, th
method does not allow the identification of the coexisti
phases, so it does not distinguish fluid–fluid or fluid–so
demixing.

In order to elucidate the nature of demixing for ve
asymmetric mixtures the attention has shifted to underst
the depletion interaction. An effective pair potential betwe
the large spheres can be obtained by differ
procedures.30–33 Its shape reveals a very deep and narr
~one small-sphere diameter! well followed by a couple of
small oscillations extending two or three small-sphere dia
eters. The depth and the amplitude of the oscillations dep
on the small spheres packing fraction. In view of the ph
behavior of spheres with narrow and deep attract
potentials,34,35fluid–fluid demixing is ruled out for sufficien
asymmetry, and instead fluid–solid demixing or ev
expanded–dense solid demixing~i.e., demixing once the
large component has crystallized! should appear. Simulation
of a system of HS supplemented by the deplet
potential31–33 confirm this conjecture if the diameter ratio
below 0.1. Expanded–dense solid demixing is indeed sh
in some of these simulations for ratios 0.1~Ref. 32! or
0.05.33 This phase behavior has been recently corrobora
by direct simulations of the binary mixture,36 which have
been shown to be possible in the relevant region of the ph
diagram thanks to the small amount of small spheres pre
in those statepoints.

In the limit of zero size of the small spheres at const
packing fraction the depletion potential becomes Baxte
adhesive potential.37,38 By applying a similar limit to the
FMT functional of a binary mixture of PHC1,2 we have re-
cently obtained a functional for parallel adhesive hard cu
~PAHC!.39 By avoiding the singularities of this potential~we
will treat this point in detail later on! we show that the phas
behavior of this fluid is consistent with the above describ
picture for the mixture of HS, with the difference th
expanded–dense solid demixing is the most common
nario because PAHC freezing occurs at rather low pack
fractions.

II. THE ONE-COMPONENT FLUID

There are relatively few results in the literature conce
ing the fluid of PHC. As concerns the uniform fluid the viri
coefficients, both in 2D and 3D, have been exactly obtai
through diagrammatic expansions up to the seventh.3,4 They
have also been obtained for different approximate integ
equation theories.5 The main consequence one draws fro
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this information is that the virial expansion is very poor
convergent. For the 3D fluid, the seventh order virial exp
sion exhibits a maximum in the pressure ath'0.6, and then
goes down very quickly to reach negative values.5 Its behav-
ior at moderate densities strongly deviates from that o
sixth-order virial expansion, in contrast to what happens
HS. This is the fingerprint of a nearby divergence. In fa
the simulations of the fluid of PHC~3D!6,7 show a continu-
ous freezing into a simple cubic lattice at7 h50.4860.02~in
contrast with the first order nature of the HS freezing!. This
result has been proven to be exact in infinite dimension8

The reason for a continuous freezing is the lack of rotatio
symmetry of this system even in the disordered phase8 ~thus
freezing does not break this symmetry!. Allowing the cubes
to rotate restores the first-order nature of the freez
transition.7

FMT’s equation of state of the uniform PHC fluid i
simply that of the scaled particle theory~SPT!, i.e., from
Eqs. ~60! and ~61! of I, bP/r51/(12h)2 for D52 and
bP/r5(11h)/(12h)3 for D53, with b the inverse abso-
lute temperature in Boltzmann constant units,P the pressure,
r the number density, andh the packing fraction,h5rsD, s
being the cube edge-length. In Fig. 1 the SPT equation
state forD53 is compared with the simulation data.

On the other hand freezing can be studied as usua
DFT by parametrizing the local density with a sum of Gau
sians centered at the lattice points.40 Since the lattice is
simple cubic, this can be easily achieved by setting

FIG. 1. Equation of state of the PHC fluid. Solid lines correspond to
pressure of the stable phase~fluid or solid! at the given packing fraction,h.
Dotted line is the unstable fluid branch beyond freezing. Dashed line is
solid branch computed without accounting for vacancies in the lattice~see
text!. Full circles are the simulations of Ref. 6 and empty circles those
Ref. 7 ~actually we have averaged the two data sets reported for the lar
system size!.
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r~r !5s~x!s~y!s~z!, ~1a!

s~u![ (
n52`

`

g~u2nd!, ~1b!

g~u![S a

p D 1/2

e2au2
, ~1c!

with d5h21/3s the lattice spacing, anda a variational pa-
rameter determining the localization of particles at the latt
sites.

In I we expressed the free-energy functional of a mu
component system with density profilesr i(r ) ~i labeling the
species! asF@$r i)%] 5F id@$r i%#1Fex@$r i%#, where

bF id@$r i%#5(
i
E dr r i~r !@ lnVir i~r !21#, ~2!

bFex@$r i%#5E dr F~$na~r !%!, ~3!

Vi being the thermal volume of speciesi, and na

5S ir i* v i
(a) a set of four weighted densities~star denotes

convolution! defined by the weights

v i
~0![d i

xd i
yd i

z , wi
~1![~u i

xd i
yd i

z ,d i
xu i

yd i
z ,d i

xd i
yu i

z!,

wi
~2![~d i

xu i
yu i

z ,u i
xd i

yu i
z ,u i

xu i
yd i

z!, v i
~3![u i

xu i
yu i

z , ~4!

with u i
u[Q(s i /22uuu), andd i

u[(1/2)d(s i /22uuu). As in I
we will also need the two scalar densitiesni5ni ,x1ni ,y

1ni ,z, , ni ,n , n5x,y,z, being the vector components ofni ,
i 51,2. The functionF~r ! is given in terms of thena’s as
~see I!

F~r !52n0 ln~12n3!1
n1•n2

12n3
1

n2,xn2,yn2,z

~12n3!2 , ~5!

with n2,n , n5x,y,z, the components ofn2 .
For convenience let us introduce the functions

e~u![ 1
2 erf~Aau!, ~6!

p~u![ (
n52`

`

@e~u2nd1s/2!2e~u2nd2s/2!#, ~7!

q~u![ (
n52`

`

@g~u2nd1s/2!1g~u2nd2s/2!#, ~8!

~notice thatg(u)5e8(u)!. The latter two are periodic with
periodd. In terms of these functions

n35p~x!p~y!p~z!, ~9a!

n25 1
2 ~q~x!p~y!p~z!,p~x!q~y!p~z!,p~x!p~y!q~z!!, ~9b!

n15 1
4 ~p~x!q~y!q~z!,q~x!p~y!q~z!,q~x!q~y!p~z!!, ~9c!

n05 1
8 q~x!q~y!q~z!, ~9d!

and accordinglyF(r )5n0(r )c(r ), where

c52 ln~12n3!1
n3

12n3
1

n3
2

~12n3!2 . ~10!
e

-

This simplification occurs because of the factorization of
density~1a!, and hence of~9!.

The free energyper particle, C[bF/N, of the solid
phase can be obtained as the integral over a unit cell of
lattice of the free energy density. Hence the ideal part tu
out to be

C id5E
2d/2

d/2

dx E
2d/2

d/2

dy E
2d/2

d/2

dzr~r !@ lnVr~r !21#

5 ln~V/s3!2113E
2`

`

dx g~x!ln@ss~x!#. ~11!

The integrand is written in a suitable way to use Gaus
Hermite numerical quadratures.41 As for the excess contribu
tion, similar manipulations lead to

Cex5
1

8 E2d/2

d/2

dx q~x!E
2d/2

d/2

dy q~y!

3E
2d/2

d/2

dz q~z!c~x,y,z!

5
1

8 E2`

`

dx g~x!E
2`

`

dy g~y!E
2`

`

dz g~z!

3(
$6%

c~x6s/2,y6s/2,z6s/2!, ~12!

where the last summation runs over all combinations
signs. Again the latter expression is suitable for Gaus
Hermite integration, which is crucial this time because~12!
involves a three-dimensional integration.

We can now minimize with respect toa to determine the
equilibrium profile. This yields a continuous freezing
h50.348. As the transition is continuous we can ma
a more accurate determination of the transition density
a standard bifurcation analysis. This is equivalent to fin
ing the density at which the structure factor diverg
for some wavevectorkc . The structure factor is expresse
in terms of the direct correlation function~DCF! as
S(k)51/@12r ĉ(k)#, and the Fourier transform of the DCF
ĉ(k), is obtained through Eq.~56! of I for a one-component
fluid. In order to simplify the final expression we exploit th
symmetry of the crystal by choosingkc5(kc,0,0) ~the result
would be the same if we chosekc along theY or Z axes!.
Thus the condition to determine the critical point is

112hc

423hc1hc
2

~12hc!
3 j 0~ks!1hc

2
924hc1hc

2

~12hc!
4 j 0~ks/2!2

>0, ~13!

the equality holding only fork5kc ; j 0(x)[sinx/x is the
zeroth order spherical Bessel function. The solution to t
equation ishc50.3143̄ andkcs54.8276̄ .

The discrepancy is noticeable between the value ofhc

obtained from the divergence of the structure factor and
obtained using the profile~1!. The reason for this discrep
ancy can be inferred if we obtain fromkc the lattice spacing,
dc /s52p/kc51.3015̄ ; thus hc(dc /s)350.6929̄ ,
which means that the resulting crystal has a large fraction
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vacancies~around 31% of the lattice sites!!. This is a strong
effect that can be accounted for by simply multiplying t
r.h.s. of~1a! by an average occupancy ratioq and minimiz-
ing with respect to this new variational parameter. In t
calculation process this simply amounts to~i! add a term lnq
to the ideal free energy~11!, and ~ii ! replacen3 by qn3 in
the definition ofc @Eq. ~10!#. Notice thatd is now given by
d5s(q/h)1/3. As a result we obtain the value ofhc given
by the bifurcation analysis as well as an occupancy ratio
q'0.694, consistent with the value obtained above42 ~the
small discrepancy is due to the Gaussian parametrization
have taken, which is less accurate the larger the mean-sq
displacement of the particles!.

The solid equation of state, with and without vacanci
is plotted in Fig. 1 and compared with the simulations. It
obtained asbPs35h2]C/]h. We can see that the overa
agreement is good, although the freezing point is shif
down with respect to the simulations because the SPT e
tion of state overestimates the pressure of the fluid phas

III. STABILITY OF THE BINARY FLUID MIXTURE

There are two requirements for a fluid mixture to
stable:43 ~i! the positiveness of the specific heat at const
volume (cv), and~ii ! the positive definiteness of the matri

M i j [b
]2f

]r i]r j
5

1

r i
d i j 2 ĉi j ~0!, ~14!

where f [F/V,F being the Helmholtz free energy,r i is the
number density of speciesi, and ĉi j (k) is the Fourier trans-
form of the DCF of the mixture@see Eq.~7! of I#. Condition
~i! is trivially fulfilled, because any hard core model is athe
mal, which means that the dependence of the free energ
temperature is that of an ideal gas; hence the positivenes
cv . Condition ~ii ! is a consequence of the equilibrium sta
being a minimum of the free energy.

Now, for a binary mixture, M is a 232 matrix with all
its elements positive; thus the mixture will be stable provid
uMu.0. The solution to the equationuMu50, if it exists at
all, will represent a spinodal curve. Such a condition can
understood in terms of the structure factor matrix of the m
ture, given by

rS~k![@P212Ĉ~k!#21, ~15!

where Ĉi j [ ĉi j and Pi j [r id i j . Then, after~14!, uMu50 is
the condition for the structure factor to diverge at ze
wavevector~the uniform fluid!.

In order to work out the expression ofuMu let us intro-
duce the following notation:h i[s i

Dr i , the packing fraction
of speciesi; h[h11h25jD , the total packing fraction of
the fluid; r[s1 /s2 , the large-to-small edge ratio (r>1);
andx[h1 /h, the relative packing fraction of the large com
ponent. With these definitions as well as the short-handM
[r1r2uMu we obtain, after a tedious but straightforward c
culation,

M5
11h

~12h!3 , ~16!

for D52, and10
e
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e
are

,

d
a-

t

-
on
of

d

e
-

-

M5
h2

~12h!4 F11
4

h
1

1

h22
3~r 21!2

r
x~12x!G , ~17!

for D53.
From ~16! it follows that the 2D mixture is stable which

ever the values ofh, r, and x. Accordingly, parallel hard
squares never demix into twofluids with different composi-
tions. Equation~17!, however, tells us that the mixture o
PHC will be stable provided the expression in square bra
ets is positive, i.e.,

11
4

h
1

1

h2.
3~r 21!2

r
x~12x!. ~18!

Since the minimum of the function 114/h11/h2, for 0
<h<1, is 6 ~reached whenh51! and the maximum of
x(12x), for 0<x<1, is 1/4 ~reached whenx51/2!, ~18!
will hold for any h andx wheneverr 2210r 11,0, i.e., for
any 1,r ,r c551A24'9.98. Forr>r c there will exist val-
ues ofh and x for which ~18! does not hold, and thus th
mixture demixes. From~18! it is very simple to find that
those values correspond to the region above the curve

1

h
5A3A11

~r 21!2

r
x~12x!22, ~19!

which therefore defines the spinodal. Figure 2 shows
curve for a few values ofr. It is interesting to notice the
symmetry of the spinodal with respect tox51/2. This means
that for a given packing fraction,h, the stability of the mix-
ture depends on the fraction of occupied volume of any
the particles, regardless their type, large or small.

The existence of a spinodal instability of this type mea
that if the system is kept at constant pressure, there
certain region in the density-composition phase diagram
which the fluid is stable in two coexisting phases, one rich
small particles and the other one rich in large particles.

FIG. 2. Phase diagram of the demixing transition of parallel hard cubes;h is
the fraction of volume occupied by all cubes, whereasx[h1 /h is the frac-
tion of volume occupied by the large cubes. Short-dashed lines represen
spinodals for different values of the edge-to-edge ratio; solid lines are
corresponding coexistence lines~the actual transition lines!; the dotted line
is the line of critical points of the demixing transition for all values ofr
.r c ; finally, the long-dashed segments joining black dots are two exam
of coexisting states.
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order to determine the values ofh andx of the two coexist-
ing phases we must solve the equilibrium equatio
P(hs ,xs)5P(h l ,xl)5p, m i(hs ,xs)5m i(h l ,xl), i 51,2,
where the subindexs( l ) labels the small-particle~large-
particle! rich phase, andp is the externally fixed pressure
The critical point of this transition for a given ratior is
determined as the point of the spinodal~19! where the pres-
sure reaches a minimum.

The phase diagram~Fig. 2! shows a few features that ar
worth noticing. First of all, it is interesting to see that th
critical line collides, whenr→`, with thex51 edge of the
phase diagram at a nonzero packing fraction. What this s
gests is that in this limit the packing fraction of the sm
component goes to zero but it still remains a residual de
tion between the large cubes. This depletion forces the o
component effective fluid of large cubes to collapse beyon
certain packing fraction. We will explore this matter in fu
detail in Sec. V.

Another interesting feature of the phase diagram is
remaining impurity of the two separated phases even w
the system undergoes an infinite pressure. This reflects
fact that the coexistence lines end up at values ofx other than
1 or 0 ~pure components! whenh51 ~actually, this effect is
noticeable only for the values of the large-cube rich pha
although it is also present in the other phase!. The prominent
asymmetry of the coexistence line is another striking featu
but easy to understand: it arises from the enormous volu
difference between large and small cubes necessary to
duce demixing~notice that demixing begins forr'10, and
this means that large cubes occupy a volume 1000 ti
larger than the small ones!. This forces the large-cube impu
rities in the small-cube rich phase to be in an extremely l
concentration. The wide metastability region in the sma
cube rich side means that for those compositions the mix
is less sensitive to variations in composition.

IV. FREEZING OF THE BINARY MIXTURE

In order to check to which extent the demixing scena
found in the previous section holds, we have to determ
whether the fluids are stable against spatial modulation
the coexisting compositions. Spatial inhomogeneities cau
divergence of the structure factor matrix~15! at a certain
nonzero wavevector. Thus for a given composition,x, the
spatial instability is found as the lowest total packing fracti
at which the determinantM(k)[uP212Ĉ(k)u vanishes for
at least one vectork. We can use the expression for the DC
found in I @Eqs. ~53!, ~54!, and ~57! of I# and simplify the
problem by simply looking for instabilities along the thre
coordinate axes. By symmetry, this amounts to takingk
5(k,0,0).

The value ofh at whichM(k)50, as a function ofx, is
plotted in Fig. 3 for different values ofr; these lines of in-
stability are compared with the coexistence lines of the
mixing transition~Fig. 2!. It is clear from the figure that the
critical points of the latter are always in the unstable regi
therefore, for any pair of coexisting fluids, at least one~the
large-cube rich one! is always unstable against spatial inh
mogeneities. In other words, of the two phases in which
s
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system phase separates, the one rich in large cubes
always be a solid. Notice, on the other hand, that the ot
phase is also unstable for size ratios smaller thanr'30. One
is then tempted to conclude that fluid–fluid demixing is p
empted by freezing in this system. However coexistence
tween a large-cube rich solid phase and a small-cube
fluid phase may change drastically the compositions of
coexisting phases and thus make a fluid–solid demix
more stable than just a freezing of the whole system. T
only conclusion we can draw from Fig. 3 is that the fluid
fluid demixing transition found in Sec. III is always meta
stable.

V. INFINITELY ASYMMETRIC BINARY MIXTURE:
PARALLEL ADHESIVE HARD CUBES

A. The binary mixture as an effective one-component
fluid

In order to study the phase behavior of a very asymm
ric binary mixture let us first consider the effect on the inte
action of the big particles induced by the small ones~deple-
tion!. To this purpose let us use a semigrand ensemble
which the small particles~solvent! are kept at constan
chemical potential. In this situation the element of t
structure–factor matrix~15! corresponding to the correla
tions between large particles can be considered as the s
ture factor of an equivalent one-component fluid made of
large particles interacting via the effective potential induc
by the solvent. This turns out to be a very useful viewpoi
Let us see how this comes about.

The appropriate thermodynamic potential for the sem
grand ensemble is obtained through a Legendre transfor
tion of the Helmholtz free energy, namely

FIG. 3. Phase diagram of the demixing transition of parallel hard cubes;h is
the fraction of volume occupied by all cubes, whereasx[h1 /h is the frac-
tion of volume occupied by the large cubes. Dashed lines represen
coexistence lines of the demixing transition for different values ofr
5s1 /s2 ; solid lines are the freezing spinodals for the same values or;
finally, the dotted line is the line of critical points for allr .r c .
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Y~m2 ,@r1# !5F@r1 ,r2#2m2E r2 , ~20!

m25
dF

dr2~r !
5b21 lnV2r2~r !1

dFex

dr2~r !
, ~21!

where Eq.~21! provides the equilibrium density of the so
vent for a given chemical potentialm2 and a solute density
profile r1(r ), thus allowing us to eliminater2(r ) from the
r.h.s. of ~20!. The thermodynamic potentialY can also be
looked at as theHelmholtz free energyfunctional of an ef-
fective one-component fluid, for whichm2 is just an external
parameter tuning the interaction between its particles.
cordingly we can separate out the ideal and excess part

Y5b21E r1@ ln~V1r1!21#1Yex, ~22!

where, upon comparison with~20!,

Yex[b21E r2@ ln~V2r2!21#1Fex2m2E r2 , ~23!

with r2 determined by Eq.~21!.
Now, the DCF of the effective fluid will be

ceff~r ,r 8!52b
d2Yex

dr1~r !dr1~r 8!
. ~24!

Then, from~24!, the usual DCF matrix definitionci j (r ,s)5
2bd2Fex/dr i(r )dr j (s), and introducing the shorthan
A(r ,s)[dr2(s)/dr1(r ), the effective DCF can be expresse
as

ceff~r ,r 8!5c11~r ,r 8!1E dsA~r ,s!c21~s,r 8!. ~25!

The functionalA(r ,s) can be readily obtained by derivin
~21! with respect tor1(r ), which leads to

E dtH 1

r2~r !
d~r2t!2c22~r ,t!J A~ t,s!5c12~r ,s!. ~26!

These expressions have full generality: they are valid
any binary mixture of any kind and in any particular pha
But we can get a bit further if we particularize for the un
form fluid. In this case the density profiles are constant a
all the above functions depend on the difference of th
arguments, because of translational invariance. Then, Fo
transforming Eqs.~25! and ~26! we can elliminateA and
write

ĉeff~k!5 ĉ11~k!1
r2ĉ12~k!2

12r2ĉ22~k!
. ~27!

In order to understand the meaning of Eq.~27! let us
compute the structure factor of the effective fluid:

r1Seff~k!5
1

r1
212 ĉeff~k!

5
r2

212 ĉ22~k!

uP212Ĉ~k!u
; ~28!

the resulting expression is but the~1,1!-element of the
structure-factor matrixrŜ(k), according to its definition
~15!. This was, by the way, the starting point from which t
effective fluid was defined in Ref. 38.
-

r
.

d
ir
ier

Further insight can be gained if we expand~27!:

ĉeff~k!5 ĉ11~k!1r2(
n50

`

r2
nĉ12~k!@ ĉ22~k!#nĉ21~k!, ~29!

where it can be explicitly seen that while the first term
~27! represents the direct correlation between two solute p
ticles via the direct potential between them, the second t
accounts for the indirect contributions to this correlation d
to interaction with one, two, three, etc., intermediate solv
particles. This is the effect that accounts for depletion in
binary mixture of hard particles.

B. Depletion in the binary mixture of parallel hard
cubes

Let us first compare the effective attraction betwe
large particles induced by the small ones~depletion!. A
simple way to achieve this is by computing the work w
have to make against the system in order to separate two
particles further than the diameter of a small one. This w
will be simply PDV, with P the pressure of the fluid andDV
the free volume lost by the small particles due to the dis
pearance of the overlap between the excluded regions o
large particles~shaded in Fig. 4!.

In the case of HS,DV5(3v0/2)e21O(e3), with v0 the
volume of a big sphere ande the small-to-large diamete
ratio. It means that in the diluted regime of the small p
ticles (P;r2) this work can be estimated a
;b21(3/2)h2 /e. In the case of PHC,DV5v0e1O(e2),
with v0 the volume of a big cube ande the small-to-large
edge–length ratio. Again in the diluted regime of the sm
cubes the work is;b21h2 /e2. In other words, the depletion
induced by PHC is much stronger than that induced by H
In the infinite asymmetry limit, the binary mixture HS ha
been shown to reduce to the fluid of adhesive HS, provid
h2 is kept constant.38 According to our estimation, in orde
to have a similar limit for the binary mixture of PHC w
must scale the packing fraction of the small cubes ash2

5ej, with j a constant.
We can now assume this scaling ofh2 and take thee

→0 limit in Eq. ~27!. A tedious but straightforward calcula
tion leads to

ceff~r !5cPHC~r !1cad~r !, ~30!

FIG. 4. Increment in the total volume,DV, available to the small particles
when two large particles come to touch each other~shaded region!. If v0

denotes the volume of a large particle,Dv is ~a! v0e2(3/21e) for HS, and
~b! v0e(11e)2, for PHC.
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cad~r !5
j

2~12h!2 $dS~r !1yS~r !16y2V~r !%, ~31!

where y[h1 /(12h1), cPHC(r ) is the DCF of the one-
component PHC fluid@Eq. ~56! of 1#, and

dS~r !5A~x,y,z!1A~y,z,x!1A~z,x,y!, ~32!

A~u,v,w![d~s12uuu!L~v !L~w!, ~33!

L~u![~s12uuu!Q~s12uuu!. ~34!

Equation~32! represents a delta function at contact of tw
large cubes, multiplied by the contact surface. The functi
S(r ) and V(r ) are the overlap surface and volume, resp
tively, which already appear in the definition ofcPHC @Eq.
~53! of 1#. In the zero density limitceff(r ); f (r )1jds(r ),
with f (r ) the Mayer function of the large cubes; so, as in H
in the infinitely asymmetric mixture depletion induces
adhesive potential~in this case, of strengthj!.

Notice that in both cases~HS38 and PHC! thee→0 limit
has been taken such that the structure factor of the resu
effective fluid differs from that of the one-component fluid
a finite nonzero correction. To define the adhesive HS mo
Baxter made the same assumption with respect to the se
virial coefficient~in this case the limit is that of an infinitely
deep and narrow square well!. Both assumptions are equiva
lent. For this reason we will henceforth refer to our effecti
fluid as the fluid ofparallel adhesive hard cubes~PAHC!.

C. Free-energy functional of the fluid of parallel
adhesive hard cubes

Let us now take thee→0 limit in the functional~20! to
obtain the Helmholtz free-energy functional for the fluid
PAHC. In the limit we will find thatY→`; however, this is
not a problem as long as foreveryfixed e there is a well-
defined functional giving rise to a phase behavior which d
have a finite limit whene→0. We will show that this is the
case, and thus this functional will be the effective function
we are looking for. We will see that the infinite contributio
is just aconstantshift in the origin of free energies, abso
lutely irrelevant for the phase behavior.

Let us begin by recalling what FMT prescribes for t
semigrand potential~20!. It is convenient to introduce two
dimensionless densities, h(r )[s1

3r1(r ), and j(r )
[s1

3e2r2(r ). @There is no possible confusion between t
function h~r ! and the total packing fraction, because wh
e→0 the total packing fraction is simply the packing fractio
of the large component, i.e., the average ofh~r !.# In what
follows we will fix the unit length of our system by choosin
s151. In terms of these functions the FMT form of th
functional ~20! is

bY5bF̄ id1E dr F~r !

1e22E dr j~r !~ ln@j~r !/z#21!, ~35!

bF̄ id5E dr h~r !~ ln@V1h~r !#21!, ~36!
s
-

,

ng

el
nd

s

l

where we have defined the renormalized fugacityz
[e2 exp(bm2

ex), m2
ex[m22b21 ln V2. Equation~36! is just

the ideal Helmholtz free energy of the effective fluid, a
F~r ! is given by ~5!, where, in the current notation,na

5h* v1
(a)1e22j* v2

(a) . But j~r ! is a dependent variable
which should be eliminated in terms ofh~r ! andm2 via Eq.
~21!, which in our case reads

ln j~r !5 ln z2(
a

]F

]na
* v~a!~r !. ~37!

For j~r ! to have a well-defined expansion in powers ofe,

j5j01j1e1j2e21O~e2!, ~38!

we are forced to assumez5O(1). Then we can expand~37!
and determine the functionsj i in terms ofh andz ~the actual
expression forj2 turns out to be unnecessary in the fin
expressions!. By further expanding Eq.~35! we finally obtain

Y52P0~e!V1m0~e!N1F̄1Fad1O~e! ~39!

~the details appear in the Appendix!. In this equationF̄ is the
FMT free-energy functional of the fluid of the large PHC;V
andN are, respectively, the system volume and the num
of large cubes;Fad5*Fad, with

Fad[
z

8

u¹n̄3u224n̄2•n̄2

12n̄3
, ~40!

is the new adhesive term; andP0 andm0 are functions ofz
ande, but not ofh.

The term 2P0(e)V1m0(e)N diverges withe→0 as
O(e22). It is the contribution of the small cubes to the fre
energy~as a matter of fact, their density is infinite in th
limit !. However it is irrelevant for the phase behavior of t
effective fluid because it simply addsP0 to the pressure and
m0 to the chemical potential; as these two terms are indep
dent of the density, they just cancel out in the equilibriu
equations. Accordingly the final free-energy functional f
the effective one-component PAHC fluid turns out to be

FPAHC~@r#;z!5FPHC@r#1Fad~@r#;z!. ~41!

As a selfconsistency test, it is straightforward to show@using
Eq. ~A1!# that cad(r2r 8)52bd2Fad/dr(r )dr(r 8), for the
cad function defined in~31!.

D. Phase behavior of the infinitely asymmetric binary
mixture

The phase behavior of a very asymmetric binary mixtu
of PHC can be understood from that of the effective fluid
PAHC whose FMT free-energy functional we have just d
rived.

As concerns the phase behavior of the uniform PAH
fluid, from ~41!, ~5!, and~40! we can readily obtain the free
energy per unit volume,

b f 5h$ lnV1211 ln y13~12z/2!y1y2%. ~42!

The pressure,P52]F/]V5y2]( f /h)/]y, turns out to be

bP5y13~12z/2!y212y3. ~43!
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This equation has a van der Waals loop with a critical po
~]P/]h50, ]2P/]h250! at zc52(11A2/3)'3.63 andhc

51/(11A6)'0.29. On the other hand, the equation of t
spinodal (]P/]h50) of this vapor–liquid transition is

z5
114h1h2

3h~12h!
; ~44!

it is plotted in Fig. 5~a!. Notice that this spinodal could hav
been obtained directly from~17! by taking the limitr→`,
x→1, under the constraintrh(12x)5j→z(12h) @the
limit follows from ~A1!#. Thus it is not surprising that the
line of critical points in Fig. 2 reacheshc for x→1. This
makes clear the double interpretation of this transition: a
vapor–liquid transition of the PAHC fluid~with z21 playing
the role of a temperature!, or as a demixing transition of th
infinitely asymmetric binary mixture.

Freezing of this system into a simple cubic lattice
again a continuous transition. Hence the transition line
be determined by the procedure described in Sec. II, i.e
the divergence of the structure factor, now given by the
fective DCF~30!. The result is the line shown in Fig. 5~a!.
As it occurred for the general binary mixture~see Sec. III!,
the freezing line crosses the demixing spinodal at a pack
fraction smaller thanhc ; in other words fluid–fluid demix-
ing is a metastable transition.

So far we have gone no further than we did in Secs.
IV. However this time we can study fluid–solid coexisten
because the density profile of the solvent is absent from
description. To proceed we again parametrize the densit
the large cubes as in~1!, also with a prefactorq to account
for vacancies. We recall that the lattice parameter is rela
to this occupancy ratio byd5(q/h)1/3. The ideal contribu-
tion to the free energy per particle,C, is again given by~11!
~adding lnq from the vacancies!, and the hard-core part o
the excess contribution is given by~12! @with n3(r )
5qp(x)p(y)p(z)#. We now need to work out the adhesiv
term. To this purpose first notice that

FIG. 5. Solvent fugacity,z, vs solute packing fraction,h, of the infinitely
asymmetric binary mixture of PHC, both without~a! and with ~b! polydis-
persity (Ds/s54.5%). ~a! The thick solid line separates the unstable
gion ~U! from the metastable one; the thin one marks the~continuous!
transition from a metastable fluid~MF! to a metastable solid~MS!; the
dashed one is the fluid–fluid spinodal.~b! The thick solid line marks the
fluid–solid or solid–solid coexistence; the thin one marks again the~con-
tinuous! fluid–solid transition below the coexistence region; the dotted l
is the metastable fluid–fluid coexistence.
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p8~u!22q~u!2524s~u11/2!s~u21/2!; ~45!

hence the adhesive free energy per particle can be writte

Cad52
3

2
qzE

2`

`

dx g~x!s~x11!U~x11/2!, ~46!

whereU(x) is defined as

U~x![E
2d/2

d/2

dy E
2d/2

d/2

dz
p~y!2p~z!2

12qp~x!p~y!p~z!
, ~47!

and it is periodic with periodd @we have made use of per
odicity in obtaining~46!#.

It is convenient to rewrite Eq.~47! integrating by part
with respect to both variables,y andz; in doing so this equa-
tion becomes

U~x!5E
2d/2

d/2

dy p8~y!E
2d/2

d/2

dz p8~z!V~x,y,z!, ~48!

V~r ![T~y!p~y!T~z!p~z!
423n3~r !13n3~r !2

12n3~r !
, ~49!

whereT(u)5u if uP(2d/2,d/2) @the only relevant interval
in ~48!# and it isd-periodic. FunctionV(x,y,z) is then also
d-periodic in all its three arguments; accordingly Eq.~48!
can be rewritten as

U~x!5E
2`

`

dy g~y!E
2`

`

dz g~z!W~x,y,z!, ~50!

W~x,y,z![ (
t1 ,t2561

t1t2V~x,y1t1/2,z1t2/2!, ~51!

and therefore

Cad52
3

2
qzE

2`

`

dx g~x!E
2`

`

dy g~y!E
2`

`

dz g~z!

3s~x11!W~x11/2,y,z!, ~52!

also suitable for Gauss–Hermite numerical integration.
In order to understand the effect of the adhesive con

bution ~46! let us see its asymptotic behavior whena→`
andd→11 ~equivalentlyq→h1!, a limit which would rep-
resent a close-packed solid. From its definition~7! p(u);1
in this limit; thusU(x);1/(12h). On the other hand,g(u)
is very sharply peaked, so

E
2`

`

dx g~x!s~x11!;g~0!5S a

p D 1/2

,

thereforeCad;2(3/2)z(a/p)1/2/(12h). On the other hand
Cex5O(1) in this limit, while C id;3 lng(0);(3/2)lna. In
other words, the total free energy per particle of the effect
fluid monotonically decreases as the system approaches
close packing, regardless the value of density and solv
fugacity. This means that the system always collapses,
the equilibrium phase behavior is always a close-pac
solid coexisting with an infinitely diluted gas. This singul
phase diagram is not exclusive of PAHC. For adhesive H
the adhesiveness vs. packing fraction phase diagram~z plays
the role of adhesiveness for PAHC! has recently been
mapped out from simulations of the square-well fluid in t
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limit of narrow and deep wells.34 These simulations prove
that the only stable phases of this system are also a cl
packed solid and an infinitely diluted gas. The reason for
pathology was put forward some years ago by Stell,44 who
showed that the partition function of the adhesive HS mo
diverges if the number of particles isN>12. In his work
Stell discusses a new limit in which the adhesiveness goe
zero ~hence the second virial coefficient reduces to that
HS! in such a way that there appears a critical tempera
separating the singular phase behavior~below! from a HS-
like phase behavior~above!. It is not clear how this limit can
be implemented in our formalism without completely s
pressing depletion, so in what follows we will just limit ou
selves to the analog of Baxter’s model we have defined
will try to extract some consequences.

In spite of the singular phase behavior we have seen t
as a function ofa andq, the free energy per particle exhibi
local minima at any value ofz for some range of densities
the smallerz the wider this range. These local minima co
respond to metastable phases. Although we cannot rule
that the existence of these states is but an artifact of
particular parametrization we have chosen, they are likel
exist in view of the very long times clusters of large partic
take to evolve in simulations.31 The upper bound to the pack
ing fractions at which local minima exist for a givenz can be
determined as the point where the compressibility vanish
This upper bound, as a function ofz, appears in Fig. 5~a!.
This figure shows the metastable phases. Notice that the
gion of metastability widens asz decreases. At lowz these
metastable phases are separated from the ‘‘collapse’’ b
large free-energy barrier, so the system spends a long tim
them before eventually becoming a close-packed solid. A
matter of fact, if the system is prepared as a metastable s
at low z, for a long time it will show a pseudocoexistenc
between two solid phases~an expanded solid and a clos
packed solid!. The situation resembles the isostructu
solid–solid transition reported to occur in some colloidal fl
ids with a narrow and deep attractive well.34,35 At higher z
the same pseudocoexistence should be observed betw
diluted fluid and a close-packed solid.

It is interesting to compare this phase behavior w
what has been determined to occur for adhesive HS usin
effective-liquid DFT.45 Fluid and solid also appear as loc
minima of the free energy per particle as a function of
Gaussian width; however, above a certain line the free
ergy becomes concave up to close packing. This puzz
behavior was interpreted in Ref. 45 as a percolation tra
tion. In the light of our findings it is the equivalent to th
instability line of Fig. 5~a!. The fluid of adhesive HS also
collapses into a close-packed solid.34 The reason why this
collapse has not been observed in Ref. 45 is that the th
used there does not account for vacancies, and this force
lattice parameter to be larger than 1 atany packing fraction.
The instability manifests itself as the reported loss of c
vexity of the free energy.

E. Polydispersity in the large cubes

It has been suggested that the singularity of the adhe
potential might be avoided by introducing polydispersity
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the size of the particles.44,46 It is clear that this prevents th
system from forming a perfectly packed solid. We can spe
late what its effect is on the binary mixture by introducing
small amount of polydispersity in the size of the large cub
It is very easy to realize that starting off from a mixture
polydisperse large cubes and small cubes and repeating
process described in Sec. V C we end up with exactly
same form of the functional~41!, with then̄a’s now replaced
by those corresponding to the polydisperse mixture.

In order to make the simplest choice we consider
cubes as parallelepipeds and choose the length of each
independently from a Gaussian distribution of mean 1 a
varianceDs. This particular choice has two important adva
tages~they will be made clear below!: ~i! the free energy of
the fluid phase is the same as that of the monodisperse
tem ~hence its phase behavior as well!, and~ii ! formally the
expressions for the free energy of the solid phase cha
very little. It also has two drawbacks:~i! particles are not
cubic anymore, and~ii ! there is a nonzero contribution in th
negative lengths. As these two inconvenients disappear w
Ds→0 they can be overcome by choosingDs!1. This
choice also allows us to make two more simplifying assum
tions: ~i! the ordered phase must be a substitutional so
i.e., the density profile can be expressed asr~r !P~s!, with P
the normalized size distribution,s[(sx ,sy ,sz), and ~ii !
phase separation induced by polydispersity47 can be ignored.

Then, according to the definition of then̄a’s

n̄a~r !5E dsP~s!r* vs
~a!~r !5r* ṽ~a!~r !, ~53!

i.e., it has the same definition as in the monodisperse c
but the weights are redefined asṽ (a)(r )[*dsP(s)
vs

(a)(r ). This amounts to replacinguu anddu in ~4! by

ũu5
1

2 F12erfS& uuu21/2

Ds D G , ~54a!

d̃u5
1

A2pDs
(
$6%

expH 22
~u61/2!2

Ds2 J , ~54b!

which are like smoothed counterparts of the original weigh
Since*2`

` du ũu5*2`
` du d̃u51, it follows that the free en-

ergy of the uniform fluid is the same as that of the monod
perse system. Hence the fluid–fluid spinodal is the sam
that shown in Fig. 5~a!.

We can determine the coexistence between the two fl
phases by means of the usual double tangent constructi43

Figure 5~b! shows the resulting coexistence line.
We can also assume a solid-like density profile as in

monodisperse case. Surprisingly enough, in spite of the s
ing difference of the smoothed weights defined by~54! with
respect to the original ones, when we obtain the correspo
ing weighted densities and work out the expressions a l
bit, it turns out that the free energy per particle of the po
disperse solid is simply given byC5Cpoly1C id1Cex

1Cad, where the last three contributions are given by E
~11!, ~12!, and ~52!, with the slight modification that the
parametera appearing in the definitions~1c! and~6! must be
replaced byã5a/(11aDs2/2) ~of course, in these expres
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sionss51, the mean value, andC id carries the additiona
ln q to account for vacancies!, and where Cpoly

523ln(A2pDs)23Ap/2Ds is the entropy of mixing~an
irrelevant constant!.

From the definition ofã it can be seen that no matte
how smallDs be, for smalla’s (a!Ds22)ã;a, and the
system is ‘‘blind’’ to polydispersity, whereas for largea’s
(a@Ds22)ã;2Ds22, i.e., the system never collapses. A
a consequence the singular behavior of the monodisp
system is removed, and we can readily determine phase e
libria.

Clearly this behavior is a consequence of the metast
phase diagram discussed in the previous section, and,
that case, it can be argued to be an artifact of the appr
mations of the theory. Again we believe the stabilization
polydispersity to be a real effect because it precludes sin
lar clusters to form. Anyway a confirmation by comput
simulations would be desirable to clarify this point.

A typical result for a small value ofDs is shown in Fig.
5~b!. This figure reveals several remarkable features. Firs
it shows that the fluid–fluid transition is metastable. S
ondly, there is an isostructural solid–solid transition for
certain interval ofz. In this interval the expanded solid (S1)
appears after a continuous transition from the fluid phase~F!.
The expanded solid (S1) –dense solid (S2) transition ends at
a critical point,zs , below which we can only find a fluid an
a single solid, separated by a continuous transition. Thir
as z increases fromzs the expanded solid packing fractio
decreases down to meeting the freezing packing fract
Above the point where this occurs coexistence is betwee
fluid and a dense solid (S2), the former quickly becoming
highly diluted and the latter highly packed. Notice the stro
resemblance between this true equilibrium phase beha
and the metastable behavior described as occurring in
monodisperse PAHC fluid~Sec. V D!.

VI. DISCUSSION AND CONCLUSIONS

The fluid of PHC is a rather academic one which ho
ever has the great advantage of being analytically tractab
contexts where the fluid of HS is not, thanks to its adequ
to a fundamental measure description. Yet, with some pe
liarities due to the lack of rotational symmetry,8,7 the physics
it reveals is similar to that of more realistic fluids. It the
allows for theoretical investigation on fluid phase behav
otherwise very difficult. The main contribution of the fluid o
PHC is to the understanding of the phase diagram of a bin
mixture. This fluid proved to undergo stronger depletion th
HS.9,10 However, as it has been shown in this work, th
feature is irrelevant when the effect of depletion in the so
phase is accounted for. Spatial order of the large compo
strongly enhances demixing, so that fluid–solid demixing
comes the main scenario of the phase diagram of binary m
tures. But this transition can be preempted by the freezin
the large component, and when this happens the sys
phase separates into two fcc solids with a different latt
parameter. This effect, very clearly shown here for the m
ture of PHC ~in the limit of infinite asymmetry!, has also
been confirmed in simulations of HS interacting via an
se
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fective depletion potential,32,33 and very recently also in di-
rect simulations on the true binary mixture.36 The simula-
tions also show that the solid–solid transition disappears
the asymmetry of the two components decreases, but
anyhow categoric with respect to the fluid–solid nature
demixing.

A final remark concerns the two-dimensional mixtur
We have made preliminary calculations in this case and h
found an adhesive contribution similar to the thre
dimensional one. We have not carried out a detailed anal
yet, but the same collapse is present in this case, thus
cating a behavior qualitatively similar to the one shown he
except that we cannot say anything on the existence o
solid–solid transition. These results are in perfect qualitat
agreement with recent simulations.48
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APPENDIX

Let f (u) be an arbitrary function of a single variab
u. Then *u2e/2

u1e/2f (t) dt5e f (u)1O(e3), and 1
2@ f (u1e/2)

1 f (u2e/2)#5 f (u)1(e2/8) f 9(u)1O(e4). Accordingly, if
f (r ) is an arbitrary function ofr , from the definitions~4! and
the expansions above, it followsf * v2

(0)5 f 1(e2/8)¹2f
1O(e4) and f * v2

(a)5ea f 1O(ea12), the latter fora53 or
any vector component ofa52 and 1. Then

n05j0e221j1e211$n̄01j21 1
8 ¹2j0%1O~e!,

n15j0ue211$j1u1n̄1%1O~e!,

n25$j0u1n̄2%1j1ue1O~e2!,

n35n̄31ej01e2j11e3j21O~e4!,

whereu[(1,1,1), n̄a[h* v1
(a) , and the functionsj i are de-

fined in ~38!.
Using these expansions we can obtain

(
a

]F

]na
* v2

~a!52 ln~12n̄3!1
8j01n̄2

12n̄3
e1O~e2!.

On the other hand, lnj5ln j01(j1 /j0)e1O(e2), hence~37!
implies

j05z~12n̄3!, ~A1!

j152zn̄228z2~12n̄3!. ~A2!

We can now proceed to expandY itself:



c-
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o-

ys.

ry,

for
sical
r.
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F1e22j@ ln~j/z!21#

52z~12n̄3!e221$zn̄214z2~12n̄3!%e21

1H zn̄126z2n̄22
55

2
z3~12n̄3!

1
z

8
¹•@ ln~12n̄3!¹n̄3#1F̄1FadJ 1O~e!.

whereFad is defined in Eq.~40! andF̄ is given by~5! with
thena replaced byn̄a ~i.e., it is the excess free-energy fun
tional of the one-component PHC fluid!. Expression~39! fol-
lows from this equation if we notice that*¹•@ ln(1
2n̄3)¹n̄3#50, which holds if the density is constant at th
boundaries or if it is a periodic function.
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