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What do emulsification failure and Bose-Einstein
condensation have in common?
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Abstract. – Ideal bosons and classical ring polymers formed via self-assembly, are known
to have the same partition function, and so analogous phase transitions. In ring polymers,
the analogue of Bose-Einstein condensation occurs when a ring polymer of macroscopic size
appears. We show that a transition of the same general form occurs within a whole class of
systems with self-assembly, and illustrate it with the emulsification failure of a microemulsion
phase of water, oil and surfactant. As with Bose-Einstein condensation, the transition occurs
even in the absence of interactions.

Bose-Einstein condensation (BEC) is a textbook [1], but rather unusual, phase transition.
It occurs for noninteracting bosons, in contrast to more conventional transitions such as that
of the Ising model, which are driven by interactions. Feynman [2] showed that the statistical
mechanics of bosons can be performed via what he called path integrals. These integrals are, in
turn, equivalent to integrals over the configurations of ring polymers. Thus, the path integral
formalism of Feynman implies that noninteracting bosons and self-assembling, noninteracting
ring polymers have partition functions of exactly the same form. Necessarily then, ring poly-
mers must undergo a phase transition precisely analogous to BEC [3]. Here, we generalise this
result to show that there is a class of self-assembling systems which undergo a phase transition
analogous to BEC. This phase transition occurs in the absence of interactions between the
aggregates formed by self-assembly. At BEC a condensate appears which is a macroscopic
number of bosons in a single state. In the analogous transition in self-assembling systems, an
aggregate of macroscopic size appears. For the example considered here, a microemulsion, the
macroscopic aggregate is a bulk oil phase.
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Self-assembling systems are systems in which the particles are not immutable objects but
are formed reversibly [4–6]. Typically we have water, surfactant and sometimes oil. The
surfactant molecules then spontaneously assemble into micelles, or coat and stabilise droplets
of oil. Both the micelles and the droplets are what we term aggregates. For example, in a
microemulsion, equilibrium is obtained when the oil is dispersed in water as oil droplets whose
surfaces are coated with surfactant. These droplets are more stable than just a single bulk
oil phase because with a single bulk phase there is no extensive oil-water interface, and the
amphiphilic surfactant molecules have the lowest energy at this interface. The distribution
of droplets changes with density and temperature. A BEC-like transition occurs when, at
equilibrium, some of the oil exists as a macroscopic droplet, i.e., a bulk phase. This transition
is called emulsification failure [7, 8].

Let us begin by outlining BEC in Feynman’s language [2]. The partition function of N
bosons is given in terms of their density matrix ρ̂ by

ZN (β, V ) = trV ρ̂, ρ̂ ≡ e−βHN , (1)

with HN the Hamiltonian operator, β = 1/kT . The density matrix of noninteracting identical
bosons can be written in terms of 1-particle density matrices, ρ̂1
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where {xi} ≡ {x1, . . . ,xN} and ΠN is the set of permutations of N elements [P : i �→ P (i)].
Taking the trace over eq. (2) and moving over to the grand canonical ensemble, we obtain

for the grand partition function, Ξ(β, z, V ), and average density of bosons, φ,

ln Ξ =
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hnzn

n
, φ =

1
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hnzn, (3)

with z the activity of the bosons and hn = trV ρ̂n
1

= Z1(nβ, V ). It is straightforward to
determine that for a d-dimensional cubic box with periodic boundary condition Z1(β, V ) =
[ϑ(π/�2)]d, where � ≡ V 1/d/Λ is the length of the box in units of the thermal wavelength
Λ ≡ h

√
β/2πm, and ϑ(y) ≡ 1 + 2
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Remarkably, eq. (3) also applies to self-assembling ring polymers, provided z and Λ are
properly redefined. To see this, note that by definition [2], the one-particle density matrix,
ρ̂1 = exp[−βH1], is a solution of the equation ∂β ρ̂1 = −H1ρ̂1 = (h̄2/2m)∇2ρ̂1. This is just a
Fokker-Planck equation for a random walk in “time” β, and with diffusion coefficient h̄2/2m.
Accordingly, V −1trV ρ̂n

1 (= hn/nV ) has an alternative interpretation as the probability of a
random walk forming a cyclic path after n “time”-steps of length β. The simplest model of a
ring polymer of length n is a cyclic random walk of n steps; hence hn/nV can also be regarded
as the ratio of the partition function of a ring of n monomers, Zring

n , to that of a chain of n+1
monomers, V Λnd. With this interpretation Λ has the meaning of the average monomer length.
We conclude that Zring

n = Λndhn/n. For an ideal mixture of rings made up of monomers at
an activity z, the number density of rings of length n, ρ(n) = znZring

n /V , and the number
density of monomers in rings of length n is just n times this, (zΛd)nhn/V . If we absorb a
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factor of Λd into z then clearly the total number density of monomers in ring polymers is
given exactly by the expression for the density of bosons in eq. (3). This well-known mapping
of ring polymers onto bosons is called the “classical isomorphism” [9]. It tells us that both
systems have completely equivalent equilibrium behaviour, and so i) the ring polymer system
must undergo the analogue of BEC, and ii) ideal bosons are equivalent to a classical system
with self-assembling aggregates.

To locate the phase transition for bosons/ring polymers, let us consider an integer n1(V )
such that n1(V ) � �2(V ) ∝ V 2/d, as V → ∞. Then ϑ(πn/�2) = �n−1/2 + O(e−π�2) for all
n ≤ n1(V ), and so we can split the sum of eq. (4), yielding

φ =
1
Λd

n1∑
n=1

zn

nd/2
+

1
V

∞∑
n=n1

zn
[
ϑ(πn/�2)

]d
+ ε(V ), (5)

where ε(V ) → 0 as V → ∞. If we fix z < 1 and take the thermodynamic limit then the
first sum is less than its value at z = 1, φc = Λ−d

∑∞
n=1 n−d/2, and the second sum is zero.

When z > 1 the first sum is clearly divergent. This implies that all φ > φc correspond to
z = 1. Careful analysis of eq. (5) shows [10] that for φ > φc, the density in excess of φc,
i.e., φ − φc, comes from the second sum of eq. (5). This second sum is the contribution of
either a macroscopic number of bosons in a single state (the ground state) or a ring polymer
of macroscopic size.

We now generalise the preceding theory to describe a whole class of systems with self-
assembly. Let us consider monomers which can self-assemble into aggregates, where these
aggregates are noninteracting but are otherwise arbitrary. The internal partition function of
the corresponding aggregates in the new model will differ from that of ring polymers, but
density of matter, φ, will again be given in terms of the activity, z, through some function
φ = G(z). We will then have a BEC-like transition provided that as z runs over a range
0 ≤ z ≤ zc, the new function takes only values in the limited range 0 ≤ G(z) ≤ G(zc),
and is divergent for z > zc. Furthermore, this phase transition will again occur due to the
appearance of macroscopic aggregates.

Let us denote by s the (dimensionless) “size” (volume, surface, length . . .) of aggregates,
and assume s0 ≤ s < ∞. If ρ(s) denotes the number density of aggregates of size s, then the
free energy of an ideal mixture of these aggregates is

βF/V =
∑
s≥s0

ρ(s) [ln ρ(s) − 1 + f(s) + as] + ρ0[ln ρ0 − 1 + f0] , (6)

where f(s) is the internal free energy of aggregates of size s, with the linear part, as, subtracted
off. The second term must be included if aggregates for which s = 0 are present (for example,
in microemulsions micelles are present which are pure surfactant and do not contribute to
φ; see below). In this term ρ0 and f0 are the number density and internal free energy of
these aggregates. The sum in eq. (6) may be replaced by an integral with only very minor
quantitative changes to the behaviour. We will do so when we come to do explicit calculations
for microemulsions, for which s may be treated as a continuous variable. Note that ring
polymers conform to eq. (6) if s denotes the number of monomers (i.e. the dimensionless
length), s0 = 1 and f(s) + as = − ln[Zring(s)/V ] (the s = 0 term is obviously absent).

A microemulsion is an isotropic equilibrium phase composed of water, oil and a surfactant
[5, 11]. If there is, say, much less oil than water, then the microemulsion consists of droplets
of oil, nanometers across, coated with the surfactant and dispersed in the water. Without
the surfactant, at equilibrium we would have bulk oil and water phases, but as surfactant
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prefers to lie in the water-oil interface, it stabilises the oil droplets dispersed in the water.
For microemulsions the sum of eq. (6) is over droplets of different sizes; here s is the reduced
volume of a droplet and s0 is the size of the smallest possible droplet. Micelles, aggregates
of pure surfactant, are also present in microemulsions, and as they are pure surfactant they
do not contribute to the oil density φ. In eq. (6) applied to microemulsions, the second term
on the right-hand side accounts for micelles; ρ0 is the density of micelles. The surfactant is
assumed to be restricted to the surface of the droplets and to micelles.

At equilibrium the droplet distribution ρ(s) is given by the minimum of the free energy,
subject to the constraints that the total fraction of oil,

φ =
∑
s≥s0

sρ(s), (7)

is fixed, and also that the total amount of surfactant is fixed. Fixing the (reduced) surfactant
density ξ requires constraining the sum of the micelle density, ρ0, and the s2/3 moment of
ρ(s). The latter is proportional to the surface area of the droplets per unit volume. This
constraint is a single specific example of constrained densities ξi of the form

ξi = ciρ0 +
∑
s≥s0

wi(s)ρ(s), i = 1, . . . , ν, (8)

where ci are constants, ρ0 is a density of a species which contributes to ξi but not to φ, and
wi(s) are weight functions. Equations (6), (7) and (8) define our model of a system with
self-assembly.

Minimising the general free energy, eq. (6), at constant φ, eq. (7), under the constraints
(8), we obtain the equilibrium densities

ρ(s) = e−f(s)−
∑

i
λiwi(s)−λs, ρ0 = e−f0−

∑
i
λici , (9)

where λ = a−βµ, µ being the chemical potential corresponding to the reduced density φ, and
λi are the Lagrange multipliers corresponding to the constraints (8) (and which are analogous
to chemical potentials associated with the fixed densities ξi).

Now, if either f(s) or any of the wi(s) grows faster than s as s → ∞, then the sum in
eq. (7) will converge for any value of λ. Furthermore, for any set of densities {φ, ξi} there will
always be a set {λ, λi}, which will solve eqs. (8) and (7). This means that the free energy
will be a smooth function of the densities and no phase transition will occur. Therefore, for
a phase transition to occur, it is necessary that a) f(s), wi(s) = o(s) as s → ∞. If this
condition holds, then the sum in eq. (7) is convergent for λ > 0 and divergent for λ < 0. The
second condition concerns the limit λ → 0+. If the sum in eq. (7) diverges in this limit, then
again any set of densities will be reachable and no phase transition will occur. Thus, for the
transition to appear it is necessary that b) the sum in eq. (7) is convergent for λ = 0.

If our model fulfills conditions a) and b) in the thermodynamic limit we have that the
density φ increases to a finite value as λ increases and then suddenly diverges, just as for
bosons. Just as with bosons, to study the transition we need to consider explicitly the system
size dependence. For this we need to consider a free energy of aggregates which depends
on V , i.e., ln ρ(s) − 1 + f(s;V ) + as. Now, f(s;V ) has to be such that f(s;V ) → f(s) as
V → ∞, but the convergence cannot be uniform: intuitively, if s is “small” compared to V ,
then f(s;V ) ≈ f(s), but if s is “large”, then f(s;V ) will differ markedly from f(s). Thus
we can always choose a size s1(V ) such that f(s < s1;V ) ≈ f(s) and that s1(V ) → ∞
when V → ∞. Now, for a finite system no phase transition can occur, so replacing f(s) by
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f(s;V ) must violate one of the two conditions, a) or b). Condition a) is violated, for instance,
when compact aggregates form and the box limits the maximum size of an aggregate. This
translates into a sharp increase of f(s;V ) at a certain macroscopic size which makes the sum
eq. (7) convergent for any value of λ (positive or negative). Case b) is what we have met
for ring polymers, for which the finite-size free energy f(s;V ) ∼ ln(V s) as s → ∞. With
this weak s dependence, the sum equation (7) diverges as λ → 0+. Although there are small
differences between the two cases as concerns the finite-size analysis [10], they do not affect
the thermodynamic limit itself.

We will report the details of the analysis elsewhere [10], and limit ourselves to describing
the resulting phase behaviour. If φ < φc, eqs. (7) and (8) can be solved for λ and λi. This
yields the densities, eq. (9), as well as the free energy

βF/V = −ρ −
ν∑

i=1

λiξi + aφ, (10)

with ρ = ρ0 +
∑

s ρ(s). The phase transition occurs at a density φc, which is given by setting
λ = 0 in eq. (9) for ρ and inserting the result in eq. (7). When φ ≥ φc, the matter in excess
of φc, φ − φc forms macroscopically big aggregates (the condensate), and λ = 0. The density
of non-macroscopic aggregates is then given by eq. (9) with λ = 0 and λi = λi,c, where
λi,c are the solution to eqs. (8) for λ = 0. In particular, as f(s) increases sublinearly then
whenever macroscopic aggregates are present, λ = 0 and the size distribution of aggregates
always decays slower than exponentially. Finally, in this regime the free energy has the same
form as in eq. (10), but with ρ and λi replaced by ρc and λi,c, the corresponding values for
λ = 0.

Returning to our example of microemulsions, we will explicitly calculate a phase diagram.
As mentioned before, s is proportional to the volume. The internal free energy of a droplet has
a linear term, as, plus f(s), which comes from the droplet’s surface. The surface of the drop
can be modeled using a surface tension term plus an elastic free energy of the form introduced
by Helfrich [11, 12], which accounts for a preferred curvature of the surfactant layer at the
surface of the droplet. The details are given in ref. [10], but, as we might expect, there are
three contributions arising from the surface tension (proportional to s2/3), the mean curvature
(proportional to s1/3) and the Gaussian curvature (a constant)(1). Thus we take for f(s)

f(s) = a0 − a1s
1/3 + a2s

2/3, (11)

consistent with requirement a) above; a1 > 0, the signs of a0 and a2 are not fixed. This
expression for f(s) may be inserted in the expression for the free energy, eq. (6), and the sum
replaced by an integral; s may be any volume in the range s0 ≤ s < ∞. There is a single
constraint, that on the surfactant density

ξ = c0ρ0 + c1

∫ ∞

s0

ds s2/3ρ(s) (12)

(c0 and c1 are simply geometric factors). Minimising the free energy subject to fixed φ and
ξ yields the droplet size distribution ρ(s) = exp[−a0 + a1s

1/3 − (a2 + λ2c1)s2/3 − λs], and

(1) Reiss and coworkers [13] have looked carefully at the function f(s) for microemulsions and found in
addition to the terms in eq. (11) a term logarithmic in s. This term essentially accounts for fluctuations of the
center of mass of the droplet. Adding such a term to eq. (11) results in a f(s) which still satisfies condition
a) for a transition, and thus does not alter the nature of the phase behaviour. It will however shift the phase
boundary.
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Fig. 1 – Amount of oil in droplets, φ, vs. amount of surfactant, ξ. In the shaded region a bulk oil
phase coexists with the microemulsion (emulsification failure). The solid curve (λ = 0) signals the
phase transition. The dashed curves are at constant micelle density ρ0 = e−λ2 . From bottom to top
λ2 = −1, 0, 1, 2.

density of micelles ρ0 = e−f0−c0λ2 . If a2 + λ2c1 > 0 the requirement b) on f(s) also holds
and we will have a finite φc at which a transition occurs. At φc a macroscopic droplet forms,
which is nothing other than a bulk oil phase. So, a bulk phase of excess oil coexisting with
the microemulsion phase has formed. This is the so-called emulsification failure [7, 8].

To illustrate emulsification failure we take some simple and rather arbitrary values for
the parameters of the free energy, namely a = a0 = a2 = f0 = 0, a1 = c0 = c1 = s0 = 1,
and calculate the phase diagram, fig. 1. At fixed surfactant density ξ there is a maximum
oil density φc beyond which the microemulsion phase coexists with a bulk oil phase. This
maximum density increases as the surfactant density increases.

Finally we briefly comment on interaggregate interactions. Their presence will of course
affect any transition which is driven by the mechanism outlined in this letter. But in addition,
they may induce the transition in systems which in the absence of interactions do not undergo
the transition. Zhang et al. [14] report evidence of this for a system for which the ideal
internal free energy is f(s) = const. There, the interactions between the aggregates lead
to a size distribution of the form of eq. (9) but with f(s) depending on the density as a
result of the interactions, not just arising from an internal free energy [14–16]. If this f(s)
satisfies conditions a) and b), there will be a transition induced by the interactions. In other
words, interaction may induce a transition analogous to that of ideal bosons by inducing an
appropriate state-dependent “internal” free energy. A detailed account of this transition in
the model of Zhang et al. [14] has recently been reported [17].

There is a class of systems in which aggregates of all sizes can reversibly self-assemble, and
in which, without interaggregate interactions, there is a phase transition. This phase transi-
tion occurs when an infinite aggregate or aggregates form. It is analogous to the Bose-Einstein
condensation of ideal bosons: in neither case are there interactions, and the macroscopic ag-
gregates we find play the same role as the condensate of a macroscopic number of bosons.
This analogy for the specific case when the aggregates are ring polymers is implied by Feyn-
man’s path integral approach for bosons [2,3,9]. We have shown that the analogy applies to a
whole class of self-assembling systems with partition functions which are qualitatively similar,
although of a different functional form, to that of ideal bosons/ring polymers. This class is
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defined by the requirement that the internal free energy of an aggregate contains a linear term,
as, plus others which are sublinear and ensure that the density is finite when the chemical
potential βµ → a−. We outlined the behaviour of one example here, that of microemulsions.
Another example is that of the formation of the lamellar phase, a stack of effectively infinite
bilayers of surfactant, which can coexist with small discs of bilayer [18]. This transition, as
well as emulsification failure, both occurring in ideal systems, will of course be affected in
their details by the presence of interactions between the aggregates. Their influence will, in
general, depend on the details of the interactions; nevertheless, we suggest that the effect of
interaggregate interactions will be analogous to that of interatomic interactions on the λ tran-
sition of liquid 4He [1], thought to be Bose-Einstein condensation modified by the presence of
interactions between the He atoms.
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