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Phase transitions in simple models of rod-like and disc-like
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Abstract. The interplay of interactions between micelles, and the aggregation of these micelles into large,
highly anisotropic micelles, is studied. Simple, hard-body, models of rod-like and disc-like micelles are used,
which allows us to apply fundamental measure theory to determine the free energy. Then we study the
phase transition from the fluid phase to a liquid crystalline phase. We find that aggregation induces a
strongly first order transition from a fluid phase of small micelles to a close packed liquid crystalline phase
of infinitely large micelles.

PACS. 64.70.Md Transitions in liquid crystals – 61.30.Cz Theory and models of liquid crystal structure
– 61.20.-p Structure of liquids – 61.20.Gy Theory and models of liquid structure – 61.20.Qg Structure
of associated liquids: electrolytes, molten salts, etc.

1 Introduction

Many surfactants form approximately spherical micelles
at low density but when the surfactant’s volume fraction
reaches ∼ 0.5, intermicellar interactions force the micelles
to aggregate into large anisotropic micelles in liquid crys-
talline phases [1–7]. The interactions provide a driving
force for the formation of large micelles because the in-
termicellar interactions, and hence the interaction part of
the free energy, are less for liquid crystalline phases of
anisotropic micelles than they are for spherical micelles.
The size of the micelles is then very sensitive to density
as the interactions are only strong at volume fractions
∼ 0.5 or higher. In this work, we study, theoretically, phase
transitions which are driven by, or at least strongly af-
fected by, aggregation. For this purpose we have defined
two highly simplified models. We have chosen to model
aggregates by perfectly aligned, rod-like or disc-like, hard
parallelepipeds. We find a fluid–columnar transition for
the rod-like micelles and a fluid–lamellar transition for
the disc-like micelles. This pattern of transitions is what
is found in experiments [3,8,9], although the experimental
phase diagrams contain additional phases.

We chose such simplified models both because the
simpler the model which shows the behaviour we are
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interested in, the clearer is the understanding gained,
and because the theoretical treatment is simpler. For our
models we can then take advantage of the recent studies
[10–12] of density functionals for mixtures of parallel hard
parallelepipeds within the so-called fundamental measure
theory (see Refs. [12–14] and references therein). In brief
this theory provides a description of certain types of mix-
tures of hard particles in terms of characteristic geomet-
rical “measures” of the particles, such as volume, surface,
or mean radius of curvature. It turns out that the fun-
damental measure free energy for the uniform phases re-
duces to a y3-expansion [15,16] which has already been
used to study similar models [17–19]. The use of the fun-
damental measure formalism has, nevertheless, two advan-
tages: (i) it is directly extensible to inhomogeneous phases
(which cannot be included consistently in the standard y3-
expansion [17]), and (ii) it avoids the computation of the
second and third virial coefficients (although the final ex-
pression does contain their exact values), thus yielding a
simpler formalism.

By modeling micelles by parallel hard, rigid convex
bodies we are deliberately ignoring three features of real
aggregates: round shape (spherical for small aggregates
or cylindrical for long ones), coupling between orienta-
tional order and the growth of micelles, and flexibility.
In addition our micelles interact via a simple hard-core
potential. The phase behaviour of micelle forming surfac-
tants has been extensively studied, see references [2,5,20].
Models of micelles which are both flexible and nonspher-
ical, e.g., [21] and interact via a soft repulsion as well as
a hard core [2,18,19] have been studied. So, it is a little
surprising that no results have been reported for the sim-
pler models considered here. Taylor and Herzfeld [2,18]
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mention phase behaviour for this model similar to that
which we have found. They apparently considered it as a
pathological feature of the model and so added a soft re-
pulsion to the interaction between the micelles. This addi-
tional repulsion qualitatively changes the phase behaviour.
We will compare results in Section 6.

A natural question to ask is: what effect do the many
simplifications of our model have? Choosing a cuboidal
shape changes little apart from the symmetry of the or-
dered phases, e.g., cubes form a simple cubic lattice while
spheres form a face centered cubic lattice. Real micelles
can, of course, rotate, whereas our model micelles cannot.
The phase diagram of rotating micelles differs from the
phase diagrams we obtain, see references [2,20,22], for ex-
ample there is an isotropic–nematic transition for not too
weak aggregation. However, the new degrees of freedom
do not change the fact that interactions couple to mi-
cellar growth. By choosing perfectly aligned particles we
simply focus on the simplest possible scenario, i.e., that
of a nematic undergoing interaction-driven aggregation.
Finally, both flexibility and an added soft repulsion add
an additional extensive contribution to the excess free en-
ergy [20–22]. We will find that the ordered phase is close-
packed; this is a due to a combination of the rigidity of
and hard-core interactions between the micelles. It dis-
appears in the presence of soft repulsions, see references
[2,18,19]. However the collapse of the system to close pack-
ing was considered a pathology of the hard-core interac-
tion. [2,18,19] We will show in this work that the collapse
can be dealt with as a phase transition in which a nematic
and a close-packed phase coexist.

By restricting our micelles to aggregate into rods or
into discs we are considering two rather extreme models.
Most surfactants can form both, although some form only
rods [8] or discs [9]. The competition between rod- and
disc-like micelles in high density surfactant solutions is
left for future work. There are also surfactants that form
very long, wormlike, micelles even at low densities. This
work is not very relevant to these surfactants because
the formation of the long micelles is driven not by in-
termicellar interactions but by the surfactants preference
for cylindrical over spherical micelles. Wormlike micelles
have been extensively studied theoretically; see references
[21,23] and references therein. These long micelles form
nematic and columnar phases but as they are long even in
the isotropic phase, the coupling between the phase and
micellar growth is relatively weak [21,22].

The paper is divided into seven sections. Section 2 re-
views the theory of aggregation into rod-like and disc-like
micelles in the absence of interactions. Section 3 derives,
from fundamental measure theory, the excess free energy
of mixtures of aligned rods of different lengths, and of mix-
tures of aligned square discs with sides of different lengths.
Sections 4 and 5 are devoted to the fluid and solid phases,
respectively, of micelles. Section 4 uses the excess free en-
ergy of a fluid mixture derived in Section 3, and Section 5
uses a cell theory to estimate the excess free energy of the
solid phase. We present the phase behaviour in Section 6
and we discuss it in the last section, Section 7.
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Fig. 1. A schematic of our cuboid model micelles; the rod and
disc are shown in side and top views, respectively. On the left
is the minimum size of micelle allowed: a cube with sides of
length σ. In the center is a rod-like micelle which has a square
cross-section of area σ2 and a length sσ. On the right is a square
disc-like micelle with thickness σ and two sides of length s1/2σ.
We have shaded the different regions of the micelles differently.
The three different regions are end, edge and surface regions,
with free energies per unit volume of µckBT/σ

3, µrkBT/σ
3

and µdkBT/σ
3, respectively.

2 Ideal micelles

We will always assume that we are well above the critical
micellar concentration and so all the surfactant molecules
are part of micelles. Note that we use the term micelle
not just for spherical micelles but also for rod-like and
disc-like micelles. At low density the high translational
entropy means that small cubic micelles are formed, but
at high density interactions push the micelles together as
the interaction part of the free energy is smaller for a small
number of large aggregates than a large number of small
aggregates. But even the smallest, cubic, micelles are com-
posed of many surfactant molecules and so we will describe
the size of a micelle by a continuous variable s, which is
proportional to the volume, and hence the number of sur-
factant molecules, of the micelle [23,24]. Here, we consider
two different types of growth of the micelles: growth into
rod-like micelles and growth into disc-like micelles. Cubic,
rod-like and disc-like micelles are shown in Figure 1. For
simplicity we do not allow the simultaneous formation of
rod-like and disc-like micelles.

2.1 Rod-like micelles

First, we consider a surfactant that forms rod-like micelles.
The rods have a a constant cross-section of σ2 and so the
number of surfactant molecules and the volume of a mi-
celle is proportional to its length. The length of a micelle
is specified by an index s, where s is proportional to the
length of a micelle and equal to 1 for a micelle which has
a length equal to σ. The number density of micelles of
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length s is ρ(s)/σ3. Thus, ρ(s) is a reduced, dimension-
less, number density. The number of surfactant molecules
in a micelle is equal to s times the number in the smallest
possible, cubic, micelles. Therefore, at fixed total concen-
tration of surfactant∫ ∞

1

ρ(s)sds = η, (1)

where η is the volume fraction of surfactant. Setting the
lower limit of the integration in equation (1) to 1 corre-
sponds to imposing a minimum volume that a micelle can
have; this minimum volume is that of the cube of Figure 1.

We start from an assumed form of the free energy of
an isolated micelle. We assume that this free energy has
three parts: the translational free energy of a molecule of
an ideal gas, a part which is extensive, i.e., proportional
to s, and a part due to the ends of the micelle, which is
independent of s. This is illustrated by Figure 1. The mo-
tivation for this form of the free energy is the idea that the
environment of a surfactant molecule and hence the excess
part of its chemical potential is different in the end of a mi-
celle, where the surface of the micelle forms a hemisphere,
and in the main body of the micelle, where the surface of
the micelle is cylindrical [1,24]. The two ends of a micelle
have a total volume of σ3, see Figure 1. Note that our
cuboid micelles do not have spherical or cylindrical parts.
We merely refer to them as such in order to compare with
theories for the driving force for the formation of micelles
of different shapes. See references [1,24] for a discussion
of the reasons why surfactants prefer to lie in a specific
geometry such as planar, spherical, etc. Treating micelles
of different lengths as different components in an ideal
mixture [23,25] we have, for the Helmholtz free energy A,

βAσ3

V
=

∫ ∞
1

ρ(s) [ln ρ(s)− 1 + µc + (s− 1)µr] ds, (2)

where V is the volume, β = 1/kBT , kB is Boltzmann’s
constant and T is the temperature. Equation (2) omits
the contribution to the free energy of the integrals over
the momenta of the surfactant molecules. As this contri-
bution is a function only of temperature it has no effect on
the phase behaviour. µckBT/σ

3 and µrkBT/σ
3 are the in-

ternal free energies per unit volume of a rod-like micelle,
in the end and middle regions, respectively. By internal
free energy we mean the free energy minus that part due
to the translational degrees of freedom of a micelle’s cen-
tre of mass. The first two terms of equation (2) are the
translational part.

The surfactant is free to form any distribution of sizes
of micelles and so it forms the distribution which min-
imises the Helmholtz free energy at constant surfactant
density η. So, we take a variation of equation (2), impose
the constraint of equation (1), and equate to zero [22,23]

ln ρ(s) + µc − µr + sµr + sλ′ = 0, (3)

where λ′ is a Lagrange multiplier. The last two terms on
the left hand side of equation (3) may be combined, yield-
ing λs, where λ is a new Lagrange multiplier. Physically,

this means that the absolute value of µr does not affect
the behaviour, only the difference µc−µr = Er does. The
difference Er is often referred to as the end-cap energy
[22,23] and is the change in internal free energy when
a rod-like micelle is broken into two. Rearranging equa-
tion (3)

ρ(s) = exp (−Er − λs) , (4)

the number of micelles with size s deceases exponentially
with s.

The free energy of the micelles may now be found by
substituting equation (4) into equation (2). If we define an
intensive Helmholtz free energy a which is proportional to
the free energy per surfactant molecule, we have

a =
βAσ3

ηV
= −λ−

ρ

η
+ µr, (5)

where ρ is the total number density of micelles, i.e., the ze-
roth moment of ρ(s). The last term is a constant and thus
irrelevant. We will neglect it from now on. The number of
aggregates, ρ, can be readily obtained to be ρ = ηλ/(1+λ).
Then equation (5) may be written in terms of just λ as

a = −λ

(
2 + λ

1 + λ

)
. (6)

The average length S = η/ρ, and so in terms of λ it is

S =
1 + λ

λ
· (7)

The micelles are ideal and so the pressure p is just propor-
tional to the number density of micelles. Then the reduced
pressure βpσ3 = ρ. We can also define a reduced intensive
Gibbs free energy g = βG/(ηV ) where G is the Gibbs
free energy; g is proportional to the surfactant’s chemical
potential. Using equation (5) and βpσ3 = ρ, g is given by

g = −λ. (8)

We can determine the Lagrange multiplier λ by substitut-
ing equation (4) into equation (1)

η = e−Er−λ
(

1

λ
+

1

λ2

)
· (9)

If λ is small, which corresponds to the average length of
the micelles being large, the λ dependence of the right
hand side of equation (9) simplifies to λ−2. Then,

λ ' e−Er/2η−1/2, λ� 1. (10)

Also, in this limit ρ ' λη and so equation (6) for the free
energy simplifies to

a ' −2λ, λ� 1. (11)

From equation (10) we see that when λ is small it varies
with density as η−1/2 and therefore g, equation (8), is a
monotonic function of density: there is no phase transition.
It is also worth noting that as the micelles grow, g tends
to zero.
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2.2 Disc-like micelles

Now, we consider a surfactant that forms square disc-like
micelles. We force them to be square for simplicity, al-
though if the formation of a rim is unfavourable, i.e., the
surfactant molecules prefer to lie in a plane rather than
in a cylinder, the discs will tend to be square rather than
rectangular, as the ratio of volume to rim length is largest
for squares. The discs have a constant thickness of σ and
so the number of surfactant molecules in a micelle is pro-
portional to its surface area. The area of a micelle is equal
to sσ2, and so the length of a side is s1/2σ. With this defi-
nition of s and with the same restriction on the minimum
size of a micelle as before, equation (1) still holds.

We now require the form of the free energy of an iso-
lated micelle. A disc is considered to have two parts, see
Figure 1, with different internal free energies [4]. There
is the middle part, with a free energy per unit volume of
µdkBT/σ

3, and a rim of width σ/2, with a free energy per
unit volume of µrkBT/σ

3. This is motivated by the fact
that along the sides of a real disc-like micelle its surface is
cylindrical and away from the rim it is planar [1,24]. The
volume of the rim within σ/2 of the edge is (2s1/2 − 1)σ3

and so increases with s as s1/2.
Treating micelles of different lengths as different com-

ponents in an ideal mixture we have [1,24,25],

βAσ3

V
=

∫ ∞
1

ρ(s) [ln ρ(s)− 1

+(2s1/2 − 1)µr + (s1/2 − 1)2µd

]
ds, (12)

where µdkBT/σ
3 and µrkBT/σ

3 are the internal free en-
ergies per unit volume of micelle, in the rim and middle
regions, respectively. Equation (2) omits the contribution
to the free energy of the integrals over the momenta of the
surfactant molecules.

Again we minimise the Helmholtz free energy at con-
stant η. Taking the variation of equation (12) with re-
spect to ρ(s), imposing the constraint of equation (1), and
equating to zero yields

ln ρ(s) + (2s1/2 − 1)(µr − µd) + sλ = 0, (13)

where we have included a factor of µd in the Lagrange
multiplier λ. Only the difference µr − µd = Ed/2 affects
the behaviour of the micelles. The free energy change on
splitting a disc of size s into two discs of half the size is
2(
√

2−1)s1/2−1 and so increases with s. This is different
from rod-like micelles, the free energy change of splitting a
rod is independent of the rod’s length. As before we have
only one relevant parameter. Rearranging equation (13)

ρ(s) = exp
[
−Ed(s

1/2 − 1/2)− λs
]
, (14)

which is the equivalent for disc-like micelles to equation (4)
for rod-like micelles. For discs the exponential contains a
term in s1/2 as well as a linear term [1,24]. The free en-
ergy of the micelles may now be found by substituting

equation (14) into equation (12). This results in an equa-
tion identical to equation (5) except for the replacement
of µr with µd. We neglect the µd term from now on. As
our system is ideal the pressure is again equal to ρ, and so
the Gibbs free energy is again given by equation (8). The
average size S is again given by S = η/ρ.

Substituting equation (14) into equation (1) yields an
equation for λ

η = eEd/2
∫ ∞

1

exp
[
−Eds

1/2 − λs
]
sds, (15)

which can be solved numerically for λ. However, equa-
tion (15) does not possess solutions for all values of η and
Ed. For the integral to be finite we require λ ≥ 0, only
then does the integrand tend to zero as s tends to infinity.
But if Ed > 0 the integrand decays with s even if λ = 0
and this imposes a limit on the value of the right hand
side of equation (15). Thus, for Ed > 0 there is a maxi-
mum density ηlim, beyond which a phase of finite disc-like
micelles is unstable. For any positive Ed as we increase η,
λ decreases until at ηlim it becomes zero.

The behaviour of the surfactant above ηlim is diffi-
cult to determine. However, if we consider a finite system
then a negative λ is allowed. Then, for a finite but large
system with a negative λ we have ρ(s) which is strongly
peaked at values of s near the maximum possible on the
finite system. If we then allow the finite system to become
larger then the size of the micelles will grow with the sys-
tem. This is consistent with the suggestion of Israelachvili
et al. [24] that the surfactant forms infinitely large discs
(in the thermodynamic limit). If we assume that the ag-
gregates are infinitely large then the free energy per unit
volume, equation (12), tends to ηµd. As we let the size of
the micelles go to infinity, the density ρ → 0 and so the
ideal mixing part of the free energy (12) becomes zero. Of
the internal parts of the free energy only the part propor-
tional to s survives. The Gibbs free energy g tends to µd
and the pressure to zero. As all three are independent of
density it seems that the density of a phase of infinitely
large discs is undetermined. We will see later that the
presence of interactions between the discs removes this
problem.

3 Interaction free energy of mixtures

One of the nice properties of this simplified model is that
the contribution to the free energy of the hard core in-
teractions between aggregates can be included using the
recently proposed fundamental measure free energy func-
tional for an arbitrary mixture of parallel hard paral-
lelepipeds. In brief, fundamental measure theory [13] is
a scaled-particle-like theory for inhomogeneous mixtures
of hard convex fluids. To date it has only been developed
for hard spheres [13,14] and parallel hard parallelepipeds
[11,12]. The theory is rather involved and so we cannot
give a full account of the details. For this purpose the
reader is referred to references [11,12]. Nevertheless the fi-
nal result of the theory can be summarized in an extraordi-
narily simple principle, namely that the excess Helmholtz
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free energy per unit volume of a mixture of hard paral-
lelepipeds, Φex ≡ βAex/V , can be readily derived from
that of a 0-dimensional equivalent system (a cavity which
can hold one particle at most), which can be written as

Φex0 ≡ βA
ex,0D = n3 + (1− n3) ln(1− n3), (16)

where n3 is defined as

n3 =
∑
i

ρiσ
x
i σ

y
i σ

z
i . (17)

In this definition, ρi stands for the density of the ith com-
ponent of the mixture, and σαi , α = x, y, z, labels the
α-axis edge length for that particular component. Then
the excess free energy per unit volume is given by

Φex ≡ βAex/V = DxDyDzΦ
ex
0 , (18)

where Dα denotes the differential operator

Dα ≡
∑
i

∂

∂σαi
· (19)

Obtaining the final expression is straightforward by using
the simple operational rules

Dαn3 = nα2 ,

Dαn
β
2 = ταβγn

γ
1 ,

Dαn
β
1 = δαβn0,

where n0 ≡
∑
i ρi and nαk (k = 1, 2, α = x, y, z) denotes

the components of the vectors

n2 ≡
∑
i

ρi(σ
y
i σ

z
i , σ

x
i σ

z
i , σ

x
i σ

y
i ), (20)

n1 ≡
∑
i

ρi(σ
x
i , σ

y
i , σ

z
i ), (21)

ταβγ is a 3-rank tensor which equals 1 if all the three
indices are different and 0 otherwise, and finally δαβ is
the Kronecker symbol.

In terms of the above definitions Φex can be expressed
as

Φex = −n0 ln(1− n3) +
n1 · n2

1− n3
+

nx2n
y
2n

z
2

(1− n3)2
· (22)

The pressure is also easily derived from this expression
[12] by taking the derivative with respect to n3. It is then
given by

βp =
n0

1− n3
+

n1 · n2

(1− n3)2
+

2nx2n
y
2n

z
2

(1− n3)3
· (23)

If we are to deal with a mixture with a continuous dis-
tribution ρ(s) of components, as in the present case, ρi
must be replaced by ρ(s) and the corresponding sum over
components by an integral over s.

Equation (22) has already been used to describe
this system [17]. It was derived using the y3 expansion

[15,16]. Simply, this involves expressing the equation of
state as a cubic polynomial in the variable y = n3/(1−n3).
The coefficients of the polynomial are then found by re-
quiring that that the virial expansion of the equation of
state is exact up to third order in n3. Scaled particle the-
ory also yields a y3-expansion [15,18,26], but the exact-
ness up to third order in n3 is not guaranteed. The y3-
expansion has already been used to study orientational
order in a mixture of parallelepipeds aligned along the
three coordinate axes [17]. In the scaled particle version
it has also been employed to study models of aggregating
cubes and parallelepipeds interacting via a hard core plus
a soft repulsive potential [2,18,26]. In both cases obtaining
Φex requires cumbersome calculations of virial coefficients
[16,26]. The fundamental measure formalism is far simpler
because it avoids the direct evaluation of those coefficients.
It has another advantage: it can be easily generalised to in-
clude inhomogeneous phases at the same level of accuracy
[11,12]. The study of inhomogeneous phases, however, is
left for future research.

Let us now apply this general form to the two systems
we want to describe.

3.1 Rods

In the case of rods the edge lengths are σxs = σ, σys = σ,
σzs = σs; therefore, according to the definitions introduced
in Section 2,

n3 = σ3η,

n2 = σ2(η, η, ρ),

n1 = σ(ρ, ρ, η),

n0 = ρ. (24)

Then

σ3Φex = ρψ(η), (25)

where

ψ(η) ≡ − ln(1− η) + 3
η

1− η
+

(
η

1− η

)2

, (26)

and

βpσ3 = ρ
1 + η

(1− η)3
· (27)

3.2 Discs

In this case the edge lengths are σxs = σs1/2, σys = σs1/2,
σzs = σ, which leads to

n3 = σ3η,

n2 = σ2(ξ, ξ, η),

n1 = σ(ξ, ξ, ρ),

n0 = ρ, (28)
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where we have introduced the average edge length of the
discs, defined by

ξ ≡

∫ ∞
1

ρ(s)s1/2ds. (29)

Now the excess free energy per unit volume is

σ3Φex = ρψ(η) + ξ2ζ(η), (30)

where

ψ(η) ≡ − ln(1− η) +
η

1− η
, ζ(η) ≡

2− η

(1− η)2
, (31)

and the pressure

βpσ3 =
ρ

(1− η)2
+

2ξ2

(1− η)3
· (32)

4 Micelles in the fluid phase

As in Section 2, to obtain the equilibrium density distri-
bution ρ(s) we have to minimise the full free energy per
unit volume with respect to the function ρ(s), with the
constraint of equation (1). As usual, let us consider the
two cases separately.

4.1 Rods

The equation for ρ(s) in this case turns out to be

ln ρ(s) +Er + ψ(η) + sλ = 0. (33)

Thus

ρ(s) = exp(−Er − ψ(η)− λs). (34)

The parameter λ is determined by imposing (1), which in
this case amounts to solving the equation

e−λ
(

1

λ
+

1

λ2

)
= η eEr+ψ(η). (35)

Equations (34, 35) are similar to (4, 9) if we replace Er by
Er+ψ(η); the excess free energy per rod ψ acts as an addi-
tional end-cap energy. As we can see from (26), ψ(η) is al-
ways positive and grows quickly to infinity as η approaches
unity. The effect of the interactions manifests itself very
clearly, breaking a rod into pieces increases the number
of rods and from equation (25) the excess free energy Φex

is proportional to the number of rods. So, at high con-
centrations of surfactant where the excess free energy per
rod is large the excess free energy cost of breaking a rod
is large. This mechanism enhances the aggregation pro-
cess dramatically, and as we will show in the next section,
it eventually yields a phase transition which is missing
in the ideal system. Notice in passing that at sufficiently
high density, the interactions always dominate, regardless
of the value of Er. So, even if the dilute surfactant forms
only compact aggregates, as the concentration rises the
interaction forces the formation of large micelles.

Once we have determined λ, and therefore ρ(s), we can
determine the full free energy. In terms of λ it is given by
the same equation as for ideal micelles, equation (6) and
in the λ� 1 limit equation (11).

4.2 Discs

For discs the minimisation of the full free energy leads to

ln ρ(s) + [Ed + 2ξζ(η)]s1/2 + ψ(η)−
Ed

2
+ sλ = 0. (36)

We can introduce the shorthands ψ ≡ ψ(η) − Ed/2 and
F ≡ Ed + 2ξζ(η) and then write down the density distri-
bution as

ρ(s) = exp
(
−ψ − Fs1/2 − λs

)
. (37)

The equations which now determine λ are

eψη = e−F−λ
{

1

λ
−

F

2λ2

+[F 2 + 4λ− F (F 2 + 6λ)∆]
1

4λ3

}
, (38)

eψξ = e−F−λ
{

1

λ
− [F − (F 2 + 2λ)∆]

1

2λ2

}
, (39)

where

∆ ≡

√
π

4λ
eγ

2

erfc γ, γ ≡
F + 2λ

2
√
λ
· (40)

The equation for ρ is now

eψρ = e−F−λ
1

λ
(1− F∆). (41)

Equations (38, 39) can be used simultaneously to deter-
mine the value of λ for every value of η and Ed (notice
that ξ can be eliminated in terms of F to leave only two
unknowns). Once we have λ the full free energy per unit
volume is given by

Φ = −ρ− λη − ξ2ζ(η). (42)

5 Micelles at high density

We examine the free energy of rod-like micelles at high
density and find that it is a nonconvex function of v = η−1

and so the micelles cannot form a stable high density
phase at a density less than close packing. Strong cou-
pling between micellar growth and the excess part of the
free energy causes the micelles to collapse to a phase of
infinitely long rodlike micelles at close packing. This is
shown in detail for rod-like micelles, as it is possible to de-
rive the density dependence of a analytically. For disc-like
micelles the situation is not as clear. For Ed not too small
the solid phase cannot be stable purely due to the ideal
part of the interactions, as we saw in Section 2. It seems
highly likely that intermicellar interactions act to desta-
bilise dense phases of small discs but a negative enough
Ed will overwhelm this tendency and stabilise such a dense
phase. We are unable to estimate how negative Ed must
be in order for an ordered phase of small discs to be stable.
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5.1 Rod-like micelles

At high density the micelles presumably form a colum-
nar phase. Polydispersity in the length of the micelles
hinders the formation of long range order along the
z-axis [27–30]. The micelles form columns parallel to the
z-axis, which pack into a square lattice. Due to their poly-
dispersity, there is only long range order perpendicular to
the columns. Along a column the successive micelles will
be of different lengths and different columns will have mi-
celles of different lengths, and so the z coordinate of the
centres of mass of the micelles will not be correlated along
the columns. We restrict ourselves to deriving just the
density dependence of ψ of the columnar phase as the free
energy for the micelles we will find is concave not convex
and so does not correspond to a stable phase [31]. Thus,
the result of this section is that the micelles are unstable
near close packing. Away from close packing a columnar
or solid phase is possible if the coupling between growth
and the excess free energy is suppressed by a large nega-
tive Er. We estimate that the columnar phase is unstable
at densities below close packing for Er & −4.

In order to examine dense rod-like micelles we require
the excess free energy of a mixture of parallel hard rods in
the columnar phase. We are considering a 2-dimensional
solid packing (in the xy-plane) of 1-dimensional fluids (the
columnar phase is liquid-like along the z-axis), so the ex-
cess free energy per particle has two contributions, one
which will be estimated by 2D cell theory, and a second
one which is the free energy of a 1D fluid. A cell theory is a
simple theory of a solid phase, which is particularly accu-
rate near close packing. Cell theories work on the assump-
tion that each micelle is in a cage (here a 2-dimensional
cage) formed by the surrounding micelles and the only
motion available to it is “rattling” in the cage formed by
these neighbours [32,33]. They have been shown to be
rather accurate for hard spheres [34].

The area in the xy-plane available to the centre of mass
of a micelle is its 2-dimensional free “volume” vf . Within
cell theory, the contribution to the excess free energy ψ
from motion in the xy-plane is ψ = − ln(vf/v2D), where

η2D ≡ v−1
2D is the area fraction occupied by the micelles

(in any xy-plane), which is equal to the free volume in the
absence of interactions. In its simplest form [32,33] the
free volume is just

vf ∼ (v
1/2
2D − v

1/2
cp,2D)2σ2, (43)

where vcp,2D = η−1
cp,2D = 1. This form may be derived for a

solid of hard squares by considering a (square) solid with

lattice constant l = σv
1/2
2D . The distance a cube can move

in any direction is then ∼ l − σ = (v
1/2
2D − 1)σ and so the

cube may move in the area vf of equation (43).
As to the 1-dimensional fluid contribution to the excess

free energy ψ, it is simply given by [35]− ln(1−η1D), where
η1D is the length fraction occupied by the micelles within
one column. Notice that η2Dη1D = η, the volume fraction
or reduced amount of surfactant per unit volume (the unit
volume is that of a cubic micelle).

The excess free energy per micelle ψ ∼ −2 ln(1−η1/2
2D )−

ln(1 − η1D), so we can obtain the equilibrium densities
η2D and η1D by minimising ψ with respect to both while
keeping η2Dη1D = η constant (notice that the ideal free

energy only depends on η). The result is simply η
1/2
2D =

η1D = η1/3, and therefore

ψ ∼ −3 ln(1− η1/3) = −3 ln(1− v−1/3), (44)

where v is the reduced volume per unit amount of surfac-
tant. We can now consider a columnar phase of rod-like
micelles with the ψ of equation (44). As ψ will always be
large we expect λ to be very small and so, from equa-
tion (11),

a ' −2λ ∼ −2

(
1− v−1/3

)3/2
eEr/2

, λ� 1. (45)

(This same derivation has already been used to account for
the columnar phase of a similar aggregation model [18].)
Remarkably, the free energy of equation (45) is a concave
not a convex function of volume. The free energy of hard
particles diverges as the volume fraction approaches close
packing. Here the excess free energy per micelle, equa-
tion (44), diverges but the number density of micelles
tends to 0 more rapidly and so the free energy tends to 0
not infinity. As the Helmholtz free energy is not a convex
function of volume the columnar phase is not stable at
densities below close packing [31].

The above all holds provided that aggregation is not
too strongly suppressed. ψ is quite large in the solid phase,
even at a volume fraction of 0.5, ψ = 4.73, equation (44).
As ψ tends to encourage aggregation there will be signif-
icant aggregation in the columnar phase even if Er = 0.
However, in the Er → −∞ limit our micelles cannot ag-
gregate and we are left with a fluid of hard cubes. A fluid
of parallel hard cubes is known to freeze at relatively low
packing fractions. Fundamental measure theory predicts
a second order freezing at [11,12] η ≈ 0.3, and simula-
tions [36,37] are compatible with a second order freezing
at η ≈ 0.5. Polydispersity will shift this transition up in
density a little; anyway if Er is negative enough the coex-
isting phase will not be close-packed. When we calculate
the phase diagram of our micelles we will assume that the
solid is close packed which is incorrect for Er negative and
large. We have estimated how negative an Er is required
to see a columnar or solid phase with a density less than
1 by performing calculations without the assumption that
λ� 1. The curve of a as a function of v develops a convex
part as Er is made less than approximately −4. Thus, we
expect a non-close packed dense phase to appear near this
value of Er.

5.2 Disc-like micelles

Estimating the stability of a solid or liquid crystalline
phase for disc-like micelles is more difficult than for rod-
like micelles. The equations for λ, equations (38, 39),
are more complicated and it is difficult to estimate the
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contribution of the excess free energy to the free energy
cost of splitting a disc into smaller ones. Within fundamen-
tal measure theory, this cost contains a part independent
of the size of the disc and a part dependent on the length
of the rim of the disc. We are unable to say whether this
is also true in a solid or smectic phase. However, it seems
highly likely that the change in the excess free energy on
splitting a disc into smaller ones will be positive and will
increase as the density increases. Therefore, if Ed is also
positive then there is a density at which λ = 0 and then
beyond this density a phase of small discs is not possible.
Then there will be little or no region of stability for the
solid phase. For negative Ed the situation is more delicate,
if the Ed is sufficiently negative and the density sufficiently
low, the contribution of the excess part of the free energy
to the free energy change on splitting a disc may be out-
weighed by the negative free energy change from Ed. Then
a solid or other ordered phase of small discs may be the
equilibrium phase for a range of densities. We will only
present results for Ed ≥ 0, as we are not confident of the
transition not being preempted for Ed < 0.

6 Phase behaviour

In a single component system the densities of a pair of
coexisting phases are usually found by equating the pres-
sures and chemical potentials in each phase. However, here
one of the coexisting phases is at close packing, i.e., at the
maximum possible density. As this phase is at the limit of
the accessible phase space, the derivative of the free en-
ergy with respect to the volume, which is the negative of
the pressure, is not well defined. So, in order to determine
the density of the fluid phase which coexists with the close
packed phase we have to explicitly consider the thermo-
dynamic requirement that the Helmholtz free energy of
a fixed number of molecules be a convex function of vol-
ume [31]. In Figure 2 the Helmholtz free energy per unit
amount of surfactant (over kBT ) a is plotted as a function
of v, for rodlike micelles with Er = 0. The situation for
rods and discs at all values of Er and Ed, respectively,
is qualitatively the same; rodlike micelles with Er = 0
merely provides a convenient example. The free energy as
a function of volume must be convex and so it follows the
solid curve for v > v′, see Figure 2, but follows the dashed
line for vcp < v < v′. For volumes between vcp and v′, two
phases with densities v−1

cp and v′−1 coexist. From Figure 2
we see that the following equation must be satisfied

a(vcp) = a(v′) + (vcp − v
′)

(
∂a

∂v

)
v=v′

, (46)

where we have indicated the v but not the Er dependence
of a. Using a(vcp) = 0, the reduced pressure p = −∂a/∂v,
the Gibbs free energy per unit amount of surfactant g =
a+ pv, and vcp = 1, equation (46) becomes

0 = g(v′)− p(v′) (47)

which is the equation for coexistence with the phase at
close packing. At the density of the fluid phase which

1 2 3 4 5 6 7
v

−2.0

−1.5

−1.0

−0.5

0.0

a

v’

Fig. 2. The Helmholtz free energy per particle over kBT , a, as
a function of reduced volume per particle v = η−1. The solid
curve is obtained using the FMT expression for the excess free
energy of a fluid phase mixture. The dashed line connects the
two coexisting volumes. The free energy at equilibrium follows
the dashed line from vcp = 1 to v′ and thereafter follows the
solid curve. At v′ the curve and the dashed line have the same
tangent.
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Fig. 3. The pressure p, and Gibbs free energy g, as a function
of the density η, for rod-like micelles with an excess free energy
derived from fundamental measure theory; Er = 0. The density
of the phase which coexists with the close packed phase is given
by the crossing of the p and g curves. Higher densities lie within
the coexistence region. The inset shows the average length of
the micelles S as a function of density.

coexists with the close-packed phase the p and g curves
cross. Now that we have an equation which can be solved
to find coexistence, we can go on to determine the phase
behaviour of our rodlike and disc-like micelles.

6.1 Rod-like micelles

The fluid phase of rod-like micelles is unstable at high
densities: as shown in Figure 3 the pressure becomes a de-
creasing function of density which corresponds to a neg-
ative compressibility. In the previous section we saw that
the columnar phase of the micelles appears to be unstable.
This only leaves a transition to the maximum possible
density, close packing. The pressure and fluid density at
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Fig. 4. The pressure pt and density ηt at the transition from
the fluid to the close packed phase, in rod-like micelles, as a
function of Er. The inset shows the length of the micelles at
the transition St.

the transition from the fluid to the close-packed phase are
plotted as a function of Er in Figure 4. As expected, in-
creasing Er decreases both the pressure and density at
the transition. The pressure decreases much faster than
the density as the size of the micelles at the transition in-
creases with increasing Er. For large Er the transition is
from a low density fluid phase of long micelles.

The fluid–close-packed phase transition is only pos-
sible due to the aggregation, in nonaggregating systems
the free energy diverges as close packing is approached
and so a divergent pressure is required to achieve these
densities. In contrast, at close packing the free energy of
equation (45), a → 0; as close packing is approached the
excess free energy per micelle ψ diverges which drives the
number density of micelles to zero sufficiently rapidly that
the free energy per unit volume and hence a tend to zero.

As Er is reduced both columnar and solid phases will
appear: in the Er → −∞ limit we recover hard cubes
which form a solid phase and in Section 5 we found that
for Er . −4 the columnar phase was stable for a range
of densities. Having determined in Section 5 that neither
of these phases is stable when the aggregation is strong
we do not consider them further. The addition of a soft
repulsive core [2,18,19] suppresses the collapse to close
packing, and there is then a region of densities for which
the columnar phase is stable.

6.2 Disc-like micelles

The interactions between the disc-like micelles contribute
to the free energy cost of splitting a micelle and so en-
courages growth of the micelles. This is seen for Ed = 0
in Figure 5. Also, if this cost becomes too great there
are no solutions to equations (38, 39) for λ and the fluid
phase cannot be stable. This is very similar to the case of
ideal disc-like micelles but the free energy cost of splitting
a micelle into smaller ones comes not from an internal
rearrangement of the surfactant within the micelles but
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Fig. 5. The pressure p, and Gibbs free energy g, as a function
of the density η, for disc-like micelles with an excess free energy
derived from fundamental measure theory; Ed = 0. The density
of the phase which coexists with the close packed phase is given
by the crossing of the p and g curves. Higher densities lie within
the coexistence region. The inset shows the average size of the
micelles S as a function of density.

from intermicellar interactions. In Figure 5 the pressure
and Gibbs free energy are plotted up to the point where
λ = 0.

In Section 2 we were unable to determine the phase
behaviour of noninteracting disc-like micelles for densities
at which equation (15) did not possess a solution. Inter-
actions resolve this problem: at the density which satis-
fies equation (47), which is always at a density at which
equations (38, 39) can be solved, the fluid phase of small
discs transforms to a close packed phase of infinitely large
discs. It will do so unless an intermediate, ordered, phase
is stable and of lower free energy. If Ed is large and posi-
tive this is not possible. However, if Ed is negative such a
phase may well be present for reasons similar to those of
the hard-rod case; thus we only show results for Ed ≥ 0.
In Figure 6 we show the pressure and density at the tran-
sition as a function of Ed. Increasing Ed decreases both
the pressure and density at the transition, this is similar
to the behaviour of rod-like micelles in Figure 4. However,
the size of the disc-like micelles at the transition decreases
as Ed increases. This is in contrast to the behaviour of rod-
like micelles, where increasing Er increases the size of the
micelles at the transition. For large Ed the disc-like mi-
celles are almost cubic at the low transition density. The
disc-like micelles hardly grow at all before collapsing to
form infinite discs.

The instability of finite discs has been known for some
time [24] but to our knowledge this is the first themo-
dynamically consistent description of the behaviour when
the phase of finite discs becomes unstable. This transi-
tion from small micelles to infinite lamellae is common,
see references [4,20]. Taylor and Herzfeld [2,18,19] stud-
ied disclike aggregates which in addition to their hard core
had a soft repulsion. These formed a smectic phase of
finite discs. The qualitative difference in behaviour is re-
markable; it is not clear to us why there is this difference.
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Fig. 6. The pressure pt and density ηt at the transition from
the fluid to the close packed phase, in disc-like micelles, as a
function of Ed. The inset shows the size of the micelles at the
transition St.

7 Discussion

We have studied a very simple model of aggregating hard
particles. Hard particles which cannot aggregate have the
general phase behaviour: a fluid phase for volume frac-
tions less than 0.4–0.5 and for higher volume fractions
a solid phase and/or translationally ordered liquid crys-
talline phases. If the phase transition from the fluid phase
to an ordered phase is first order then the density jump
is at most ∼ 10%. In the ordered phase the pressure rises
steeply as the density is increased. In contrast our ag-
gregating hard particles undergo a strongly first order
transition from a relatively dilute fluid phase to a close-
packed, ordered phase. This is true so long as aggrega-
tion is not suppressed by too negative an Er or Ed. As
the density of hard particles is increased their excess free
energy increases, and indeed diverges as close packing is
approached. Aggregation reduces the number of free parti-
cles and hence reduces the total excess free energy. Indeed
at close packing the size of the particles diverges and this
reduces the total excess free energy from infinity to zero.

Our two models were made as simple as possible
in order to allow the clearest possible demonstration of
an aggregation driven transition. Both types of micelles
were modelled by rigid, perfectly aligned particles. This is
clearly unrealistic, the models are nematic at all densities;
there is no isotropic–nematic transition. If the micelles
are allowed to rotate then there are two different scenar-
ios. For large positive values of Er and for Ed near 0, the
micelles in the fluid phase are quite large before the transi-
tion to the close-packed phase. Then the fluid phase which
coexists with the close-packed phase will be nematic. At
lower densities there is an isotropic–nematic transition,
which our model misses. The second scenario is for small
Er or large positive Ed, then the micelles are small and
so the transition will be directly from the isotropic phase
to the close packed phase.

The ordered phase is only close packed because our
micelles are completely rigid. Flexibility introduces an

additional term which is extensive in their length, for large
micelles [38,39]. Therefore, aggregation does not reduce its
contribution to the excess free energy. The contribution of
flexibility to the free energy, diverges as close packing is
approached and so flexible micelles form dense but not
close packed ordered phases. As a consequence of the den-
sity being less than close packing, the length S of flexible
rod-like micelles will never be infinite, although it may be
very large [21]. The addition of a soft repulsive potential
has a very similar effect [2,18]. In contrast, above their
transition, disc-like micelles are always infinitely large, as
the cost of breaking a disc into smaller ones scales with
the size as s1/2.

Even without interactions there is an upper limit, for
Ed > 0, on the density of a phase of disc-like micelles.
Above this density, equation (15) cannot be solved. How-
ever, without interactions it is not possible to determine
what happens to the discs at densities for which equa-
tion (15) has no solutions. By incorporating interactions
we have been able to show, for the first time for simple
model micelles, the transition from finite micelles to a
lamellar phase. This transition is typical for surfactants
which form disclike aggregates. The effect of interactions
is twofold: they impose an upper limit on the volume frac-
tion, and without interactions the equation for coexis-
tence, equation (47), can never be satisfied. The second
role of interactions is unexpected, however low the den-
sity of the fluid phase at coexistence a contribution from
the interactions is required to satisfy equation (47). In
contrast, ideal rod-like micelles show no sign of a phase
transition, equation (9) can be solved for any values of η
and Er. As the density increases, the micelles grow contin-
uously. A transition is only found if the micelles interact,
it is driven by a coupling between the average size of the
micelles and the total excess free energy.

The phase diagrams of many surfactant solutions are
known, see references [2,5,6,23]. At high volume frac-
tions, ∼50%, surfactants typically form both columnar
and lamellar phases and may also form other more com-
plicated phases. However, by engineering of the surfactant
either the lamellar [8] or the columnar phase [9] may be
eliminated. References [8,9] are the experimental systems
which are most like our rod- and disc-like micelles, respec-
tively. Thus our simple model micelles reproduce some of
the phenomenology of the phase behaviour of real micelles.
In both our model micelles and in many real surfactant so-
lutions the formation of large anisotropic micelles is driven
by intermicellar interactions.

A closely related model is that of aggregating hard
spheres, and the most common theory for them is the
thermodynamic perturbation theory (TPT1) of Wertheim
[40–44]. However, TPT1 does not predict a phase transi-
tion driven by coupling between interactions and aggre-
gation. This is because it is a perturbation theory and
implicitly assumes that a pair of aggregates of sizes n and
m particles, interact via n ×m particle–particle interac-
tions [45]. TPT1 is rather accurate for flexible chains of
hard spheres, as has been shown by extensive comparison
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with computer simulation [43,46]. However, the interac-
tion between a pair of aligned rods is very different from a
sum of the interactions between cubes, which couples the
interactions with the aggregation and makes TPT1 a poor
approximation.
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eral de Enseñanza Superior (D.G.E.S.) for financial support
by the travelling grant no. PR95–558 and the research project
no. PB96–0119. RPS acknowledges The Royal Society for the
award of a fellowship. We would like to thank the FOM insti-
tute AMOLF for its hospitality. The work of the FOM Institute
is part of the research program of FOM and is made possible
by financial support from the Netherlands Organisation for
Scientific Research (NWO).

References

1. J.N. Israelachvili, Intermolecular and Surface Forces (Aca-
demic Press, London, 1992).

2. M.P. Taylor, J. Herzfeld, J. Phys.-Cond. 5, 2651 (1993).
3. N. Boden, et al., J. Chem. Phys. 103, 5712 (1995).
4. Y. Bohbot, A. Ben-Shaul, R. Granek, W.M. Gelbart, J.

Chem. Phys. 103, 8764 (1995).
5. T. Odijk, Curr. Opinion Colloid Interface Sci. 1, 337

(1996).
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Phys.-Cond. 8, L577 (1996); Phys. Rev. E 55, 4245 (1997).
14. P. Tarazona, Y. Rosenfeld, Phys. Rev. E 55, R4873 (1997).
15. B. Barboy, W.M. Gelbart, J. Chem. Phys. 71, 3053 (1979).
16. B. Barboy, W.M. Gelbart, J. Stat. Phys. 22, 685 (1980);

ibid., 22, 709 (1980).

17. B.G. Moore, W.E. McMullen, J. Phys. Chem. 96, 3374
(1992); J. Chem. Phys. 97, 9267 (1992).

18. M.P. Taylor, J. Herzfeld, Langmuir 6, 911 (1990).
19. M.P. Taylor, J. Herzfeld, Phys. Rev. A 44, 3742 (1991).
20. Micelles, Membranes, Microemulsions and Monolayers,

edited by W.M. Gelbart, A. Ben-Shaul, D. Roux (Springer-
Verlag, New York, 1994).

21. P. van der Schoot, J. Chem. Phys. 104, 1130 (1995).
22. P. van der Schoot, M.E. Cates, Langmuir 10, 670 (1994).
23. M.E. Cates, S.J. Candau, J. Phys.-Cond. 2, 6869 (1990).
24. J.N. Israelachvili, D.J. Mitchel, B.W. Ninham, J. Chem.

Soc. Faraday Trans II 72, 1525 (1976).
25. K. Olaussen, G. Stell, J. Stat. Phys. 62, 221 (1991).
26. R. Hentschke, J. Herzfeld, Phys. Rev. A 43, 7019 (1991).
27. T.J. Sluckin, Liquid Crystals 6, 111 (1989).
28. T. Koda, H. Kimura, J. Phys. Soc. Jpn 63, 984 (1994).
29. S.-M. Cui, Z.Y. Chen, Phys. Rev. E 50, 3747 (1994).
30. R.P. Sear, G. Jackson, J. Chem. Phys. 102, 2622 (1995).
31. H.B. Callen, Thermodynamics and an Introduction to

Thermostatistics, 2nd ed. (John Wiley, New York, 1985).
32. T.L. Hill, Introduction to Statistical Thermodynamics

(Addison-Wesley, Reading, Massachusetts, 1960).
33. R.J. Buehler, R.H. Wentorf, J.O. Hirschfelder, C. Curtiss,

J. Chem. Phys. 19, 61 (1951).
34. A.R. Denton, N.W. Ashcroft, W.A. Curtin, Phys. Rev. E

51, 65 (1995).
35. J.K. Percus, J. Stat. Phys. 15, 505 (1976).
36. F. van Swol, L.V. Woodcock, Mol. Sim. 1, 95 (1987).
37. E.A. Jagla, Phys. Rev. E 58, 4701 (1998).
38. W. Helfrich, Z. Naturforsch. 33a, 305 (1978).
39. T. Odijk, Macromol. 19, 2313 (1986).
40. E.A. Müller, K.E. Gubbins, Equations of State for Flu-

ids and Mixtures edited by J.V. Sengers et al., (Blackwell
Scientific, 1996).

41. M.S. Wertheim, J. Stat. Phys. 42, 459 (1986); ibid. 42,
477 (1986).

42. Y. Zhou, G. Stell, J. Chem. Phys. 96, 1504 (1992); ibid.
96, 1507 (1992).

43. G. Jackson, W.G. Chapman, K.E. Gubbins, Mol. Phys.
65, 1 (1988).

44. R.P. Sear, G. Jackson, Proceedings of the International
School of Physics “Enrico Fermi” Course CXXIX, edited
by M. Baus et al. (Kluwer, Dordrecht, 1995).

45. E. Kierlik, M.L. Rosinberg, J. Chem. Phys. 99, 3950
(1993).

46. D. Ghonasgi, W.G. Chapman, Mol. Phys. 183, 145 (1994).


