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1 Introduction

1.1 Motivation

The success of the Internet has made the problem of resource allocation to emerge
in many versions like, for example, deciding which peer must receive bandwidth or
disk in a file sharing P2P system [19], determining what access point shall offer its
capabilities to a given user in a shared coverage area [9,37], or deciding to which
computational task some CPU is assigned in a collaborative distributed environment
[1]. The problem may also appear with a negative formulation (i.e., instead of decid-
ing who shall receive a resource, the problem is deciding who shall not receive it).
For example, a paradigmatic example of this negative resource allocation that has
been widely analyzed in distributed computing is the problem of computational task
allocation [6,13,34]. In this problem, a system composed of heterogeneous nodes1

is assumed. Those nodes cooperate pursuing some common goal, which requires the
execution of a collection of computational tasks. Whenever a new task appears, it is
assigned for execution to the most suitable node. Given the popularity and simplicity
of this problem, we will use task allocation as a reference.

In all these scenarios, it is very important to devisemechanisms that achieve efficient
and fair resource allocation even when players present selfish or non-rational behav-
ior. With that purpose, a number of interesting protocols and mechanisms based on
Game Theory concepts [3,37] have been proposed. In such works, it is often assumed
that players can transfer their utilities (i.e., use payments). However, there are many
systems in which this assumption is not realistic. In particular, in many distributed
Internet systems (e.g., all kind of free services), payments are not used or make little
sense. For instance, there are no payments inmost peer to peer systems, like BitTorrent
(and this leads to free riding [19]).

Recently, some mechanisms without payments have been proposed, like those
of Procaccia and Tennenholtz [28], or the seminal work of Jackson and Sonnen-
schein [17,18] in which a new type of mechanism (called linking mechanism) is
proposed. A linking mechanism, instead of offering incentives or payments to play-
ers, limits the spectrum of players’ responses to a probability distribution known by
the game designer. One of the objectives of this paper is to explore and extend link-
ing mechanisms, introducing a wide spectrum of fairness concepts, while preserving
all the original properties. For this, we assume that the game is based on a sequence
of single-unit (resource) allocations and that each player has a specific preference for
being assigned the resource at a given single-unit allocation.We accept that preferences
vary over time andwith the type of resource. For example, when dealingwith task allo-
cations, at a given time, a node may have free bandwidth but full utilization of its CPU,
while its situation could be the opposite at another time. Hence, at a particular instant,
a node may have greater ability to perform tasks involving communication, while at
a later time its state may lead it to prefer tasks more intensive in CPU computation.

1 We will use the terms node, user, and player interchangeably.
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In other words, we define the preference as some kind of metric measuring the
opportunity of receiving a particular resource at a given time. In the case of task allo-
cations, the preference can be seen as some type of execution cost. In Game Theory,
closely related to costs and preferences, there is the notion of utility. Hence, the utility
may be defined as the cost savings associated with a work not done. In other works,
a player gets more utility whenever it avoids running tasks (by having other nodes
running them).

When trying to formalize a model based on these principles, a number of problems
arise. First, a player’s preferences are only known by the player herself. To illustrate
this with our previous example, note that in a distributed computational system it
would be difficult to audit or check if a given particular node has more or less CPU
capacity. This concept is usually known as private information. To obtain the private
information of a player, the basic mechanism is to directly ask for it and expect the
player to declare the value honestly. Following this, we assume that each player can
alter her behavior for her own benefit. She may try to maximize her own payoff
without concern for others; in other words, she could be selfish. One way to maximize
her benefit is declaring false information trying to avoid undesirable results (i.e., she
can be untruthful). This behavior is one of the factors that may distort the internal
workings of the game. (The loss of performance produced by selfish players is called
the price of anarchy [23,31].) In this work, we assume that the users are selfish and
potentially untruthful.

In the same way, providing a notion of fairness also presents challenges. Fairness
is, in general, an elusive concept that can be seen from many different perspectives.
In our case, fairness refers to some kind of compensations to players in exchange
for sacrificing their utility. In game theory, this type of compensation usually takes
the form of payments. However, in this work, we do not allow payments. Hence, the
implementation of our notion of fairness needs to be based on other assumptions,
and in particular, we base it here in repeated games.2 In a repeated game, fairness
can be provided by compensating current sacrifices in future iterations. Following
this, and coming back to the task allocation example, we could implement fairness by
guaranteeing that all players execute, on average, the same number of tasks; or that
they invest, on average, the same effort (i.e., cost) on their executions. In this work we
assume infinitely repeated games, which by definition have no known end.

Previous work in the area of mechanism design for distributed systems [33] has
already faced these problems dealingwith tasks allocations in the presence of selfish or
irrational independent player. However, when players are dependent (i.e., the distribu-
tion of their declared preferences are correlated) those solutions cannot guarantee the
desired properties in terms of fairness and efficiency. Therefore, this paper develops
a mechanism that achieves fairness and efficiency in the presence of selfish players
with correlation.

2 By repeated games we refer to a scenario in which players interact by playing a similar (stage) game
several times. Unlike a game played once, a repeated game allows for new strategies to be contingent on
past moves, thus allowing for reputation and retribution effects.
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1.2 State of the art

Mechanism Design has been gaining increasing popularity in distributed computing
during the last few years (see, e.g., [15,16,27]). Even though themechanisms proposed
in these works are interesting, they are usually based on payment systems. Deploying
such payment systems in practice is often difficult as noted by Schummer and Vohra
[26, Chapter 10].3 When it applies to computational settings, the payments are simply
too difficult to enforce, mainly due to security problems or banking issues.

For this reason, mechanisms without payments have also been proposed. Related
literature could be found in economics on cooperation [7,21] or similar problems in
P2P systems such as reputation [20] and artificial currencies [12]. The work closest to
our own, and in which we have based our proposal, is the linking mechanism proposed
by Jackson andSonnenschein [17,18]. Related to thiswork, Engelmann andGrimm [8]
presents experimental research on linking mechanisms. An algorithm called Quid Pro
Quo (QPQ) [33] has been proposed as an application of this kind of mechanisms to
distribute task executions fairly among independent players.

QPQ reflects the main idea behind the concept of linking mechanism: when a game
consists of multiple instances of the same basic decision problem (e.g., saying yes or
no, choosing among a number of discrete options), it is possible to define selfishness-
resistant algorithms by restricting the players’ responses to a given distribution. Hence,
in that case, the frequency with which a player declares a particular decision is estab-
lished beforehand. Based on this, QPQ presents quite relevant features as the fact of
not requiring payments, the flexibility on the definitions of the utility functions of the
players, its applicability in repeated games, the lack of central control authority, etc.
While QPQ presents some very interesting properties, it only guarantees fairness and
efficiency when users behave independently on each other. Nevertheless, this does not
need to be the case in real environments, where users may have correlated preferences.
The problem of fairness among players has been widely analyzed in the game theoret-
ical literature and a wide range of fairness concept has been proposed, but, as far as we
know, there is no fair linking mechanisms when players have correlated preferences.
This motivates the research proposed in this paper.

1.3 Contributions

Our contributions are twofold. On the one hand, we have extended the idea of linking
mechanism introducing fairness and correlation between players, while preserving
desirable properties, like efficiency, truthful reporting, incentive compatibility, etc.
On the other hand, we propose an algorithm based on these mechanisms that we
expect to be used in practical scenarios.

As mentioned, in [33] we have proposed a mechanism that we called Quid Pro
Quo (QPQ)Mechanism. QPQ presents several interesting properties in relation to the

3 Schummer and Vohra note that “ there are many important environments where money cannot be used as
a medium of compensation. This constraint can arise from ethical and/or institutional considerations: many
political decisions must be made without monetary transfers; organ donations can be arranged by ‘trade’
involving multiple needy patients and their relatives, yet monetary compensation is illegal.”
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efficiency in presence of selfish or rationally-limited players. However, those prop-
erties only hold when players are independent. In this paper, we extend the linking
mechanism framework (and therefore QPQ) by introducing a novel scheme providing
fair and optimal resource allocation even when players’ preferences are correlated.

In ourmodel, fairness is a key element introduced to compensate current sacrifices in
future iterations. Due to the large number of notions of fairness that could be defined, it
is difficult to find a generalmodel that encompasses any approach. In thisworkwe have
proposed ageneric fairness definitions,whichwehopewill serve as a reference towider
models.Hence, our contribution is clear: to thebest of our knowledge, noother previous
research work has offered a linking mechanism providing fair and efficient decision.

In addition, from a theoretical perspective, we contribute to the progress of the state-
of-the-art by proposing a mathematical framework suitable for proving all claimed
algorithmic properties. This framework is inspired on previous work on theoretical
economics but, as far as we know, it has never been adapted to the specific peculiarities
of distributed computing (at least not to solve the resource allocation problem). This
technique has proven to be extremely powerful for our specific problem, but it can be
re-used in other scenarios with similar assumptions.

Based on the theoretical results, we propose a realization of the mechanism suitable
for being implemented as a repeated game in real distributed environments. Unlike in
the original linking mechanism, this algorithm does not need to know the probability
distribution of the players’ responses. We show that this realization does not require
central entities and that its computational cost is affordable for current state of the
art networks and devices. In addition, through simulations, we confirm the stability
of the algorithm demonstrating that few iterations on a repeated game are enough for
making themechanism to converge to a fair resource allocation even when the players’
distributions are strongly correlated.

1.4 Structure

The rest of the paper is structured as follows. First, in Sect. 2we define the basicmathe-
matical concepts derived frommechanism design that are required for the understand-
ing of our work. Then, in Sect. 3 we present two especial cases of the problem at hand,
to illustrate it and provide intuition on how it is solved. After that, in Sect. 4 we present
the generic QPQmechanism. In this section we use calculus of variations to prove that
a this generic QPQmechanism can be used to performing efficient task allocation even
when players have correlated preferences and behave in selfish or non-rational ways.
Based on the genericQPQmechanism,we propose in Sect. 5 a practical implementable
algorithm suitable to be used in real-live scenarios with tractable computational and
communication complexity. In Sect. 6 we show through simulations that this practical
algorithm converges in few iterations and maintains the analytical properties of the
generic QPQ mechanism. The conclusions of the paper are presented in Sect. 7.

2 Model and definitions

We start by presenting the usual mathematical framework for mechanism design and
then we formally define the specific problem we face in this paper.
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2.1 Mechanism design concepts

The following provides the usual theoretic framework that will be later applied to our
problem. We assume that there are n players. The set of players is N = {1, 2, . . . , n}.
Players are risk-neutral. The alternative or outcome set of the game played is D. In a
general setting, D could be defined over �(N ),4 but in this paper we define D = N
so that the outcome d ∈ D is the player to whom the resource will be allocated.

Prior to making the collective choice in the game, each player privately observes
her preferences over the alternatives in D. This is modeled by assuming that player
i privately observes a parameter or signal θi that determines her preferences. (For
instance, in resource allocation, θi could represent the value player i assigns to the
resource.) For a given player i , we say that θi is the player type. The set of possible
types of player i is �i . We denote by θ = (θ1, θ2, . . . , θn) the vector of player types.
The set of all possible vectors is � = �1 ×�2 ×· · · �n . We denote by θ−i the vector
obtained by removing θi from θ .

We denote by� = �(�) the set of all probability distributions over�. It is assumed
that there is a common prior distribution π ∈ � that is shared by all the players. We
denote by πi ∈ �(�i ) the marginal probability of θi . We define βi (θ−i |θi ) as the
conditional probability distribution of θ−i given θi . That is, for any possible type
θi ∈ �i , βi (·|θi ) specifies a probability distribution over the set �−i representing
what player i would believe about the types of the other players if her own type were
θi . Beliefs (βi )i∈N are consistent, since individual belief functionsβi can all be derived
from the common prior π . This implies that π(θ−i |θi ) = βi (θ−i |θi ).

Individual players have preferences over outcomes, which are represented by a
utility function ui (d, θi ) ∈ R defined over all d ∈ D and θi ∈ �i .

The set of outcomes D, the set of players N , the type sets in �, the common prior
distribution π ∈ �, and the payoff functions ui , i ∈ N are assumed to be common
knowledge among all the players. The game rules defined by a specific mechanism
are also common knowledge. However, the specific value θi observed by player i is
private information of player i .

A strategy for the player i is any map σi : �i → �(�i ), where σi (θ̂i |θi ) is the
conditional probability that the player reports θ̂i when her true type is θi . A reporting
strategy σi is truthful if for every pair (θ̂i , θi ), the probability is concentrated at θ̂i = θi .
As usual, we will use θ̂i to denote the reported type and θi the actual type.

Given that the prior distribution π is known, player i can not change it. Hence, we
say that a player i has a limited strategy space, since her strategy can not change the
beliefs of other players. Intuitively, player i has a limited strategy space if beliefs over
reports are the same as actual beliefs.

As stated before, we consider games with private information; those games are also
called Bayesian [14]. In such games, players have limited information about certain
aspects of the game (e.g. payoff functions). However, each player has a subjective
probability distribution over this information. Bayesian mechanism design governs
the design and analysis of these game [16]. Bayesian equilibrium is the fundamental

4 We denote by �(S) the set of all probability distribution over some set S.
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solution concept for Bayesian games [25]. Informally, a Bayesian equilibrium is a
set of strategies, and beliefs, so that no player has a profitable deviation. We say
that a mechanism is Bayesian incentive compatible when, truthfully revealing private
information is a Bayesian equilibrium.

In this work we design Bayesian mechanisms. For a given Bayesian mechanism
〈�, g〉 we shall write qi (·|θi ) for player i’s interim probability density function on D
conditional on player i’s type being θi .

In this paper, we are looking for a mechanism 〈�, g〉, where g(·) is the decision
function, without utility transfers (payments) and that implements some social choice
function f under equilibrium when the induced game is Bayesian. In addition, we
introduce fairness as a key tool to compensate or reward players. We call this kind of
mechanisms Quid Pro Quo (QPQ) Mechanisms.

2.2 Fairness

In our model, we use fairness as a very abstract concept. For us, fairness is the property
of balancing in expectation some game parameters (modelled with a real function)
among all players. Our model was originally built with two examples in mind: fairness
in utility (“players have same expected utility”) and fairness in assignment (“same
expected number of assignments”). But these two examples are just special cases of
our model. Additionally, we have contemplated the possibility that some scenarios
require allocations other than equiproportional; or that the game must be constrained
to several fairness concepts at the same time. All this is modelled by introducing a
set of functions ηi,l : θ → R and ratios δi,l , all defined for each player i ∈ N and
for each fairness concept l = 1, . . . ,m (m is the number of fairness concepts). The
function ηi,l represents a fairness concept. For instance, for fairness in assignment this
function could be defined as ηi,l(θ) = 1. Similarly, fairness in utility is applied when
ηi,l(θ) = θi . On the other hand, δi,l is the ratio for player i when fairness l is applied.
Typically, this ratio is δi,l = 1

n . Then, formally, our concept of fairness is defined as
follows.

Definition 1 (Fairness) Given functions ηi,l : � → R, and values δi,l , we say that a
mechanism 〈�, g〉 is fair (or η-fair) when, for all i ∈ N and l = 1, . . . ,m,

∫
�

ηi,l(θ)qi (θ) dπ(θ) = δi,l
∑
j∈N

∫
�

η j,l(θ)q j (θ) dπ(θ) (1)

In this paper, we deal mathematically with this general concept of fairness, but for
the algorithm and simulations we used a particular concept of fairness, where players
will have equal number of allocated resources (in expectation).

2.3 Resource allocation problem

We now formally define the problem we study in this work. Intuitively, the problem
is like a repeated game where the stage game is in fact a single-unit auction [24], and

123



A. Santos et al.

the mechanism that decides how to allocate the resource in each auction is a QPQ
mechanism. Hence there are no payments and the allocation must satisfy a notion of
fairness.

The problem of resource allocation is a tuple 〈R, N ,�〉 where, N and � are as
defined above, and R = {r1, r2, . . .} is the ordered set of resources that have to be
allocated by the system over time. Resources are received by the system in their order
in R, they are independent among them, and the system must allocate resource rk to
a single player before receiving resource rk+1. R is assumed to be infinite.

As mentioned previously, in this problem the outcome set is D = N , where an
outcome of d ∈ D for resource rk means that rk is allocated to player d. In [33],
we have proposed a QPQ algorithm that implements this function when the type of
players follow mutually independent distributions. As in that work, we assume here
that the type of each player is normalized using a Probability Integral Transform
(PIT, see Sect. 5), so that it takes real values in the interval [0, 1] and follows a
uniform distribution within that support. Hence, we assume that �i = [0, 1]. Finally,
as mentioned, we assume that players have a limited space strategy (i.e., π is known
a priori and cannot be changed by the players).

The social choice function (scf) g(·) we are looking for is one that optimizes the
social utility restricted by fairness conditions. The social choice function (scf) is rep-
resented by the assignment qi (θ) that maximizes the functional,

F[q] ≡
∑

i∈N

∫
�

ui (d(θ), θi ) qi (θ) dπ(θ) (2)

s.t.

∫
�

ηi,l(θ)qi (θ) dπ(θ) = δi,l
∑

j∈N

∫
�

η j,l(θ)q j (θ) dπ(θ), l = 1, . . . ,m,∀i ∈ N .

(3)
In this functional, Eq. (2) is the expected social utility, which is simply the sum of

the expected utilities of the players. On its hand, Eq. (3) are the fairness restrictions
to be satisfied. In this formulation there are m such restrictions. Each restriction l and
player i has its own fairness functions ηi,l(·), and a parameter δi,l that defines the
proportion of the total fairness that must be “assigned” to a player i . In order to find
the assignment function qi (θ) that maximizes this functional, calculus of variations
can be used.

As an example, we study the fairness concept where each player i will receive a
proportional number of resources δi . Hence, we obtain that the scf is the assignment
of qi (θ) that maximizes the functional

F[q] ≡
∑

i∈N

∫
�

ui (d, θi ) qi (θ) dπ(θ), (4)

s.t.∫
�

qi (θ) dπ(θ) = δi ,∀i ∈ N . (5)
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Another fairness concept that we study as an instance of this framework is play-
ers with proportional utility. Under this fairness concept every player will obtain a
proportional expected utility. The equations are similar in this case.

F[q] ≡
∑

i∈N

∫
�

ui (d, θi ) qi (θ) dπ(θ), (6)

s.t.∫
�

ui (d, θi ) qi (θ) dπ(θ) = δi
∑

j∈N

∫
�

u j (d, θ j ) q j (θ) dπ(θ),∀i ∈ N . (7)

Without loss of generality, we can define the utility of a player i as follows,

ui (d, θi ) =
{

θi if d = i,

0 otherwise.
(8)

In this paper, we are interested in dynamic mechanisms where truth-telling is a
Bayesian equilibrium of the static QPQ mechanism. In that case we call the QPQ
mechanism Bayesian incentive compatible. That means that a player obtains a higher
utility when reporting truthfully.

3 Simple resource allocation examples

In order to illustrate the problem we face in this paper, and the techniques used to
solve it, we believe that it is useful to provide simpler versions of the problem first.
These examples of the resource allocation problem are simpler than the general case
in two aspects: they consider only two players and they consider the specific versions
of fairness mentioned above. Although simpler, the resulting problems have similar
structures as the general one, and the lessons that are extracted from them suggest the
general treatment.

3.1 Same number of resources

We consider first the problem of distributing a large (infinite) number of resources
between two players so that both players get the same proportion of resources, and the
aggregate utility ismaximized. The players have utilities for each possible decision and
these valuations may be correlated. Suppose that we choose as decision function for
every resource the assignment that maximizes the sum of the utilities. The difficulty is
that this social choice function is not fair. In Fig. 1 we show four examples of possible
joint distribution of the two players (shown as density and contour plots). If we assign
resources using as decision function argmaxi∈N (θ), the result may be clearly unfair.

So the idea is to find a newdecision function that takes into account the joint distribu-
tion π and assigns resources optimally and fairly. For the moment, we will assume that
this decision function is deterministic and it could be represented by a line. This line
divides the square into two areas: the area where resources are assigned to player 1 and
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Fig. 1 Example of join distributions π for two correlated players. The preferences are normalized in [0, 1].
Colors represent density (color figure online)

the area for player 2.At thismoment, the shape of this line is unknown, but suppose that
this decision function looks somewhat like the line presented in Fig. 2 (left). Note that
the decision function can be expressed as argmax1,2(ψ(θ1), θ2), where ψ is a trans-
formation function obtained from the line in Fig. 2 and the joint distribution π . With
all this in mind, the problem we aim to solve is to find the function ψ that maximizes:

∫ 1

0
θ1

∫ ψ(θ1)

0
π(θ1, θ2)dθ2dθ1 +

∫ 1

0
θ2

∫ ψ−1(θ2)

0
π(θ1, θ2)dθ1dθ2, (9)

s.t.∫ 1

0

∫ ψ(θ1)

0
π(θ1, θ2)dθ2dθ1 = 1

2
. (10)

Note that the left term of Eq. (9) is the utility of Player 1, which corresponds to
the blue areas in the sample assignments presented in Fig. 2. Similarly, the right term
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Fig. 2 Left possible decision function for two players. Right example of a decision function ψ for two
players and same number of resources fairness. Colors represent different areas assigned to each player
(color figure online)

of Eq. (9) is the utility of Player 2, and corresponds to the white areas. In addition,
if the objective is to minimize utility (for instance, costs) the problem has a similar
formulation:

∫ 1

0
θ1

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 +
∫ 1

0
θ2

∫ 1

ψ−1(θ2)

π(θ1, θ2)dθ1dθ2, (11)

s.t.∫ 1

0

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 = 1

2
. (12)

In this case the left term of Eq. (11) corresponds to thewhite areas in Fig. 2 and the right
term to the blue areas. Observe that both formulations can be solved using calculus of
variations. Moreover, they both reach the same solution ψ(x) (see Appendix A), only
the decision function is different (max versus min). Solving the system with respect
to ψ(x) (see Appendix A), we obtain the solution of this system as

ψ(θ1) = θ1 + λ, (13)

for some suitable constant λ. This confirms that the decision function is based on a
straight line. The right plot in Fig. 2 represents this idea.

3.2 Proportional utility

In the second special case we present, the fairness criterion to be satisfied is assigning
resources with “proportional expected utility” for each player. In particular, we want
both players to get the same expected utility. In that case, the functional to optimize
(for the minimization case) becomes
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min
ψ

(∫ 1

0
θ1

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 +
∫ 1

0
θ2

∫ 1

ψ−1(θ2)

π(θ1, θ2)dθ1dθ2

)
(14)

s.t.∫ 1

0
θ1

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 =
∫ 1

0
θ2

∫ 1

ψ−1(θ2)

π(θ1, θ2)dθ1dθ2 (15)

Finding the solution involves using similar mathematical techniques as in the pre-
vious case. The function ψ(x) obtained is,

ψ(θ1) = λθ1, (16)

for a suitable constant λ.
Note that in the two examples we have obtained a separatrix with the form of a

straight line. In fact, this will hold also for the general case presented in the next
section.

4 The fair Quid Pro Quo mechanism

We now derive the general QPQ Mechanisms that implement the social choice func-
tions given by Eqs. (4) and (6) under equilibrium, as special cases of the solution to
Eq. (2).

Theorem 1 The QPQ Mechanism that implements the social function of Eq. (2) with
η-fairness is a set of functionsψ = (ψ1, . . . ψn) that defines a line y = ψi (x) for each
player i with deterministic assignment d = gψ(θ) = argmaxi∈N (ψi (θ)) (except at
some points where the decision is indifferent).

Proof The problem we aim to solve is to find the decision function g that maximizes

∫
�

∑
i∈N

θi qi (θ) dπ(θ), (17)

under the constraints given in Eq. (2). Using Lagrange multipliers, this is tantamount
to maximizing the functional

F[q] ≡
∫

�

∑
i∈N

θi qi (θ) dπ(θ)

+
∑
k∈N

m∑
l=1

λk,l

∫
�

⎧⎨
⎩ηk,l(θ)qk(θ) − δk,l

∑
j∈N

η j,l(θ) q j (θ)

⎫⎬
⎭ dπ(θ), (18)

which can be rewritten as

F[q] =
∫

�

∑
i∈N

ψi (θ)qi (θ) dπ(θ), (19)
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where

ψi (θ) ≡ θi +
m∑
l=1

λi,l ηi,l(θ) −
∑
k∈N

m∑
l=1

λk,l δk,l ηi,l(θ). (20)

Let d = argmaxi∈N (ψi (θ)). Since 0 ≤ qi (θ) ≤ 1 and
∑

i∈N qi (θ) = 1 for all θ ∈ �,
then for each θ ∈ �, ∑

i∈N
ψi (θ)qi (θ) ≤ ψd(θ) (21)

The upper bound is reached if, and only if, for that value of θ we have qd(θ) = 1 and
qk(θ) = 0 for all k 	= d. This proves the theorem for the case when the largest value
among the ψi (θ) is unique.

Let us consider, on the other hand, that there are several such largest values, i.e.,
d1, . . . , dr are such thatψd1(θ) = · · · = ψdr (θ) > ψk(θ) for all k 	= d1, . . . , dr . Then
the upper bound is ψd1(θ), but this time is reached for any choice of the functions
qi (θ) such that qd1(θ) + · · · + qdr (θ) = 1 and qk(θ) = 0 for all k 	= d1, . . . , dr .
Hence, any decision among d1, . . . , dr is indifferent. 
�
For convenience, we build the decision function of our mechanism introducing a
transformation function ψ : � → R

n that returns a vector of n real values. The
decision function is then obtained as d = g(θ) = gψ = argmaxi∈N (ψi (θ)). We
say that ψ determines the “decision rule” or “decision function”. Our main theorem
gives us insight into what we can expect about the set of functions ψ . Given our
definition of ψi (θ) we can derive some intuition about the decision function. The
theorem tells us that we can restrict our attention to deterministic solutions except
when ψi (θ) = ψ j (θ), i, j ∈ N . At these points, the decision is indifferent. The above
theorem also gives us an optimality result.

Corollary 2 Assume that all players follow a truthful reporting strategy, mechanism
M defined using the decision function d = argmaxi∈N (ψi (θ)) maximizes the utility
of the system subject to fairness constraints.

Finally, when fairness is symmetric in the sense that each player has the same
fairness function, then each ψi depends only on the player’s profile θi and therefore
ψi (θi , θ−i ) could be reduced toψi (θi ). This last aspect allows us to state the following
corollary.

Corollary 3 When fairness is symmetric in the sense of ηi (θ) = η(θi ) ∀i ∈ N, and
players have limited space strategy, then the probability qi depends only on the player’s
value, that is qi (θ) = qi (θi ).

Proof The proof follows from the definition of ψi (θ) and therefore the decision func-
tion could be reduced to d = argmaxi∈N (ψi (θi )). As beliefs can not be changed by
the strategy of others players, the probability qi (θ) is only defined as a function of θi .


�
Revisiting our particular cases of fairness defined as equal-number of resources

(Eq. 4) and equal utility (Eq. 6) we can check that the solutions forψ are in both cases
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straight lines. When fairness is defined as equal-number of resources (Eq. 4), ψi (θ)

becomes (see Eq. 20)

ψi (θ) ≡ θi + λi −
∑n

k=1
λkδk, (22)

and therefore ψ(θi ) = θi + λi − ∑n
k=1 λkδk .

This solution has a very nice property that was already observed in our original
work (QPQ with independent players [33]). The mechanism designer could aggregate
players when studying a single player. The mechanism designer can see the game as
player i against the system formed by all other players ( j ∈ N , j 	= i). In this case,
player i has to compute just two values for λ, her own value λi and the aggregate value
λ j = ∑n

k=1 λkδk . That is, ψ(θi ) = θi + λi − λ j , or even simpler, ψ(θi ) = θi + λ.

if we redefine λ as a new single real parameter that represents λi − ∑n
k=1 λkδk . This

confirms that the decision function is a straight line where the parameter λ determines
the point at which the line crosses the y-axis. And this is true for all players. (See
Fig. 2 in Sect. 3.)

On the other hand, when fairness is defined as a function of utility (Eq. 6), our ψ

function is given by using

ψi (θ) ≡ θi

(
1 + λi −

∑n

k=1
λkδk

)
, (23)

and therefore ψ(θi ) = θi (1 + λi − ∑n
k=1 λkδk). Again, the decision function is a

straight line where λ determines the slope. Aggregating players, the above solution
could be reduced to ψ(θi ) = θi (1 + λi − 1

nλ j ), or ψ(θi ) = λ θi .

Properties The Fair QPQ Mechanism with Correlated players (Mfair) has the fol-
lowing properties:

1. Mfair is (ex-ante) individual-rational. This means that the expected utility of a
player is at least its expected outside utility.

2. Mfair is not allocative-efficient, but assigns resources efficiently subject to some
fairness conditions. This property is a clear conclusion from Corollary 2.

3. There is no incentive for any of the players to lie about or hide their private
information from the other players. Players will report truthfully in a Bayesian
equilibrium. We said that Mfair is Bayesian incentive compatible.

The two first properties are quite evident. The last property follows from the next
theorem.

Theorem 4 When players have limited space strategy, and fairness is symmetric in
the sense that ηi (θ) = η(θi ) ∀i ∈ N, then Mfair is Bayesian incentive compatible.

Proof For the sake of contradiction, let us suppose this proposition is false. Hence,
there is some set of assignments for which, if i does not follow a truthful reporting
strategy, she will obtain more utility in expectation.

From Corollary 3, this holds for any strategy of the aggregate player j , and in
particular when all her players follow a truthful reporting strategy. Hence, we can
consider in the rest of the proof that the rest of n−1 players follow a truthful reporting
strategy.
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Additionally, using the same corollary, we know that every player, j 	= i ∈ N , will
obtain the same expected utility (regardeless of whether i lies or not),∫

�

u j (d, θ j ) q j (θ) dπ(θ) =
∫

�

u j (d, θ j ) q̂ j (θ) dπ̂(θ)

Now we can define a new mechanism M that assigns a task to player i (when i
declares θi ) with the same probability as the original QPQ assigns the task to the player
i when she declares a false value θ̂i . Then, qi (θi ) = q̂i (θ̂). Note this new mechanism
conserves the same fairness constraints as the original one. However, if the above
were true, QPQ would not be optimal, since a mechanism that reproduces the same
decisions under i lying (in presence of players that follow a truthful reporting strategy)
would have different (lower) utility. Clearly, this is in contradiction of optimality of
QPQ. Therefore, the best strategy for a player (the one optimizing her normalized
utility) is to follow a truthful reporting strategy. 
�

5 Practical QPQ algorithm

After describing the different ingredients of our solution, we are able to propose an
application of our mechanism. To demonstrate the usability of our mechanism, we
discuss an algorithm for a specific case. We propose an algorithm where the resource
allocation achieves fairness in the number of resources allocated to each player. This
algorithm could be easily extended to other fairness concepts. The details can be
observed in Algorithm 1.

Algorithm 1 QPQ Correlated mechanism (code for node i)
1: Estimate the preference θi
2: Publish the normalized value θ̄i = PIT(θi )

3: Wait to receive the normalized values θ̄ j from the other players
4: for all j ∈ N do
5: if not GoF_Test(θ̄ j ,Historic) then
6: θ̄ j ← Random(θ̄− j ,Historic)
7: end if
8: end for
9: Historic ← Historic ∪ {θ̄}
10: Let d = argmax j∈N {ψ j (θ̄ j )}
11: if d = i then
12: Resource is assigned to node i
13: end if
14: Update λ j , ∀ j ∈ N : λk+1, j = λk, j + εk (Tk, j − 1/n).

In the algorithm, Tk, j denotes the fraction of decisions assigned to player j , com-
puted at round k. As it can be observed, for each round, each player estimates her own
value and publishes it. Publication means broadcasting a message with the value to all
players (although any other means of distribution, like shared memory, can be used).
By assumption, a player sends its value before it receives any of the others (concur-
rency, which implies that they do not depend from each other), and all the values are
correctly received at each player (reliability). Then, the algorithm assigns the resource
to the player that publishes the highest value modified by a particular ψk .
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5.1 Preference normalization

To normalize the players’ preferences we use a transformation called Probability
Integral Transformation (PIT). Our idea is to use the known fact that any cumulative
probability distribution function has in itself a uniform distribution [2].More formally,
the PIT is defined as

Definition 2 (Probability Integral Transformation) Let X be a continuous random
variable with a Cumulative Distribution Function (CDF) F ; that is X ∼ F . Then, the
probability integral transformation defines a new random variable Y as: Y = F(X).

As mentioned above, our interest in the PIT is due to the following lemma.

Lemma 5 (PIT follows a uniformdistribution)Let X bea continuous randomvariable
with CDF F, then F follows a uniform distribution on interval [0, 1]. That is, the
random variable Y defined by the probability integral transformation Y = F(X) is a
normalized uniform distribution.

Note that X does not need to be a continuous random variable. In the case that
the player’s costs follow a discrete distribution, it is still possible to perform a similar
transformation called Generalized Distributional Transform [10], whose properties
are equivalent to those of the PIT.

Definition 3 (Generalized Distributional Transform) Let X be a random variable (not
necessarily continuous) with a cumulative distribution probability F and let V ∼
U (0, 1) be a random variable with uniform distribution in [0, 1] independent of X .
The modified distribution function F(x, λ) is defined as F(x, λ) = (1 − λ)Pr(X <

x) + λPr(X ≤ x). From this, we can define the general distributional transform of X
as Y = F(X, V ), which can be proved to be a uniform distribution on the unit interval.

Proofs of these properties can be found in [10]. Many studies in economics use this
definition and its properties, such [5] or [32]. In our case, to simplify the notation, we
just call PIT to both transformations independently on whether the base distribution
is continuous or discrete.

5.2 Acceptance test

We are assuming that players are reporting values using a uniform [0, 1] distribution.
If their original distribution is not the uniform, we apply here the same normalization
transformation proposed in [33] based on the Probability Integral Transform (PIT).
Given the properties of the PIT, the idea is that any player applying correctly the PIT
on her real type distribution, must generate a uniform distribution on the unit interval
on her published normalized values. Hence, from the point of view of the mechanism
designer, the problem amounts to determining whether these published values follow
or not that uniform distribution. There are a wide range of tests that allow checking
that. These tests are called Goodness-of-Fit or GoF tests.

Continuing with this argument, we propose to implement the acceptance test of our
algorithm by using some GoF test on the declared transformed sequence of values
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published by the player. Whenever a player declares the values by applying the PIT
transformation on her owndistribution, these valueswill be uniformly distributed in the
unit interval. In that case (with high probability) the GoF tests will accept the samples.
More importantly, this process has an error which tends to zero when the number of
samples (rounds) increases for any reasonable value of the threshold. For the study of
our analytical results, we assume that GoF tests are perfect and this error is zero.

A tremendous amount of GoF tests have been proposed in the scientific literature.
Some of them may be applied over discrete distributions and others over continuous
ones. The Kolmogorov–Smirnov (KS) test [22,36] is probably the best-known test
when dealing with continuous distributions, basically due to its simplicity. Hence, we
propose to use this test as the GoF test of QPQ. However, in contrast to our previous
work with independent players, in this case it is necessary to add a second test. The
goal for this new test is to check if a player is trying to modify the joint distribution. In
this aspect, Copulae has proved to be a very useful tool in the analysis of dependency
structures. The concept of copulae was introduced by Sklar [35] and several copula
GOF approaches have been proposed in literature [4,11,29]. For our work, we have
used some GoF tests implemented as R-Cran packages. We note that no approach is
always the best.

5.3 Punishment

In the case that a dishonest player tried to lie, one possible strategy is to generate
increasing (or decreasing) θ̂ values, so that the PIT transformed values are close to one.
However, this type of behavior is quickly detected by the test. In that case, the question
is how to establish a punishment. Inspired on previous works on linking mechanisms,
the proposal is to reject the value declared by the player and generate a new random
value according to the joint prior distribution. At a first sight, this strategy may seem a
very poor punishment, given that there is always a chance that the player emerges vic-
torious in her lie. However, this is not only enough to discourage dishonest players, but
also a crucial ingredient to guarantee that ourmechanismhas the right properties, as for-
mally shown in [18,33] for similar scenarios, and in the simulations below (see Sect. 6).

5.4 Practical computation of λ

The above solution reduces the problem to finding the value of λ that adjusts the
tasks performed by players. In principle, we can ask the players to declare the joint
distribution and calculate that parameter accordingly. But in general, we should not
expect to find an analytic equation. That is, it is possible that π does not have an
analytical expression, or even if it exists, players must estimate it empirically. There
are multiple methods for π estimation, both parametric and nonparametric. The major
difficulty with these systems is the convergence speed, making it necessary a large
number of samples. There is a relationship between the dimension of the feature and
the number of samples needed. In our case, the dimension would be given by the
number of players. Fortunately, each player can compute the QPQ mechanism using
just only two dimensions (itself and the aggregate system).
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However, players do not need to know the joint density functionπ , they only need to
know the function T (·) that indicates the (expected or empirical) number of resources
given a parameterλ.We denote by T (λ) the number of resources that the player obtains
when the decision valueψ is determined by the parameter λ. Again, we can not expect
an analytic form for T , but under the right assumptions, we can approximate λ using
stochastic approximation methods. Due to the characteristics of the transformation
function and noting how it influences the number of tasks, we can expect the function
T (λ) to be continuous and decreasing (or increasing in the direction of λ). That is, there
is always a value of λ for each percentage of desired tasks. Our proposal is to approx-
imate λ by a sequence λ0, λ1, λ2, λ3, · · · → λ constructed using a stochastic approx-
imation method. The best known method, although not the only one, is perhaps the
Robbins–Monro method [30]. Then, our algorithmmust compute, for each iteration k,

λk+1 = λk + εk(Tk − 1/n). (24)

where Tk is an estimation of the fraction number of tasks performed by the player and
where εk is a sequence of values that satisfies εk > 0, εk → 0,

∑
k εk = ∞. Note

that, in order to estimate Tk we don’t need to store previous samples and memory
consumption is low.

6 Simulations

By performing simulations, we have checked various aspects of our practical QPQ
algorithm. First, we wanted to show that in fact a simple allocation based on the
preferences announced and using argmaxi∈N (θi ) to allocate the resource would not
be fair if the players were correlated. Figure 3 shows the observed behavior of a
simulation applying this technique in a scenario where two players are correlated and
the third is independent. As can be seen, the correlated players get less resources.
Something worth noticing in this figure is that the distribution of resources gets very
stable in only a few rounds.

Hence, we have also evaluated the performance of the practical QPQ algorithm
presented. For instance, we wondered how Robbins–Monro algorithm performs in
time. We have simulated several alternatives for the generation of the sequence of
values εk , starting with the original proposal of Robbins–Monro’s work, which was
to use εk = 1/k. The good news is that the simulations show that the allocation of
resources is now fair in the scenario with two correlated players described above, as
can be seen in Figs. 4 and 5. As alternative, we have simulated the same scenario
using εk = 1/

√
k but the speed of convergence is far from ideal and, as can be seen

in Figs. 6 and 7, there are significant oscillations in the values of λ.
Then, we have tried a third alternative, namely εk = 1

k+log k . This approach gave
much better results in the stability of the λ-values, the distribution of resources, and
the convergence time. This can be observed in Figs. 7 and 8.
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Fig. 3 Evolution of the allocation ratio (ratio of resources allocated to a player) of the different players
without QPQ. The simulation has two correlated players and one independent player. In this example,
resources have a negative utility (task to be executed) but similar conclusions apply to resources with
positive utility (goods)
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Fig. 4 Evolution of the allocation ratio of the different players with QPQ using εk = 1/k. The simulation
has two correlated players and one independent player

7 Conclusions and future work

In this paper we have created a novel scheme capable of providing efficient resource
allocation in distributed systems even in the presence of selfish correlated players. We
have shown that, for a general notion of fairness, the mechanism can be proved to per-
form efficiently and to maintain the incentive of players to participate. In addition, we
have proposed a specific realization of the mechanism as an algorithm implementable
in real distributed environments with affordable computational and communication
costs. This algorithm is susceptible of being used in repeated task allocations given
that our simulations demonstrate its rapid convergence, which open new horizons for
systems based on open systems for distributed collaborative tasks execution.
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Fig. 5 Evolution of the allocation ratio of the different players with QPQ using εk = 1/
√
k. The simulation

has two correlated players and one independent player
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Fig. 6 Evolution of the values of λwith QPQ using εk = 1/
√
k. The simulation has two correlated players

and one independent player

Despite this, the authors consider necessary to extend the current research is several
directions. First,

The algorithm proposed leads to an allocation of equal number of resources to each
player. It is left as future work to devise algorithms that have other fairness objectives.
Second, the model requires knowledge on the number of players that participate. We
may find scenarios where this is not reasonable, e.g., scenarios inwhich several players
“hide” and play the game with a single identity, which may result in the mechanism
not achieving fairness. Third, it would be important to analyze the problem when
more flexible space strategies are possible. One of our main assumptions has been to
consider that correlations are fixed and that players are not able to alter them through
their strategies. This assumption is reasonable when information is private and the
mechanism is designed in such a way that players cannot make their declared (true or
false) values on an iteration dependent on the values of others at the same iteration.
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Fig. 7 Evolution of the allocation ratio of the different players with QPQ using εk = 1
k+log k . The

simulation has two correlated players and one independent player
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Fig. 8 Evolution of the values of λ with QPQ using εk = 1
k+log k . The simulation has two correlated

players and one independent player

However, there are many real-life scenarios where players may be able to share their
values making more complex interdependent strategies possible. This would break the
properties of our proposed algorithm.

Acknowledgments We would like to thank the anonymous referees for their useful comments.

Appendix A: Solution of the system with same number of resources

We prove here the following theorem.

Theorem 6 The functionψ that optimizes the assignment with equal expected number
of resources for two players defines a straight line ψ(θ1) = θ1 +λ. The decision func-
tion is an assignment d = gψ(θ) = argmax1,2(ψ1(θ1), θ2) = argmax1,2(θ1 + λ, θ2)
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when the objective is to maximize the utility, and d = gψ(θ) = argmin
1,2

(ψ1(θ1), θ2) =
argmin

1,2
(θ1 + λ, θ2) when the objective is to minimize.

Proof What we want to prove is that the solution to the following system is ψ1(x) =
x + λ.

min
ψ

(∫ 1

0
θ1

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 +
∫ 1

0
θ2

∫ 1

ψ−1(θ2)

π(θ1, θ2)dθ1dθ2

)
,

s.t.∫ 1

0

∫ 1

ψ(θ1)

π(θ1, θ2)dθ2dθ1 = 1

2
. (25)

In order to calculate the optimal decision function, we define

F1(θ1, w) =
∫ 1

w

π(θ1, θ2)dθ2, (26)

F2(θ2, w) =
∫ 1

w

π(θ1, θ2)dθ1. (27)

Inserting these expressions into the integral (Eq. 25), we obtain

min
ψ

(∫ 1

0
θ1 F1(θ1, ψ(θ1))dθ1 +

∫ 1

0
θ2 F2(θ2, ψ

−1(θ2))dθ2

)
,

s.t.∫ 1

0
F1(θ1, ψ(θ1))dθ1 = 1

2
. (28)

Note that we are considering here the particular case of one independent variable (θ1),
one functionψ(θ1), and an integrand that depends at most on the first derivative of the
function. Using a Lagrange multiplier λ(θ1), this expression defines a functional that
depends on ψ . The Lagrange multipliers are, in general, functions of the independent
variable. However, as it can be easily seen from above equation, when the integrand
and the constraint are independent of θ1 themselves, then each Lagrange multiplier is
a constant (denoted by λ).

∫ 1

0
θ1 F1(θ1, ψ(θ1))dθ1 +

∫ 1

0
θ2 F2(θ2, ψ

−1(θ2))dθ2 + λ

∫ 1

0
F1(θ1, ψ(θ1))dθ1

(29)
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Thus, Eq. (29) is equivalent to

∫ 1

0
θ1 I (θ1, ψ,ψ

′
)dθ1,

where

I (θ1, ψ,ψ
′
) = (θ1 + λ)F1(θ1, ψ) + ψF2(ψ, θ1)ψ

′
. (30)

The usual variational procedure with respect to the function ψ(θ1) is to use the Euler–
Lagrange equation

∂ψ I (θ1, ψ,ψ
′
) − d

dθ1
∂
ψ

′ I (θ1, ψ,ψ
′
) = 0. (31)

That leads to the following Euler–Lagrange equation

∂ψ I (θ1, ψ,ψ
′
) = (θ1 + λ)∂ψ F1(θ1, ψ) + ψ

′
F2(ψ, θ1) + ψ

′
ψ∂ψ F2(ψ, θ1) (32)

∂
ψ

′ I (θ1, ψ,ψ
′
) = ψF2(ψ, θ1), (33)

d

dθ1
∂
ψ

′ I (θ1, ψ,ψ
′
) = d

dθ1
ψF2(ψ, θ1) = ψ

′
F2(ψ, θ1) + ψ∂ψ F1(θ1, ψ)

+ ψ
′
ψ∂ψ F2(ψ, θ1), (34)

And,

(θ1 + λ)∂ψ F1(θ1, ψ) + ψ
′
F2(ψ, θ1) (35)

+ ψ
′
ψ∂ψ F2(ψ, θ1) − ψ

′
F2(ψ, θ1) − ψ∂θ1F2(ψ, θ1) − ψ

′
ψ∂ψ F2(ψ, θ1) = 0.

(36)

Solving,
(θ1 + λ)∂ψ F1(θ1, ψ) = ψ∂θ1F2(ψ, θ1). (37)

Our next step will be trying to simplify this expression. Using the Leibniz integral rule
we have:

∂ψ F1(θ1, ψ) = ∂

∂ψ

∫ 1

θ1

π(θ1, θ2) dθ1 (38)

=
∫ 1

θ1

∂

∂ψ
π(θ1, θ2) dθ1+π(θ1, 1)

∂

∂ψ
1−π(θ1, ψ(θ1))

∂

∂ψ
ψ(θ1)=−π(θ1, ψ(θ1)),

(39)
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and

∂θ1F2(ψ, θ1) = ∂

∂θ1

∫ 1

θ1

f (x, y) dθ1 (40)

=
∫ 1

θ1

∂

∂θ1
π(θ1, θ2) dθ1 + π(1, θ2)

∂

∂θ1
1 − π(θ1, θ2)

∂

∂θ1
θ1

= −π(θ1, ψ(θ1)). (41)

And then, Eq. (37) reduces to:

(x + λ) · (−π(θ1, ψ(θ1))) = ψ · (−π(θ1, ψ(θ1))). (42)

Solving ψ(x), we finally obtain the solution as:

ψ(θ1) = θ1 + λ. (43)

Finally, note that argmin
i∈N

(ψi (θi )) = argmin
1,2

(θ1 + λ, θ2), given that,

argmin
1,2

(ψ1(θ1), ψ2(θ2)) = argmin
1,2

(θ1 + λ1, θ2 + λ2) (44)

argmin
1,2

(θ1 + λ1 − λ2, θ2) = argmin
1,2

(θ1 + λ, θ2). (45)

Which completes the proof for the case ofminimization.Theproof formaximization
is essentially identical. Observe that both cases lead to the same value of λ. 
�
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