the evolutionary dynamics of genes

jose cuesta

Disentangling the effects of selection and loss bias on gene dynamics

Jaime Iranzo ${ }^{\text {a }}$, José A. Cuesta ${ }^{\text {b,c,d }}$, Susanna Manrubia ${ }^{e}$, Mikhail I. Katsnelson ${ }^{f}$, and Eugene V. Koonin ${ }^{\text {a, } 1}$ ----
${ }^{\text {a }}$ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; ${ }^{\text {b }}$ Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés (Madrid), Spain; ${ }^{\text {CIInstitute for Biocomputation and }}$ Physics of Complex Systems, Universidad de Zaragoza, 50018 Zaragoza, Spain; ${ }^{\text {I Institute of Financial Big Data, Universidad Carlos III de Madrid-Banco de }}$ Santander, 28903 Getafe (Madrid), Spain, éGrupo Interdisciplinar de Sistemas Complejos, National Biotechnology Centre, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and ${ }^{\text {Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands }}$

Contributed by Eugene V. Koonin, June 1, 2017 (sent for review March 24, 2017; reviewed by Sergei Maslov and Dennis Vitkup)

huge variation of genome sizes

selection vs bias to gene loss...

- Free-living Facultative Obligate

Kuo, Moran \& Ochman, Genome Res. (2009)

but it's complicated because...

- selection can promote gene deletions

25\% of large random deletions in Salmonella enterica are beneficial in one or more growth conditions
... but it's complicated because...

- selection can promote gene deletions
- horizontal gene transfer (HGT) contribute to gene maintenance

parasites persist through increased HGT despite purifying selection

but it's complicated because...

- selection can promote gene deletions
- horizontal gene transfer (HGT) contribute to gene maintenance
- abundance of genetic parasites correlates positively with genome size

prophages are more abundant in larger genomes (supposedly subject to stronger selection)

Touchon et al., ISME J. (2016)
what is the interplay between selection, gene loss, HGT, etc., in a genome?

processes to model

neutral processes
differential growth / selection

duplication-loss-transfer-selection model

in a genome with k copies:

n_{k} : number of genomes with k copies

$$
n_{k}(t)=\mathrm{e}^{g t} m_{k}(t)
$$

$$
\begin{aligned}
& m_{k<0}(t)=0 \quad \alpha=d-s+l \\
& \frac{d m_{k}}{d t}=-(h+k \alpha) m_{k}+(k+1) \operatorname{lm}_{k+1}+[(k-1) d+h] m_{k-1}
\end{aligned}
$$

dimensionless equations

scale all rates with loss rate (I): scale time with r^{-1} : equivalently:

$$
d \rightarrow d / l, h \rightarrow h / l, s \rightarrow s / l, a \rightarrow a / l
$$

$t \rightarrow \mid t$
$I=1$

$$
\frac{d m_{k}}{d t}=-(h+k \alpha) m_{k}+(k+1) m_{k+1}+[(k-1) d+h] m_{k-1} \quad k \in \mathbb{Z}
$$

van Kampen's shift operators:

$$
\mathbf{E} f_{k}=f_{k+1} \quad \mathbf{E}^{-1} f_{k}=f_{k-1} \quad k \in \mathbb{Z}
$$

$$
\frac{d m_{k}}{d t}=(\mathbf{E}-1+s) k m_{k}+\left(\mathbf{E}^{-1}-1\right)(d k+h) m_{k}
$$

(1) $\left\langle\mathbf{E}^{\mp 1} f_{k}, g_{k}\right\rangle=\left\langle f_{k}, \mathbf{E}^{ \pm 1} g_{k}\right\rangle \quad\left\langle f_{k}, g_{k}\right\rangle=\sum_{k \in \mathbb{Z}} f_{k}^{*} g_{k}$
(2) $\mathbf{E}^{ \pm 1} z^{k}=z^{ \pm 1} z^{k} \quad z \in \mathbb{C}$
(3) $\left(z \frac{\partial}{\partial z}\right) z^{k}=k z^{k}$

generating function

$$
G(z, t) \equiv\left\langle m_{k}(t), z^{k}\right\rangle=\sum_{k=0}^{\infty} m_{k}(t) z^{k}
$$

$$
\left\langle\frac{d m_{k}}{d t}, z^{k}\right\rangle=\frac{\partial G}{\partial t}
$$

$$
\left\langle(\mathbf{E}-1+s) k m_{k}, z^{k}\right\rangle=\left(z^{-1}-1+s\right) z \frac{\partial}{\partial z}\left\langle m_{k}, z^{k}\right\rangle=[1-(s-1) z] \frac{\partial G}{\partial z}
$$

$$
\left\langle\left(\mathbf{E}^{-1}-1\right)(d k+h) m_{k}, z^{k}\right\rangle=(z-1)\left(d z \frac{\partial}{\partial z}+h\right)\left\langle m_{k}, z^{k}\right\rangle=d z(z-1) \frac{\partial G}{\partial z}+h(z-1) G
$$

$$
\frac{\partial G}{\partial t}=\left(d z^{2}-\alpha z+1\right) \frac{\partial G}{\partial z}+h(z-1) G
$$

$$
\begin{gathered}
H(z, t) \equiv \frac{G(z, t)}{G(1, t)}=\sum_{k=0}^{\infty} z^{k} p_{k}(t) \quad p_{k}(t)=\frac{m_{k}(t)}{\sum_{j} m_{j}(t)} \\
H(z, t)=\left(\frac{1-D(t)}{1-z D(t)}\right)^{h / d} \\
D(t)=d_{e}\left(\frac{1-\mathrm{e}^{-\left(d / d_{e}-d_{e}\right) t}}{1-\left(d_{e}^{2} / d\right) \mathrm{e}^{-\left(d / d_{e}-d_{e}\right) t}}\right) \quad d_{e} \equiv \frac{2 d}{\alpha+\sqrt{\alpha^{2}-4 d}}
\end{gathered}
$$

solution

distribution of gene copy number

$$
p_{k}(t)=(1-D(t))^{h / d} \frac{D(t)^{k}}{k!} \frac{\Gamma(k+h / d)}{\Gamma(h / d)}
$$

stationary distribution (only if $\sigma \leqslant(1-\sqrt{d})^{2}$):

$$
p_{k}=\left(1-d_{e}\right)^{h_{e} / d_{e}} \frac{d_{e}^{k}}{k!} \frac{\Gamma\left(k+h_{e} / d_{e}\right)}{\Gamma\left(h_{e} / d_{e}\right)} \quad \frac{h_{e}}{d_{e}}=\frac{h}{d}
$$

neutral case ($s=0$):

$$
d_{e}=\min (1, d)
$$

d_{e} : effective neutral duplication rate

 h_{e} : effective neutral HGT rate
ambiguity of the distribution

measuring the distribution of gene copy number one cannot know:
(a) if the process is stationary or transient
(b) if the process is neutral or subject to selection unless independent measurements of some rates are conducted
if d can be independently measured, selection is determined trough:

$$
s=\frac{\left(1-d_{e}\right)\left(d_{e}-d\right)}{d_{e}}
$$

goodness of fit

empirical distribution of copy numbers of 33 transposon families, obtained from 1811 bacterial chromosomes (typical case)

Iranzo et al., PLoS Comp. Biol. (2014)

application to genomic data

dataset
clusters of orthologs in 35 sets of closely related bacterial and archaeal genomes (678 genomes)
parameter estimates
COUNT: software for phylogenetic analysis

C: energy production/conversion

D: cell division
E: amino acid metabolism and transport
F: nucleotide metabolism and transport
G: carbohydrate metabolism and transport
H: coenzyme metabolism
I: lipid metabolism
J: translation
K: transcription
L: replication and repair
M : membrane and cell wall structure and biogenesis
N : secretion and motility

O: posttranslational modification, protein turnover \& chaperone functions
P: inorganic ion transport and metabolism
Q: biosynthesis, transport, and catabolism of secondary metabolites
R: general functional prediction only (typically, of biochemical activity)
S: function unknown
T: signal transduction
U: intracellular trafficking and secretion
V : defense mechanisms
Tr: transposon
PI: conjugative plasmid
Ph: prophage or phage-related

application to genomic data

C: energy production/conversion	O: posttranslational modification, protein turnover \& chaperone functions
D: cell division	P: inorganic ion transport and metabolism
E: amino acid metabolism and transport	Q: biosynthesis, transport, and catabolism of secondary metabolites
F: nucleotide metabolism and transport	R: general functional prediction only (typically, of biochemical activity)
G: carbohydrate metabolism and transport	S: function unknown
H: coenzyme metabolism	T: signal transduction
I: lipid metabolism	U: intracellular trafficking and secretion
J: translation	V: defense mechanisms
K: transcription	Tr: transposon
L: replication and repair	Pl: conjugative plasmid
M: membrane and cell wall structure and biogenesis	Ph: prophage or phage-related
N: secretion and motility	

application to genomic data

$$
s=\frac{\left(1-d_{e}\right)\left(d_{e}-d\right)}{d_{e}}
$$

$$
\begin{aligned}
I= & (0.5-4) \times 10^{-8} \\
& \text { losses per gene } \\
& \text { per generation }
\end{aligned}
$$

Nilsson et al., PNAS (2005) Sung et al., G3 (2016)
C: energy production/conversion
D: cell division
E: amino acid metabolism and transport
F: nucleotide metabolism and transport
G: carbohydrate metabolism and transport
H: coenzyme metabolism
I: lipid metabolism
J: translation
K: transcription
L: replication and repair
M : membrane and cell wall structure and biogenesis
N : secretion and motility

O: posttranslational modification, protein turnover \& chaperone functions P: inorganic ion transport and metabolism
Q: biosynthesis, transport, and catabolism of secondary metabolites
R: general functional prediction only (typically, of biochemical activity)
S: function unknown
T: signal transduction
U: intracellular trafficking and secretion
V : defense mechanisms
Tr: transposon
PI: conjugative plasmid
Ph: prophage or phage-related

comparison of long-term dynamics

$$
\langle k\rangle=\left(\frac{\partial}{\partial z} H(z, t)\right)_{z=1}=\frac{h}{d} \frac{D(t)}{1-D(t)}
$$

$$
p_{k>0}(t)=1-p_{0}(t)=1-[1-D(t)]^{h / d}
$$

Equilibrium copy number

Fr. genomes with at least 1 copy

Equilibr. fraction of genomes

bursts of activity

burst detection

- families with $d_{e}>1$
- transposons have bursts of size ~ 4

modification of the model

- occasional bursts at a rate ϕ
- bursts reset copy number to K
- new mean copy number:
$\llbracket k \rrbracket=\int_{0}^{\infty}\left[\left(\frac{h}{d}+K\right) \frac{D(t)}{1-D(t)}+K \frac{d-\alpha D(t)}{d+(1-\alpha) D(t)}\right] \phi \mathrm{e}^{-\phi t} d t$
bayesian estimate of parameters
$\phi=0.04$ (one burst every 25 losses)
$K=4.2$ (experimental: $K=3.9$)

conclusions

- mathematical modeling + phylogenetic analysis allows to quantify selection in different genes
- abundance distribution does not distinguish neutral and non-neutral evolution
- the time-dependent solution allows to disentangle different effects
- genes of key informational or metabolic pathways are subject to positive selection
- transposons and especially prophages are deleterious
- transposons experience intermitent bursts
- anti-parasite defenses are as costly as some genetic parasites

nonlinear selection

selection rate: $\quad \frac{s k}{1+k / \Omega} \approx s k\left(1-\frac{k}{\Omega}\right) \quad \Omega \gg k$

$$
\frac{d m_{k}}{d t}=-\left(h+k \alpha+\epsilon k^{2}\right) m_{k}+(k+1) m_{k+1}+[(k-1) d+h] m_{k-1} \quad k \in \mathbb{Z} \quad \epsilon=\frac{s}{\Omega}
$$

$$
\frac{\partial G}{\partial t}=\left(d z^{2}-\alpha z+1\right) \frac{\partial G}{\partial z}+h(z-1) G-\epsilon z \frac{\partial}{\partial z}\left(z \frac{\partial G}{\partial z}\right)
$$

