
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Catalán P, Manrubia S,
Cuesta JA. 2020 Populations of genetic circuits

are unable to find the fittest solution in a

multilevel genotype–phenotype map. J. R. Soc.

Interface 17: 20190843.
http://dx.doi.org/10.1098/rsif.2019.0843
Received: 11 December 2019

Accepted: 12 May 2020
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
computational biology, evolution,

systems biology

Keywords:
genotype–phenotype map, toyLIFE, gene

regulatory networks, phenotypic bias, entropy,

genetic circuits
Author for correspondence:
Pablo Catalán

e-mail: pablocatalanfdez@gmail.com
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4987157.
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Populations of genetic circuits are unable
to find the fittest solution in a multilevel
genotype–phenotype map

Pablo Catalán1,2, Susanna Manrubia1,3 and José A. Cuesta1,2,4,5

1Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
2Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
3Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
4Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
5UC3M-Santander Big Data Institute (IBiDat), Universidad Carlos III de Madrid, Getafe, Madrid, Spain

PC, 0000-0003-2826-4684; SM, 0000-0003-0134-2785; JAC, 0000-0001-9890-9367

The evolution of gene regulatory networks (GRNs) is of great relevance for
both evolutionary and synthetic biology. Understanding the relationship
between GRN structure and its function can allow us to understand the
selective pressures that have shaped a given circuit. This is especially rel-
evant when considering spatio-temporal expression patterns, where GRN
models have been shown to be extremely robust and evolvable. However,
previous models that studied GRN evolution did not include the evolution
of protein and genetic elements that underlie GRN architecture. Here we use
toyLIFE, a multilevel genotype–phenotype map, to show that not all GRNs
are equally likely in genotype space and that evolution is biased to find the
most common GRNs. toyLIFE rules create Boolean GRNs that, embedded
in a one-dimensional tissue, develop a variety of spatio-temporal gene
expression patterns. Populations of toyLIFE organisms choose the most
common GRN out of a set of equally fit alternatives and, most importantly,
fail to find a target pattern when it is very rare in genotype space. Indeed, we
show that the probability of finding the fittest phenotype increases dramati-
cally with its abundance in genotype space. This phenotypic bias represents
a mechanism that can prevent the fixation in the population of the fittest
phenotype, one that is inherent to the structure of genotype space and the
genotype–phenotype map.
1. Introduction
The evolution of gene regulatory networks (GRNs) is a topic of great relevance
[1,2]. Organisms show a plethora of complex regulatory architectures in order
to carry out several developmental programmes [3] and to integrate signals
from the environment [4]. As a result, much work has been devoted to under-
standing how these architectures have evolved, and to disentangling the
relationship between the structure of a GRN and its function [5,6]. The under-
lying motivation is to understand which regulatory motifs appear as a result of
selection for a given function or, conversely, what kind of functionality is
attained when the structure of the GRNs is determined by other factors.
GRNs are also the object of intense research from the standpoint of synthetic
biology, which tries to design circuits to perform pre-defined functions [7].

One of regulation’s most interesting outcomes is the generation of spatio-
temporal patterns of gene expression that multicellular organisms use in
their development [8]. Recent work has been devoted to the study of the archi-
tecture of GRNs that give rise to different patterns, exploring their robustness
and evolvability [9–12]. These studies have found that GRNs can easily
evolve to generate new patterns, facilitating the emergence of new developmen-
tal programmes. The same pattern can be achieved by means of very different
mechanisms [11], which in turn determine the levels of robustness and

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0843&domain=pdf&date_stamp=2020-06-03
mailto:pablocatalanfdez@gmail.com
https://doi.org/10.6084/m9.figshare.c.4987157
https://doi.org/10.6084/m9.figshare.c.4987157
http://orcid.org/
http://orcid.org/0000-0003-2826-4684
http://orcid.org/0000-0003-0134-2785
http://orcid.org/0000-0001-9890-9367

(b)(a) (c) (d)

protein B

gene b

protein A

gene a

protein B

protein A

dimer AB

protein Bpolymerase

polymerase

polymerase

polymerase

output
0

20

40

tim
e

60

80

100
cells

protein B

protein A

empty prot A both

input

prot B

Figure 1. toyLIFE is a multilevel genotype–phenotype map. (a) toyLIFE genotypes are binary strings of length 20n, where n is the number of genes in the genome.
The first four letters of each gene represent its promoter region, while the remaining 16 are the coding region. The coding region, when expressed, turns into a protein
that folds into a 4 × 4 lattice (see Supplementary text in the electronic supplementary material). (b) Following toyLIFE’s interaction rules, we obtain the corresponding
gene regulatory network (GRN), represented here by its truth table. (c) Each GRN determines, under some propagation rules, a unique cellular automaton. Given the state
of a cell and its neighbours at time t, toyLIFE’s rules determine the state of the cell at time t + 1, where cells can be empty (white), expressing protein A (orange),
expressing protein B (blue) and expressing both proteins (grey). (d) Under certain initial conditions (in this case, the expression of protein A in the middle cell of the
tissue), the cellular automata give rise to spatio-temporal patterns of gene expression. In this case, the cellular automaton in c leads to an alternating pattern in which the
tissue expresses protein B and then does not express anything, while in the centre of the tissue three cells express protein A continuously.

Table 1. Truth table for a two-gene GRN.

A(t) B(t) A(t + 1) B(t + 1)

0 0 1 0

0 1 0 1

1 0 1 0

1 1 0 0

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

2

evolvability of the pattern. However, GRNs are the result of
interactions between proteins and genetic elements, and the
evolution of GRNs is a direct result of changes in protein
folding, binding affinities and promoter or enhancer regions.
Owing to its enormous complexity, models of GRN evolution
rarely incorporate these underlying dynamics, although there
are some exceptions [13,14].

Here we use a multilevel computational model of gene
regulation to show that some GRN architectures are easier
to build from interacting proteins and genes than others. As
a result, there is a phenotypic bias [15–17] that turns some
GRNs into attractors of evolutionary dynamics, even in the
absence of fitness differences.

We focus on Boolean GRNs, in which genes can either be
ON or OFF [18,19]. Although different from other models of
gene expression, where the concentration of proteins can vary
continuously [20], Boolean networks have been repeatedly
used to model GRN evolution [21,22], and some regulatory
functions have been explained best by using Boolean func-
tions [23]. Our Boolean GRNs are also modelled in discrete
time, so that the expression of one cell in time t + 1 is deter-
mined by its expression and that of its neighbouring cells
in time t. This formalism transforms GRNs into cellular
automata [24]. Connecting several cells in a one-dimensional
tissue, and allowing for propagation of gene products
between neighbouring cells, we obtain spatio-temporal
patterns that are similar to those found in real organisms.

These Boolean GRNs are built on top of a simple model of
cellular biology, toyLIFE [25,26]. toyLIFE organisms contain
genes, which are translated into proteins that interact with
each other to form dimers. Both dimers and proteins alter
the expression of genes, thus creating Boolean GRNs such
as those described above. As a consequence, toyLIFE is a
multilevel map from binary genomes (genotypes) to Boolean
GRNs (first phenotype level) to cellular automata (second
phenotype level) to spatio-temporal patterns (third pheno-
type level) (figure 1), thus allowing us to study the effects
of molecular evolution at different phenotypic levels.

We show that toyLIFE genomes with two genes are able
to generate a wide variety of GRNs and spatio-temporal
patterns. Moreover, not all of these are equally abundant in
genotype space: some GRNs are mapped by many geno-
types, while others are comparatively rare. We find that this
phenotypic bias is enough to steer evolving populations
towards more abundant GRNs, thus introducing an
additional element when trying to explain GRN evolution:
one that is not related to function or structure. Furthermore,
we also show that this phenomenon can result in the inability
of the evolutionary search to find some regulatory patterns,
even when they are fitter than every other.
2. Results
2.1. Boolean networks and spatio-temporal patterns
In a Boolean GRN, a gene can either be ON (expressed) or
OFF (not expressed). The expression state of each gene at
time t + 1 is a function of the expression states of all the
other genes in the network at time t, so that each state of the
network maps into another state. In a GRN with two genes
a and b and corresponding proteins A and B, this mapping
can be represented as a truth table that connects every input
state to an output state. Table 1 shows an example of this:
the state (0, 0) is mapped to (1, 0), which means that gene a
is expressed constitutively. The next two rows indicate that
both a and b activate their own expression, while the last
row shows that both genes repress each other. The truth
table determines the temporal expression patterns of a Boolean
GRN, thus giving us all the information we need to study
this system.

translation

tissue: one-dimensional row formed by 31 cells

diffusion diffusion

polymerase

gene b

gene a

protein A

gene b

gene a

protein A

gene b

gene a

protein A

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

GENE b

GENE a

Figure 2. Pattern-formation phenotype in toyLIFE. We consider a one-dimensional row formed by 31 cells. The figure illustrates one example of how this multi-
cellular phenotype works using toyLIFE for illustration purposes. When protein A is expressed, it can propagate to neighbouring cells and influence gene
expression there. This way, the spatio-temporal state of the tissue becomes a cellular automaton.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

3

Wewant to study the spatio-temporal patterns of two-gene
GRNs embedded in a one-dimensional tissue. First, we define
the number of cells in the tissue, which we will consider to be
constant. For our purposes, we choose tissues with 31 cells in a
row. The number of cells is arbitrary and it does not affect our
results: the same patterns are generated by the same truth
tables under similar regulatory inputs (electronic supplemen-
tary material, figure S8), so no phenomenology is lost from
restraining our study to this tissue size.

Now we define the connections between different cells in
the tissue. We will assume that only protein A can propagate
to the adjoining cells (figure 2). As a result, the input state of
cell ci in time t + 1 will be affected by the output states of cells
ci−1 and ci+1 in time t—as well as its own. We will further
assume that there is enough protein A to stay inside the cell
and propagate to the adjoining ones. For the cells at the
beginning and end of the tissue, we impose the following
boundary condition: cell c1 will be affected by itself and cell
c2, and cell cL (where L is the length of the tissue) will be
affected by itself and cL−1—remember that L = 31 throughout.

With these rules, each GRN (defined by a truth table) gives
rise to a cellular automaton [24] (figure 1c) with four states: (0)
no protein is expressed (white), (1) protein B is expressed
(blue), (2) protein A is expressed (orange), and (3) both
proteins are expressed (grey) (see electronic supplementary
material, figure S9 to see how the cellular automaton update
rule is obtained from the truth table). Cellular automata are
compactly described by the output they produce given an
input. Because the input of a cell is formed by itself and its
adjoining cells, and because each of them can be in four
states, the number of input states is 43 = 64. The number of
possible cellular automata is, therefore, 464≈ 3.4 × 1038. We
will see below that the number of two-gene toyLIFE geno-
types, which we use to generate our GRNs, is around 1012,
which is not enough to explore this vast number.
Each cellular automaton, in turn, gives rise to a spatio-
temporal pattern that will depend on the initial conditions
of the tissue at time t = 0. It is soon evident that the space
of these scenarios is hyper-astronomical in size [17], and so
we choose to start our dynamics with both genes in every
cell in the OFF state, except the cell in the middle of the
tissue (c15), where we will express protein A, modelling a
signal received from the exterior of the tissue. We then
explore the expression dynamics of the whole tissue for 100
time steps, enough to resolve all patterns.

We nowexplore four relevant GRNs and their resulting pat-
terns (figure 3). They are (a) a double-negative feedback loop
with self-activation, (b) the same as before but with gene a
having a constitutive expression, (c) a double-positive feedback
loop with self-activation, and (d) a double-positive feedback
loop without self-activation. Figure 3 shows the truth tables
associated with these GRNs and the patterns they generate
under the conditions mentioned above. The first two patterns
result in protein A being expressed in a stable manner in the
whole tissue. The difference between them is that in figure 3b
protein A is expressed constitutively in every cell, while in
figure 3a that signalmust propagate through the tissue. The pat-
tern in figure 3c is similar to the one in figure 3a, but both
proteins endup expressed in the tissue, as a result of the positive
feedback loop. Finally, in figure 3d the tissue expresses proteinA
and B in an alternating way.

Let us focus on the pattern generated by the network
in figure 3b. There are 16 GRNs that generate the same
pattern under the conditions defined above (electronic
supplementary material, figure S10 shows the truth tables
for all of these). If there were selection pressures to create
that particular pattern, we could expect evolutionary
dynamics to choose among these 16 GRNs with equal
probability, everything else being equal. This is certainly
what almost every mathematical model of phenotypic

A(t) B(t) A(t + 1) B(t + 1)

0

1

0
0

0
1 1

1
0

1

0
0

0
0 0

1

A(t) B(t) A(t + 1) B(t + 1)

0

1

0
0

0
1 1

1
1

1

0
0

0
0 0

1

A(t) B(t) A(t + 1) B(t + 1)

0

1

0
0

0
1

0

1

0
1

1
1 1 1 1

1

A(t) B(t) A(t + 1) B(t + 1)

0

1

0
0

0
1

0
1

0

0
0

1 1 1 1
1

a b a b a ba b

(a) (b) (c) (d)

0

100
cells cells cells cells

80

40

60

tim
e

tim
e

tim
e

tim
e

20

0

100

80

40

60

20

0

100

80

40

60

20

0

100

80

40

60

20

Figure 3. Some examples of patterns generated by two-gene Boolean GRNs. (a) A double-negative feedback loop, with self-activation, results in a pattern that
expresses protein A (orange) stably, and expanding through the tissue. (b) A double-negative feedback loop with self-activation, where gene a is expressed con-
stitutively, leads to the whole pattern expressing protein A stably through time. (c) A double-positive feedback loop with self-activation loops leads to both proteins
A and B (grey) being expressed in the tissue in a stable way, and expanding through the tissue. (d) A double-positive feedback loop without self-activation leads to
an alternating pattern where the tissue expresses first protein A (orange), then protein B (blue), and so on. Notice how the speed with which the pattern extends
throughout the tissue is half the speed of patterns in a and b. This is because only protein A is allowed to propagate to the neighbouring cells (figure 2), so that the
pattern can only extend when protein A is expressed.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

4

evolution (including previous models of GRN evolution)
would predict.

We performed Wright–Fisher evolutionary simulations
with toyLIFE organisms in a strong selection, weak mutation
regime (Methods), and selected the pattern in figure 3b as the
evolutionary target—i.e. we assigned maximal fitness to it,
and every other pattern became less fit as it differed more
from the target (see Methods for the complete definition of
the fitness function). We found that, after 100 000 mutations,
93% of simulations ended up finding one particular GRN
among all 16 (GRN XI in electronic supplementary material,
figure S10; see below), and the network in figure 3b (GRN V)
onlyappears as the endpoint of evolutionarydynamics in three
out of 10 000 simulations. In order to understand this some-
what unexpected result, we now discuss how Boolean GRNs
are obtained from toyLIFE genotypes.
2.2. Regulation in toyLIFE
We will introduce gene regulation in toyLIFE through an
example (for an in-depth discussion of toyLIFE’s rules, see
Supplementary text in the electronic supplementary material
and [26]). Consider the genotype in figure 4a. Proteins A and
B, the expression products of genes a and b, respectively, bind
together to form dimer AB (figure 4b). Because of toyLIFE’s
interaction rules, the expression of gene a is activated by
protein A, its own expression product. On the other hand,
the expression of gene b is activated by the polymerase (it
is a constitutively expressed gene), but it is inhibited by
both proteins A and B. The dimer does not bind to any pro-
moter (figure 4c). With this information, we can compute the
expression output of this genotype given each input, i.e. its
truth table (figure 4d). When no protein is present, the poly-
merase (which is always present in the cell) will activate
gene b and the output will consist of protein B. The same
will happen if dimer AB is present in the cell: because it
does not interact with either promoter, the polymerase will
activate the expression of gene b again. If protein A is present,
it will displace the polymerase and gene b will not be
expressed, but Awill also activate its own expression. Finally,
if protein B is present, it will inhibit its own expression, and
nothing will be expressed in the cell. In this way, we map a
binary sequence (coding for the genome’s two genes) into a
Boolean GRN. It is interesting to note that this regulatory
function cannot be expressed with an arrow diagram similar
to those in figure 3: there is no way to represent the overrid-
ing effect that the dimer has on each protein’s regulatory logic
using this kind of diagram.

The cellular automaton is now uniquely determined by the
GRN once we take into account two additional input states:
protein A plus dimer, and protein B plus dimer. These two
states can appear as a result of protein products propagating
from one cell to the next. With this information we can
unequivocally compute each genotype’s corresponding
cellular automaton.

It is worth noting that in the process of defining these phe-
notypic levels we have already introduced a lot of degeneracy.
For instance, there are 240≈ 1012 genotypes with two genes, but
they only give rise to 2152 different GRNs, which in turn
generate only 453 different cellular automata—an average
of ≈2 × 109 genotypes per cellular automaton. Not all
GRNs are equally probable in genotype space, however: the

102 104 106 108 1010 1012

S

1

10

102

no
. G

R
N

s

(e)

protein B

protein A

dimer AB

protein Bpolymerase

polymerase

polymerase

polymerase

input output

protein B

protein A

dimer AB

protein Bprotein A
protein A

gene a

protein B

gene b

(c) (d)

(a) (b)

protein A

gene a

+

protein B

gene b-

+

-

protein A

polymerase

Figure 4. Regulatory logic in toyLIFE. (a) Example of a two-gene genotype in toyLIFE. These genes express strings of 16 amino acids that fold into a 4 × 4
lattice, following the rules of the HP model (Supplementary text in the electronic supplementary material). (b) Protein A and protein B can bind together to form
dimer AB. (c) Regulatory logic of genes a and b. Protein A activates its own expression. The polymerase activates the expression of protein B, while both protein A
and B inhibit it. The dimer AB does not bind either promoter. (d) Truth table representing the regulatory logic of this two-gene genotype, obtained from the
information in (c). See text for details. (e) Not all GRNs generated by toyLIFE two-gene genotypes are equally likely in genotype space. In fact, the distribution of
abundances (S) follows a log-normal distribution (R2 = 0.84).

Table 2. Truth table for GRN XI.

A(t) B(t) A(t + 1) B(t + 1)

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 0

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

5

distribution of abundances of GRNs follows a log-normal
distribution (figure 4e), which has been observed in many
other genotype–phenotype models and has been shown
to be universal under some very general assumptions
[16,26–28]. The most abundant GRN is mapped by more
than 500 billion genotypes, while the rarest one is mapped
by only six genotypes. This phenomenon has been called
phenotypic bias [15,16], and it is also observed in the distri-
bution of abundances of cellular automata (electronic
supplementary material, figure S11a). As a consequence, the
16 GRNs that generate the pattern in figure 3b (electronic sup-
plementary material, figure S9) also have varying abundances.
The most common one is GRN XI, mapped by 1.971 × 1011

genotypes, roughly 18% of all two-gene genotypes in
toyLIFE. Its truth table appears in table 2. This is, admittedly,
a very simple Boolean GRN, in which every input state leads to
the same output: that of protein A being expressed. Previous
work [29] has argued that simpler phenotypes should be
more abundant in genotype space, and this is indeed what
we observe at all phenotypic levels (electronic supplementary
material, figure S12). In comparison, the least abundant
Boolean GRN among these 16 (GRN VIII) is mapped by just
203 641 genotypes, a million times less abundant than GRN
XI. Finally, the double-negative feedback loop in figure 3b
that we were searching for originally (GRN V) is mapped by
9.4 × 106 genotypes, which is 5 × 10−5 times less abundant
than GRN XI. As a result of this phenotypic bias in the
16 GRNs, when we evolve populations of toyLIFE organisms
to express this simple pattern as described above, populations
find GRN XI 93% of the times—although all 16 are equally
fit in this scenario. In fact, the proportion of times our simu-
lations end up in a particular GRN closely reflects its relative
abundance in genotype space (electronic supplementary
material, figure S13). In other words, introducing an additional
level to the GRN-to-pattern genotype–phenotype map causes
a bias in the abundances of different GRNs, which in turn
affects evolutionary dynamics [30].
2.3. Pattern formation in toyLIFE
The differences in abundances in the Boolean GRNs
generated by toyLIFE are magnified at the pattern level
(electronic supplementary material, figure S10b): some pat-
terns are mapped by billions of genotypes, while others are
generated by only hundreds of them. This difference is criti-
cal, as we will see now. Suppose an evolutionary scenario
where we select for pattern 113, as shown in figure 5a. This
pattern is mapped by only 5312 genotypes, so finding it in
genotype space seems hard a priori. However, naive evol-
utionary predictions would say that, being the fittest
phenotype, it should be eventually selected and fixed in the
population. When we perform the evolutionary simulations
with pattern 113 as the target (Methods), it appears as the
evolutionary endpoint in only 3% of the 1000 simulations.
Instead, the pattern that appears in most of the simulations
is pattern 109 (figure 5b), which has a fitness of 0.991 relative
to that of pattern 113, and is mapped by 1.6 × 108 genotypes.
There are 33 280 mutational paths between pattern 109 and
pattern 113 (counted as the number of pairs of genotypes

0

pattern 113(a) (b) (c)pattern 109 pattern 174

100

1.0
105

104

103

102

10

1

fi
xa

tio
n

pr
ob

ab
ili

ty

fi
xa

tio
n

tim
e

0

104 107

S
1010 104 107

S
1010

0.2

0.4

0.6

0.8

cells cells cells

80

40

60

tim
e

20

0

100

80

40

60

tim
e

20

0

100

80

40

60

tim
e

20

(d) (e)

Figure 5. Evolving populations are not able to find rare patterns, even when they are fitter. (a) Pattern 113 is rarely found in our evolutionary simulations. (b)
Pattern 109 is similar to 113, but it is generated by 1.64 × 108 genotypes—about 105 times commoner. As a result, it appears as the endpoint of our simulations
84% of the times. (c) Pattern 174 also appears as the endpoint of the simulations 8% of the time, even though it is not very similar to pattern 113. This is because
of its high abundance in phenotype space: 1.36 × 108 genotypes are mapped to it. (d) This phenomenon is not restricted to pattern 113. The probability of finding
a target pattern (p) goes to zero as the pattern abundance (S) decreases. Line: p = (1 + (430767/S)1/2)−1, R2 = 0.58. (e) Even when simulations do find the fittest
pattern, the time to reach it (T) increases as pattern abundance decreases. Line: log10 T ¼ 4:35 – 0:05(log10 S � 2:93)2, R2 = 0.68.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

6

mapping to each pattern that are one point mutation apart),
so populations expressing pattern 109 could eventually find
pattern 113 without having to go through any fitness
valley. However, this number represents only 0.0005% of all
connections from pattern 109 to other phenotypes: finding
pattern 113 from pattern 109 is truly like finding a needle in
a haystack. In other words: the phenotypic bias towards pat-
tern 109 is enough to counteract pattern 113’s fitness benefit.
Curiously enough, pattern 174 (figure 5c), which is not very
similar to pattern 113, with a fitness of 0.54, also appears fre-
quently as the endpoint of our simulations. In this case, there
are no mutations from pattern 174 to 113, so it seems that
some populations quickly find pattern 174 as a suboptimal
fitness peak, and then become trapped in it, as there are no
mutations to fitter alternatives.

This result means that some patterns will not be reachable
by evolution, not because they are less fit, but because they are
very rare in genotype space. This phenomenon is true for every
rare pattern, and indeed we see it in simulations where each of
the 176 patterns obtained in our system is set as the target of
evolution. The probability of finding the fittest pattern
decreases dramatically with pattern abundance (figure 5a).
And, even if the pattern is found, the time to find it decreases
super-exponentially with pattern abundance (figure 5b).
3. Discussion and conclusion
The main intention of this work is to show that the complex
mapping from DNA sequences to genetic circuits in real cells
is in all likelihood biased towards some GRNs, so that some
of them are muchmore common in genotype space. The results
of our computational simulations show that this bias is enough
to prevent populations from finding the fittest phenotype, con-
sistent with previous results where bias affected evolutionary
dynamics [15,31]. Several mechanisms had been previously

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190843

7
proposed to explainwhypopulations donot reach the fittest sol-
ution, such as frequency-dependent selection [32] or the fittest
versus the flattest [33,34]—which do not apply here, as our
populations are always homogeneous. However, phenotypic
bias is the first of these mechanisms that arises out of the intrin-
sic structure of the evolutionary search space, and it is
completely independent from population effects and from the
structure or function of the GRN being selected for. In this
sense, phenotypic bias is playing the same role in evolutionary
dynamics that entropy plays in statistical physics. The entropy
of a macrostate is related to the number of microstates that are
consistent with it without altering the properties that character-
ize the system. In statistical physics, macrostates are typically
described by macroscopical properties such as temperature,
pressure or volume, while microstates differ in the positions
and velocities of individual particles. In evolutionary dynamics,
there is a natural analogy between microstates and genotypes,
on the one hand, and macrostates and phenotypes, on the
other [35]. The conflict between energy and entropy found in
physical systems is the same we have found between fitness
andphenotypic bias, and the trapping byabundant phenotypes
is akin to a glassy dynamics in physical systems [36].

Our results cannot be explained by phenotypic bias alone,
however. In the simulations to find rare pattern 113, we found
that a non-negligible fraction of simulations ended in pattern
174, which had a fitness of 0.54 but an abundance in genotype
space that was similar to pattern 109, a fitter alternative. The
reason populations got stuck in pattern 174 is because geno-
type space is structured as a complex network, and not all
paths from one pattern to the other are actually possible. In
this case, there are no connections between pattern 174 and
either pattern 109 or 113, so, once the population has found
this local fitness peak, there is no way it can reach the other,
fitter alternatives under our selection regime. The effect of net-
worked genotype spaces on evolutionary dynamics is far from
trivial and has yet to be disentangled [37]. Further work has to
be devoted to study its effects in this particular system.

The consequences of this work are immediate for the evol-
ution of genetic circuits. Our results suggest that some ideal
solutions could be hard to find in genotype space, and that evol-
ution has had to work with more abundant, less efficient
alternatives. However, the number of available phenotypes
grows very quickly with genotype size in many computational
genotype–phenotype maps [17,26,27], and so it is reasonable to
expect that evolution could always find alternatives that are, if
not optimal, at least highly functional. On the other hand, syn-
thetic biologists trying to design a particular circuit could be
aiming at a particularly rare structure, which would make its
a priori evolution very unlikely. This would make that circuit
very unstable in evolutionary terms, and mutations could
easily change it into adifferent circuit,with undesired functions.

In relation to this, our results also suggest that phenotypic
biaswill have an effect on both robustness and evolvability. Pre-
viousmodels studying these properties inGRNs [11] found that
they depended on the mechanism by which a GRN generates a
pattern. Our results add a new layer, showing that more abun-
dant GRNs will generate more robust patterns, independently
of their mechanism or structure. Thus, understanding which
GRNs are more abundant in genotype space is essential to
unravel the evolution of robustness and evolvability.

We are aware of the limitations of toyLIFE as a discrete-
time Boolean model to model continuous-time, stochastic
protein concentration dynamics. However, phenotypic bias
is not a particular characteristic of toyLIFE and is rather
very common in computational genotype–phenotype maps
[15,16,29]. Thus, our main results are not limited to this par-
ticular choice of model, and they could easily be extended to
other, more realistic genotype–phenotype maps. On the
other hand, toyLIFE is a very convenient model to study
multilevel genotype–phenotype relationships [26], which
are complex and largely unknown. This model potential to
generate complex behaviours is yet to be explored fully.
4. Methods and material
4.1. Fitness
The fitness function for our evolutionary simulations is calcu-
lated as follows: each pattern is a string in base 4 of length
L = 31 · 100. For every evolutionary scenario, we choose one
particular pattern pT as the target value, and assign fitness
1 to it. Then we compute the Hamming distance D of a pat-
tern p to the target as

D(p, pT) ¼
XL
i¼1

dpðiÞ;pTðiÞ, (4:1)

where di,j is Kronecker’s delta, which is equal to 1 if i = j and 0
otherwise, and p(i) is the ith letter in the string p. Fitness is
then calculated as

f(p) ¼ 1�D(p, pT)
L

: (4:2)
4.2. Evolutionary simulations
We assume a strong selection, weak mutation scenario. In this
regime, Wright–Fisher dynamics are reduced to a continu-
ous-time random walk in genotype space. We only consider
point mutations, which arise in the population at constant
rate μ, and the fixation rate of a new mutation is given by

f(f , N) ¼ mN
f � 1
fN � 1

, (4:3)

where f is the fitness of the current phenotype relative to that
of the mutant and N is population size [38]. We assume μ = 1,
which is equivalent to counting time in mutations instead of
generations. Genotypes are binary strings of length 40, which
are mapped to a pattern using toyLIFE’s rules (Supplemen-
tary text in the electronic supplementary material). We start
the simulations choosing a genotype at random, and then
simulate population dynamics using Gillespie’s algorithm
[39]. We simulated populations of size N = 10 000 for T =
100 000 mutations, and repeated this process for R = 1000 or
R = 10 000 replicates, depending on the experiment. The
choice of population size was made so that deleterious
mutations were hardly ever accepted.

4.3. Phenotypic complexity
For the results in electronic supplementary material, figure
S12, we follow [29] and approximate the algorithmic
complexity of a binary string x = {x1,…, xn} as

~K(x)¼ log2 (n) x¼ 0n or 1n

log2 (n)
1
2[Nw(x1, . . . ,xn)þNw(xn, . . . ,x1)] otherwise,

�

(4:4)

royalsocietypublishing.org/journal/rsif
J.R.S

8
where n = |x| and Nw(x) is the number of words in the dic-
tionary created by the Lempel–Ziv algorithm [40]. For each
phenotypic level (GRNs, cellular automata and patterns),
we translate each base 4 string identifying the phenotype to
binary code, and then compute ~K. So, for instance, string
312011 would become 110110000101. GRNs are represented
as a binary string by reading all the output entries in the
truth table (GRN II in electronic supplementary material,
figure S10 is equivalent to 10001001) and then adding the
output states of the two additional input states mentioned
in the main text: protein A plus dimer, and protein B plus
dimer. Therefore, GRNs can be uniquely represented as
binary strings of length 12. Cellular automata are base 4
strings of length 64 that become binary strings of length
128 after converting from base 4 to base 2. Finally, patterns
are base 4 strings of length 3100 that become binary strings
of length 6200.

Data accessibility. toyLIFE and all the code used to obtain the results in
this paper are freely available at https://github.com/pablocatalan/
toylife/.

Authors’ contributions. P.C., S.M. and J.A.C. designed the work. P.C. car-
ried out numerical simulations and wrote the first draft. All authors
revised and worked on the final version of the manuscript.

Competing interests. We declare we have no competing interest.
Funding. P.C. is supported by a Ramón Areces Postdoctoral Fellow-
ship. This research has been supported by Ministerio de Ciencia,
Innovación y Universidades/FEDER (Spain/UE) through grant
nos. PGC2018-098186-B-I00 (BASIC) and FIS2017-89773-P (MiMevo).

Acknowledgements. We are grateful to the suggestions of two anonymous
referees that improved the manuscript’s quality.
oc.Interface
References
17:20190843
1. Chen K, Rajewsky N. 2007 The evolution of gene
regulation by transcription factors and microRNAs.
Nat. Rev. Genet. 8, 93–103. (doi:10.1038/nrg1990)

2. Payne JL, Khalid F, Wagner A. 2018 RNA-mediated
gene regulation is less evolvable than
transcriptional regulation. Proc. Natl Acad. Sci. USA
115, E3481–E3490. (doi:10.1073/pnas.1719138115)

3. Davidson EH. 2010 The regulatory genome: gene
regulatory networks in development and evolution.
Burlington, MA: Academic Press.

4. Alon U. 2006 An introduction to systems biology:
design principles of biological circuits. London, UK:
Chapman & Hall/CRC.

5. Payne JL, Wagner A. 2015 Function does not follow
form in gene regulatory circuits. Sci. Rep. 5, 13015.
(doi:10.1038/srep13015)

6. Ahnert SE, Fink TMA. 2016 Form and function in
gene regulatory networks: the structure of network
motifs determines fundamental properties of their
dynamical state space. J. R. Soc. Interface 13,
20160179. (doi:10.1098/rsif.2016.0179)

7. Santos-Moreno J, Schaerli Y. 2019 Using synthetic
biology to engineer spatial patterns. Adv. Biosyst. 3,
1800280. (doi:10.1002/adbi.201800280)

8. Salazar-Ciudad I, Jernvall J, Newman SA. 2003
Mechanisms of pattern formation in development
and evolution. Development 130, 2027–2037.
(doi:10.1242/dev.00425)

9. Cotterell J, Sharpe J. 2010 An atlas of gene
regulatory networks reveals multiple three-
gene mechanisms for interpreting morphogen
gradients. Mol. Syst. Biol. 6, 425. (doi:10.1038/
msb.2010.74)

10. Schaerli Y, Munteanu A, Gili M, Cotterell J, Sharpe J,
Isalan M. 2014 A unified design space of synthetic
stripe-forming networks. Nat. Commun. 5, 4905.
(doi:10.1038/ncomms5905)

11. Jiménez A, Cotterell J, Munteanu A, Sharpe J. 2015
Dynamics of gene circuits shapes evolvability. Proc.
Natl Acad. Sci. USA 112, 2103–2108. (doi:10.1073/
pnas.1411065112)

12. Jiménez A, Cotterell J, Munteanu A, Sharpe J. 2017
A spectrum of modularity in multi-functional gene
circuits. Mol. Syst. Biol. 13, 925. (doi:10.15252/msb.
20167347)

13. Banzhaf W, Kuo PD. 2004 Network motifs in natural
and artificial transcriptional regulatory networks.
J. Biol. Phys. Chem. 4, 85–92. (doi:10.4024/
2040405.jbpc.04.02)

14. Khatri BS, McLeish TC, Sear RP. 2009 Statistical
mechanics of convergent evolution in spatial
patterning. Proc. Natl Acad. Sci. USA 106,
9564–9569. (doi:10.1073/pnas.0812260106)

15. Schaper S, Louis AA. 2014 The arrival of the
frequent: how bias in genotype-phenotype
maps can steer populations to local optima.
PLoS ONE 9, e86635. (doi:10.1371/journal.pone.
0086635)

16. Dingle K, Schaper S, Louis AA. 2015 The structure of
the genotype–phenotype map strongly constrains
the evolution of non-coding RNA. Interface Focus 5,
20150053. (doi:10.1098/rsfs.2015.0053)

17. Louis AA. 2016 Contingency, convergence and
hyper-astronomical numbers in biological evolution.
Stud. Hist. Philos. Sci. C 58, 107–116.

18. Kauffman SA. 1969 Metabolic stability and
epigenesis in randomly constructed genetic nets.
J. Theor. Biol. 22, 437–467. (doi:10.1016/0022-
5193(69)90015-0)

19. Payne JL, Moore JH, Wagner A. 2014 Robustness,
evolvability, and the logic of genetic regulation.
Artif. Life 20, 111–126. (doi:10.1162/ARTL_
a_00099)

20. Ingalls BP. 2013 Mathematical modeling in systems
biology: an introduction. Cambridge, MA: MIT Press.

21. Bornholdt S. 2008 Boolean network models of
cellular regulation: prospects and limitations.
J. R. Soc. Interface 5, S85–S94. (doi:10.1098/rsif.
2008.0132.focus)

22. Wagner A. 2011 The origins of evolutionary
innovations. Oxford, London: Oxford University
Press.

23. Istrail S, Davidson EH. 2005 Logic functions of the
genomic cis-regulatory code. Proc. Natl Acad. Sci.
USA 102, 4954–4959. (doi:10.1073/pnas.
0409624102)
24. Wolfram S. 2002 A new kind of science, vol. 5.
Champaign, IL: Wolfram Media.

25. Arias CF, Catalán P, Manrubia S, Cuesta JA. 2014
toyLIFE: a computational framework to study the
multi-level organisation of the genotype-
phenotype map. Sci. Rep. 4, 7549. (doi:10.1038/
srep07549)

26. Catalán P, Wagner A, Manrubia S, Cuesta JA. 2018
Adding levels of complexity enhances both
robustness and evolvability in a multi-level
genotype-phenotype map. J. R. Soc. Interface 15,
20170516. (doi:10.1098/rsif.2017.0516)

27. Manrubia S, Cuesta JA. 2017 Distribution of
genotype network sizes in sequence-to-structure
genotype-phenotype maps. J. R. Soc. Interface 14,
20160976. (doi:10.1098/rsif.2016.0976)

28. García-Martín JA, Catalán P, Manrubia S, Cuesta JA.
2018 Statistical theory of phenotype abundance
distributions: a test through exact enumeration of
genotype spaces. Europhys. Lett. 123, 28001.
(doi:10.1209/0295-5075/123/28001)

29. Dingle K, Camargo CQ, Louis AA. 2018 Input–
output maps are strongly biased towards simple
outputs. Nat. Commun. 9, 761. (doi:10.1038/
s41467-018-03101-6)

30. Greenbury SF, Schaper S, Ahnert SE, Louis AA. 2016
Genetic correlations greatly increase mutational
robustness and can both reduce and enhance
evolvability. PLoS Comput. Biol. 12, e1004773.
(doi:10.1371/journal.pcbi.1004773)

31. Johnston IG, Ahnert SE, Doye JP, Louis AA. 2011
Evolutionary dynamics in a simple model of self-
assembly. Phys. Rev. E 83, 066105. (doi:10.1103/
PhysRevE.83.066105)

32. Ayala FJ, Campbell CA. 1974 Frequency-
dependent selection. Annu. Rev. Ecol. Evol. Syst. 5,
115–138. (doi:10.1146/annurev.es.05.110174.
000555)

33. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C.
2001 Evolution of digital organisms at high
mutation rates leads to survival of the
flattest. Nature 412, 331–333. (doi:10.1038/
35085569)

https://github.com/pablocatalan/toylife/
https://github.com/pablocatalan/toylife/
https://github.com/pablocatalan/toylife/
http://dx.doi.org/10.1038/nrg1990
http://dx.doi.org/10.1073/pnas.1719138115
http://dx.doi.org/10.1038/srep13015
http://dx.doi.org/10.1098/rsif.2016.0179
http://dx.doi.org/10.1002/adbi.201800280
http://dx.doi.org/10.1242/dev.00425
http://dx.doi.org/10.1038/msb.2010.74
http://dx.doi.org/10.1038/msb.2010.74
http://dx.doi.org/10.1038/ncomms5905
http://dx.doi.org/10.1073/pnas.1411065112
http://dx.doi.org/10.1073/pnas.1411065112
http://dx.doi.org/10.15252/msb.20167347
http://dx.doi.org/10.15252/msb.20167347
http://dx.doi.org/10.4024/2040405.jbpc.04.02
http://dx.doi.org/10.4024/2040405.jbpc.04.02
http://dx.doi.org/10.1073/pnas.0812260106
http://dx.doi.org/10.1371/journal.pone.0086635
http://dx.doi.org/10.1371/journal.pone.0086635
http://dx.doi.org/10.1098/rsfs.2015.0053
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1162/ARTL_a_00099
http://dx.doi.org/10.1162/ARTL_a_00099
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1073/pnas.0409624102
http://dx.doi.org/10.1073/pnas.0409624102
http://dx.doi.org/10.1038/srep07549
http://dx.doi.org/10.1038/srep07549
http://dx.doi.org/10.1098/rsif.2017.0516
http://dx.doi.org/10.1098/rsif.2016.0976
http://dx.doi.org/10.1209/0295-5075/123/28001
http://dx.doi.org/10.1038/s41467-018-03101-6
http://dx.doi.org/10.1038/s41467-018-03101-6
http://dx.doi.org/10.1371/journal.pcbi.1004773
http://dx.doi.org/10.1103/PhysRevE.83.066105
http://dx.doi.org/10.1103/PhysRevE.83.066105
http://dx.doi.org/10.1146/annurev.es.05.110174.000555
http://dx.doi.org/10.1146/annurev.es.05.110174.000555
http://dx.doi.org/10.1038/35085569
http://dx.doi.org/10.1038/35085569

royalsocietypublishing.org

9
34. Beardmore RE, Gudelj I, Lipson DA, Hurst LD.
2011 Metabolic trade-offs and the
maintenance of the fittest and the flattest.
Nature 472, 342–346. (doi:10.1038/
nature09905)

35. Sella G, Hirsh AE. 2005 The application of statistical
physics to evolutionary biology. Proc. Natl Acad. Sci.
USA 102, 9541–9546. (doi:10.1073/pnas.
0501865102)
36. Götze W. 2008 Complex dynamics of glass-
forming liquids: a mode-coupling theory,
vol. 143. Oxford, UK: Oxford
University Press.

37. Aguirre J, Catalán P, Cuesta JA, Manrubia S.
2018 On the networked architecture of
genotype spaces and its critical effects on
molecular evolution. (http://arxiv.org/abs/
1804.06835)
38. Ewens WJ. 2004 Mathematical population genetics.
New York, NY: Springer.

39. Gillespie DT. 1976 A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions. J. Comput. Phys. 22, 403–434.
(doi:10.1016/0021-9991(76)90041-3)

40. Lempel A, Ziv J. 1976 On the complexity of finite
sequences. IEEE Trans. Inf. Theory 22, 75–81.
(doi:10.1109/TIT.1976.1055501)
/
jour
nal/rsif
J.R.Soc.Interface

17:20190843

http://dx.doi.org/10.1038/nature09905
http://dx.doi.org/10.1038/nature09905
http://dx.doi.org/10.1073/pnas.0501865102
http://dx.doi.org/10.1073/pnas.0501865102
http://arxiv.org/abs/1804.06835
http://arxiv.org/abs/1804.06835
http://arxiv.org/abs/1804.06835
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1109/TIT.1976.1055501

Populations of genetic circuits are unable to find the fittest solution

in a multilevel genotype-phenotype map

Supplementary Material

Pablo Catalán1,2,∗, Susanna Manrubia1,3 and José A. Cuesta1,2,4,5

1Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; 2Dept. de Matemáticas, Universidad Carlos

III de Madrid, Leganés, Madrid, Spain; 3Programa de Bioloǵıa de Sistemas, Centro Nacional de Biotecnoloǵıa

(CSIC), Madrid, Spain; 4Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI)

Universidad de Zaragoza, Spain; 5UC3M-Santander Big Data Institute (IBiDat), Universidad Carlos III de Madrid,

Getafe, Madrid, Spain.

∗To whom correspondence should be addressed: pablocatalanfdez@gmail.com (PC)

Contents

1 Supplementary Text 2

1.1 Building blocks: genes, proteins, metabolites . 2

1.2 Extending the HP model: interactions . 6

1.3 Regulation . 8

1.4 Metabolism . 10

1.5 Dynamics in toyLIFE . 11

2 Supplementary Figures 13

1

1 Supplementary Text

toyLIFE was originally presented in [1]. We give here its main details, with slight modifications in the

definition of the model, as presented in [2].

1.1 Building blocks: genes, proteins, metabolites

The basic building blocks of toyLIFE are toyNucleotides (toyN), toyAminoacids (toyA), and toySugars

(toyS). Each block comes in two flavors: hydrophobic (H) or polar (P). Random polymers of basic

blocks constitute toyGenes (formed by 20 toyN units), toyProteins (chains of 16 toyA units), and

toyMetabolites (sequences of toyS units of arbitrary length). These elements of toyLIFE are defined on

two-dimensional space (Supplementary Figure S1).

toyAMINOACIDS

toyNUCLEOTIDES

toySUGARS

toyGENES

toyPROTEINS toyDIMERS

toyPOLYMERASE

toyMETABOLITES

P (polar)

H (hydrophobic)

E() = -2.0
E() = -0.3
E() = 0.0

Supplementary Figure S1: Building blocks and interactions defining toyLIFE. The three basic build-

ing blocks of toyLIFE are toyNucleotides, toyAminoacids, and toySugars. They can be hydrophobic (H,

white) or polar (P, red), and their random polymers constitute toyGenes, toyProteins, and toyMetabo-

lites. The toyPolymerase is a special polymer that will have specific regulatory functions. These polymers

will interact between each other following an extension of the HP model (see text), for which we have

chosen the interaction energies EHH =−2, EHP =−0.3 and EPP = 0 [3].

2

toyGenes

toyGenes are composed of a 4-toyN promoter region followed by a 16-toyN coding region. There are 24

different promoters and 216 coding regions, leading to 220 ≈ 106 toyGenes. An ensemble of toyGenes

forms a genotype. If the toyGene is expressed, it will produce a chain of 16 toyA that represents a

toyProtein. Translation follows a straightforward rule: H (P) toyN translate into H (P) toyA. Point

mutations in toyLIFE are easy to implement: they are changes in one of the nucleotides in one of the

genes in the genotype. If the sequence has a H toyN in that position, then a mutation will change it to

a P toyN, and vice versa.

toyProteins

toyProteins correspond to the minimum energy, maximally compact folded structure of the 16 toyA chain

arising from a translated toyGene. Their folded configuration is calculated through the hydrophobic-polar

(HP) protein lattice model [3, 4].

We only consider maximally compact structures. That is, every toyProtein must fold on a 4× 4

lattice, following a self-avoiding walk (SAW) on it. After accounting for symmetries —rotations and

E = -11.5

2 x (-2.0)
5 x (-0.3)
2 x (0.0)

Supplementary Figure S2: Protein folding in toyLIFE. toyProteins fold on a 4× 4 lattice, following

a self-avoiding walk (SAW). Discarding for symmetries, there are 38 SAWs (left). For each binary

sequence of length 16, we fold it into every SAW and compute its folding energy, following the HP

model. For instance, we fold the sequence PHPPPPPPPPPHHHHP into one of the SAWs and compute

its folding energy (right). There are two HH contacts, five HP contacts and two PP contacts —we only

take into account contacts between non-adjacent toyAminoacids. Summing all this contacts with their

corresponding energies, we obtain a folding energy of −11.5. Repeating this process for every SAW, we

obtain the minimum free energy structure.

3

reflections—, there are only 38 SAWs on that lattice (Supplementary Figure S2).

The energy of a fold is the sum of all pairwise interaction energies between toyA that are not

contiguous along the sequence. Pairwise interaction energies are EHH =−2, EHP =−0.3 and EPP = 0,

following the conditions set in [3] that EPP > EHP > EHH (Supplementary Figure S2). toyProteins are

identified by their folding energy and their perimeter. If there is more than one fold with the same

minimum energy, we select the one with fewer H toyAminoacids in the perimeter. If still there is

more than one fold fulfilling both conditions, we discard that protein by assuming that it is intrinsically

disordered and thus non-functional. Note, however, that sometimes different folds yield the same folding

energy and the same perimeter. In those cases, we do not discard the resulting toyProtein.

Out of 216 = 65,536 possible toyProteins, 12,987 do not yield unique folds. We find 2,710 different

toyProteins with 379 different perimeters. Not all toyProteins are equally abundant: although every

toyProtein is coded by 19.4 toyGenes on average, most of them are coded by only a few toyGenes.

For instance, 1,364 toyProteins —roughly half of them!— are coded by less than 10 toyGenes each.

On the other hand, only 4 toyProteins are coded by more than 200 toyGenes each, the maximum

being 235 toyGenes coding for the same toyProtein. The distribution is close to an exponential decay

(Supplementary Figure S3a). The same happens with the perimeters, although with less skewness: each

perimeter is mapped by 7.15 toyProteins on average, but the most abundant perimeters correspond to

26 toyProteins, and 100 are mapped by 1 or 2 toyProteins each (Supplementary Figure S3b).

Folding energies range from −18.0 to −0.6, with an average in −9.63. The distribution is unimodal,

although very rugged (Supplementary Figure S3c). Note that folding energies are discrete, and that

separations between them are not equal. For instance, there are 6 toyProteins that have a folding energy

of −18.0, but the next energy level is −16.3, realised by 17 toyProteins, and yet the next level is −16.0,

realised by 14 toyProteins. The mode of the distribution is −10.6, realised by 202 toyProteins.

We can also study the structure of the toyProtein network (Supplementary Figure S3e, f). The nodes

of this network will be the 2,710 toyProteins. toyProtein 1 and toyProtein 2 will be neighbors if there

is a pair of toyGenes that express each toyProtein and whose sequence is equal but for one toyN. The

weight of the edge between toyProtein1 and 2 will be the sum of such pairs of toyGenes. It is surprising

that there are no self-loops in this network —there are no mutations connecting one toyProtein to itself.

In other words, although there is a strong degeneracy in the mapping from toyGenes to toyProteins,

there are no connected neutral networks. If we consider just the perimeters, however, the neutrality

is somewhat recovered: out of the 379 perimeters, 224 of them have neutral neighbors. So there are

many mutations that alter the folding energy of a toyProtein without changing the perimeter. In this

4

e f

0 50 100 150 200
degree

0.000

0.020

0.040

fr
a
c
ti
o
n

toyProteins

0 40 80 120 160
degree

0.000

0.010

0.020

fr
a
c
ti
o
n

perimeters

b c

18 14 10 6 2
energy

0

100

200

300

400

to
y
P
ro
te
in
s

0 10 20 30
toyProteins

100

101

102

p
e
ri
m
e
te
rs

a

50 150 250
toyGenes

100

101

102

103

104

to
y
P
ro
te
in
s

Supplementary Figure S3: Distributions of toyProteins in toyLIFE. (a) Distribution of toyProtein

abundances —that is, the number of toyGenes that code for them. Most toyProteins are coded by

few toyGenes, but some of them are very abundant: the most abundant toyProtein is coded by 235

toyGenes. (b) Distribution of the perimeters associated with each toyProtein. Again, not all perimeters

are equally abundant, and some of them correspond to as many as 25 toyProteins, while 100 correspond

to 1 or 2 toyProteins. (c) Distribution of folding energies. The range of folding energies goes from

−18.0 to −0.6, with a unimodal, rugged distribution. The mode is −10.6, a folding energy achieved by

202 toyProteins. (d) Degree distribution in the toyProtein network. Two toyProteins are connected if

there are two toyGenes coding for them that have the same sequence, except for one toyN. The average

degree is 32.2. (e) Degree distribution in the perimeter network. Two perimeters are neighbors if the

toyProteins associated to them are neighbors. The average degree is 53.3.

sense, toyLIFE is capturing a complex detail of molecular biology: mutations appear to be neutral from

one point of view —in this case, perimeter— but are rarely entirely neutral. In other words, the value

of a mutation is context and environment-dependent. There are always some small changes in the

molecule —in this case, folding energy— that may affect their function later down the line. Real world

examples of this cryptic effects of mutations on molecules are everywhere [5–8]. Connections between

toyProteins are scarce too: the average degree in the toyProtein network is 32.2 (with a standard

deviation of 25.7), a very small number — on average, each toyProtein is connected to hardly 1% of

the rest of toyProteins! (Supplementary Figure S3e). The maximum degree is 190. This means that

mutating from one toyProtein to another is not easy in general. In terms of perimeters this is more

relaxed, as the average degree in the perimeter network is 53.3 (standard deviation is 38.1), with a

5

maximum degree of 173. On average, every perimeter is connected to 14% of the rest of perimeters: it

is a small number, but it is still higher than in the toyProtein case (Supplementary Figure S3f).

In the toyLIFE universe, only the folding energy and perimeter of a toyProtein matter to characterise

its interactions, so folded chains sharing these two features are indistinguishable. This is a difference

with respect to the original HP model, where different inner cores defined different proteins and the

composition of the perimeter was not considered as a phenotypic feature. However, subsequent versions

of HP had already included additional traits [9].

The toyPolymerase (Supplementary Figure S1) is a special toyA polymer, similar to a toyProtein in

many aspects, but that is not coded for by any toyGene. It has only one side, with sequence PHPH,

and its folding energy is taken to be −11.0. We will discuss its function and place later on.

1.2 Extending the HP model: interactions

toyProteins interact through any of their sides with other toyProteins, with promoters of toyGenes, and

with toyMetabolites (see Supplementary Figure S4a). When toyProteins bind to each other, they form

a toyDimer, which is the only protein aggregate considered in toyLIFE. The two toyProteins disappear,

leaving only the toyDimer. Once formed, toyDimers can also bind to promoters or toyMetabolites

through any of their sides —binding to other toyProteins or toyDimers, however, is not permitted. In all

cases, the interaction energy (Eint) is the sum of pairwise interactions for all HH, HP and PP pairs formed

in the contact —these interactions follow the rules of the HP model as well. Bonds can be created only

if the interaction energy between the two molecules Eint is lower than a threshold energy Ethr =−2.6.

Note that a minimum binding energy threshold is necessary to avoid the systematic interaction of any

two molecules. Low values of the threshold would lead to many possible interactions, which would

increase computation times. High values would lead to very few interactions, and we would obtain a

very dull model. Our choice of Ethr = −2.6 achieves a balance: the number of interactions is large

enough to generate complex behaviours, as we will see later on, while at the same time keeping the

universe of interactions small enough to handle computationally. If below threshold, the total energy of

the resulting complex is the sum of Eint plus the folding energy of all toyProteins involved. The lower

the total energy, the more stable the complex. When several toyProteins or toyDimers can bind to the

same molecule, only the most stable complex is formed. Consistently with the assumptions for protein

folding, when this rule does not determine univocally the result, no binding is produced.

As the length of toyMetabolites is usually longer than 4 toyS (the length of interacting toyProtein

sites), several binding positions between a toyMetabolite and a toyProtein might share the same energy.

6

toyGENEStoyPROTEINS
toyDIMERS

toyPROTEINS – toyPROTEINS

toyPOLYMERASE

toyPROTEINS
toyDIMERS

toyMETABOLITES

a b

Supplementary Figure S4: Interactions in toyLIFE. (a) Possible interactions between pairs of toyLIFE

elements. toyGenes interact through their promoter region with toyProteins (including the toyPoly-

merase and toyDimers); toyProteins can bind to form toyDimers, and interact with the toyPolymerase

when bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite at arbitrary re-

gions along its sequence. (b) When a toyDimer or toyProtein binds to a toyMetabolite with the same

energy in many places, we choose the most centered binding position. If two or more binding positions

have the same energy and are equally centered, then no binding occurs.

In those cases we select the sites that yield the most centered interaction (Supplementary Figure S4b).

If ambiguity persists, no bond is formed. Also, no more than one toyProtein / toyDimer is allowed to

bind to the same toyMetabolite, even if its length would permit it. toyProteins / toyDimers bound to

toyMetabolites cannot bind to promoters.

Interaction rules in toyLIFE have been devised to remove any ambiguity. When more than one rule

could be chosen, we opted for computational simplicity, having made sure that the general properties

of the model remained unchanged. A detailed list of the specific disambiguation rules implemented in

the model follows:

1. Folding rule: if a sequence of toyAminoacids can fold into two (or more) different configurations

with the same energy and two different perimeters with the same number of H, it is considered

degenerate and does not fold.

2. One-side rule: any interaction in which a toyProtein can bind any ligand with two (or more)

7

different sides and the same energy is discarded.

3. Annihilation rule: if two (or more) toyProteins can bind a ligand with the same energy, the

binding does not occur. However, if a third toyProtein can bind the ligand with greater (less

stable) energy than the other two, and does so uniquely, it will bind it.

4. Identity rule: an exception to the Annihilation rule occurs if the competing toyProteins are the

same. In this case, one of them binds the ligand and the other(s) remains free.

5. Stoichiometric rule: an extension of the Identity rule. If two (or more) copies of the same

toyProtein / toyDimer / toyMetabolite are competing for two (or more) different ligands, there

will be binding if the number of copies of the toyProtein / toyDimer / toyMetabolite equals the

number of ligands. For example, say that P1 binds to P2, P3 and P4 with the same energy. Then,

(a) if P1, P2 and P3 are present, no complex will form; (b) if there are two copies of P1, dimers

P1-P2 and P1-P3 will both form; but (c) if P4 is added, no complex will form. Conversely, if all

ligands are copies as well, the Stoichiometry rule does not apply. For example, three copies of P1

and two copies of P2 will form two copies of dimer P1-P2, and one copy of P1 will remain free.

1.3 Regulation

Expression of toyGenes occurs through the interaction with the toyPolymerase, which is a special kind

of toyProtein (see Supplementary Figure S1). The toyPolymerase only has one interacting side (with

sequence PHPH) and its folding energy is fixed to value −11.0: it is more stable than more than half

the toyProteins. It is always present in the system. The toyPolymerase binds to promoters or to the

right side of a toyProtein / toyDimer already bound to a promoter. When the toyPolymerase binds to a

promoter, translation is directly activated and the corresponding toyGene is expressed (Supplementary

Figure S5a). However, a more stable (lower energy) binding of a toyProtein or toyDimer to a promoter

precludes the binding of the toyPolymerase. This inhibits the expression of the toyGene, except if the

toyPolymerase binds to the right side of the toyProtein / toyDimer, in which case the toyGene can be

expressed.

The minimal interaction rules that define toyLIFE dynamics endow toyProteins with a set of possible

activities not included a priori in the rules of the model (see Supplementary Figure S5). For example,

since the 4-toyN interacting site of the toyPolymerase cannot bind to all promoter regions —because

some of these interactions have Eint > Ethr—, translation mediated by a toyProtein or toyDimer binding

might allow the expression of genes that would otherwise never be translated. These toyProteins thus

8

Inhibitor

toyPROTEIN
Activator

expression

toyGENE
toyPROTEIN

toyPOLYMERASE
expression
(HP model)

Conditional
activator

Inhibitor

expression

toyPROTEIN

dimerization

Conditional
inhibitors

dimerization

a

b

c

d

e

Supplementary Figure S5: Regulatory functions in toyLIFE. (a) A toyGene is expressed (translated)

when the toyPolymerase binds to its promoter region. The sequence of Ps and Hs of the toyProtein will

be exactly the same as that of the toyGene coding region. (b) If a toyProtein binds to the promoter

region of a toyGene with a lower energy than the toyPolymerase does, it will displace the latter, and

the toyGene will not be expressed. This toyProtein acts as an inhibitor. (c) The toyPolymerase does

not bind to every promoter region. Thus, not all toyGenes are expressed constitutively. However, some

toyProteins will be able to bind to these promoter regions. If, once bound to the promoter, they bind

to the toyPolymerase with their rightmost side, the toyGene will be expressed, and these toyProteins

act as activators. (d) More complex interactions —involving more elements— appear. For example, a

toyProtein that forms a toyDimer with an inhibitor —preventing it from binding to the promoter— will

effectively activate the expression of the toyGene. However, it does neither interact with the promoter

region nor with the toyPolymerase, and its function is carried out only when the inhibitor is present.

We call this kind of toyProteins conditional activators. (e) Two toyProteins can bind together to form

a toyDimer that inhibits the expression of a certain toyGene. As they need each other to perform this

function, we call them conditional inhibitors. As the number of genes increases, this kind of complex

relationships can become very intricate.

9

act as activators (Supplementary Figure S5c). This process finds a counterpart in toyProteins that bind

to promoter regions more stably than the toyPolymerase does, and therefore prevent gene expression —

this happens if Eint(PROT)+EPROT < Eint(POLY)+EPOLY. They are acting as inhibitors (Supplementary

Figure S5b). There are two additional functions that could not be foreseen and involve a larger number

of molecules. A toyProtein that forms a toyDimer with an inhibitor —preventing its binding to the

promoter— effectively behaves as an activator for the expression of the toyGene. However, it interacts

neither with the promoter region nor with the toyPolymerase, and its activating function only shows

up when the inhibitor is present. This toyProtein thus acts as a conditional activator (Supplementary

Figure S5d). On the other hand, two toyProteins can bind together to form a toyDimer that inhibits

the expression of a particular toyGene. As the presence of both toyProteins is needed to perform this

function, they behave as conditional inhibitors (Supplementary Figure S5e). This flexible, context-

dependent behavior of toyProteins is reminiscent of phenomena observed in real cells [10], and permits

the construction of complex toyGene Regulatory Networks (toyGRNs).

1.4 Metabolism

When a toyDimer is bound to a toyMetabolite, another toyProtein can interact with this complex and

break it. This reaction will take place if the toyProtein can bind to one of the subunits of the toyDimer

and the resulting complex has less total energy than the toyDimer. As with the rest of interactions,

the catabolic reaction will only take place if this binding is unambiguous. As a result of this reaction,

the toyDimer will be broken in two: one of the pieces will be bound to the toyProtein (forming a new

toyDimer), and the other one will remain free. The toyMetabolite will break accordingly: the part of

it that was bound to the first subunit will stay with it, and the other part will stay with the second

subunit. Note that the toyMetabolite need not be broken symmetrically: this will depend on how the

toyPROTEIN

toyMETABOLITE

toyDIMER + toyMETABOLITE

toyDIMER

toyMETABOLITE

toyPROTEIN +

Supplementary Figure S6: Metabolism in toyLIFE. A toyDimer is bound to a toyMetabolite when a

new toyProtein comes in. If the new toyProtein binds to one of the two units of the toyDimer, forming

a new toyDimer energetically more stable than the old one, the two toyProteins will unbind and break

the toyMetabolite up into two pieces. We say that the toyMetabolite has been catabolised.

10

toyDimer binds to it (Supplementary Figure S6).

1.5 Dynamics in toyLIFE

The dynamics of the model proceeds in discrete time steps and variable molecular concentrations are not

taken into account. A step-by-step description of toyLIFE dynamics is summarised in Supplementary

Figure S7. There is an initial set of molecules which results from the previous time step: toyProteins

t
internal inputinternal input

external input

output

regulation

t+1

external input

ENVIRONMENT

initial state

M D

P

M

MM M

M

expression

P

D P

D

P

D–M

P–M

M

D

P

(D–M + P)
D–G

P–G

Pol–G

Pol toyMETABOLISM

D

P

M

D–M

P–M

DP

P–M

D–M

M

G

t t+1

environment

Supplementary Figure S7: Dynamics of toyLIFE. Input molecules at time step t are toyProteins (Ps)

(including toyDimers (Ds)) and toyMetabolites, either produced as output at time step t −1 or environ-

mentally supplied (all toyMetabolites denoted Ms). Ps and Ds interact with Ms to produce complexes

P-M and D-M. Next, the remaining Ps and Ds and the toyPolymerase (Pol) interact with toyGenes (G)

at the regulation phase. The most stable complexes with promoters are formed (Pol-G, P-G and D-G),

activating or inhibiting toyGenes. P-Ms and D-Ms do not participate in regulation. Ps and Ds not

in complexes are eliminated and new Ps (dark grey) are formed. These Ps interact with all molecules

present and form Ds, new P-M and D-M complexes, and catabolise old D-M complexes. At the end of

this phase, all Ms not bound to Ps or Ds are returned to the environment, and all Ps and Ds in P-M and

D-M complexes unbind and are degraded. The remaining molecules (Ms just released from complexes,

as well as all free Ps and Ds) go to the input set of time step t +1.

11

(including toyDimers and the toyPolymerase) and toyMetabolites, either endogenous or provided by the

environment. These molecules first interact between them to form possible complexes (see Section 1.2)

and are then presented to a collection of toyGenes that is kept constant along subsequent iterations.

Regulation takes place, mediated by a competition for binding the promoters of toyGenes, possibly

causing their activation and leading to the formation of new toyProteins. Binding to promoters is de-

cided in sequence. Starting with any of them (the order is irrelevant), it is checked whether any of the

toyProteins / toyDimers (including the toyPolymerase) available bind to the promoter —remember that

complexes bound to toyMetabolites are not available for regulation—, and then whether the toyPoly-

merase can subsequently bind to the complex and express the accompanying coding region. If it does,

the toyGene is marked as active and the toyProtein / toyDimer is released. Then a second promoter is

chosen and the process repeated, until all promoters have been evaluated. toyGenes are only expressed

after all of them have been marked as either active or inactive. Each expressed toyGene produces one

single toyProtein molecule. There can be more units of the same toyProtein, but only if multiple copies

of the same toyGene are present.

toyProteins / toyDimers not bound to any toyMetabolite are eliminated in this phase. Thus, only

the newly expressed toyProteins and the complexes involving toyMetabolites in the input set remain. All

these molecules interact yet again, and here is where catabolism can occur. Catabolism happens when,

once a toyMetabolite-toyDimer complex is formed, an additional toyProtein binds to one of the units

of the toyDimer with an energy that is lower than that of the initial toyDimer. In this case, the latter

disassembles in favor of the new toyDimer, and in the process the toyMetabolite is broken, as already

mentioned in Section 1.4 and Supplementary Figure S6. The two pieces of the broken toyMetabolites

will contribute to the input set at the next time step, as will free toyProteins / toyDimers. However,

toyProteins / toyDimers bound to toyMetabolites disappear in this phase —they are degraded—, and

only the toyMetabolites are kept as input to the next time step. Unbound toyMetabolites are returned

to the environment. This way, the interaction with the environment happens twice in each time step:

at the beginning and at the end of the cycle.

12

2 Supplementary Figures

13

a) 31-cells tissue b) 51-cells tissue

Supplementary Figure S8: The same patterns are observed as we increase tissue size. a) All

patterns generated by toyLIFE genotypes when the tissue size is set to be 31 cells. The two numbers

above each pattern represent the pattern’s id and its abundance in genotype space. b) Same but with

51-cell tissues. The patterns are exactly the same, with the same abundances in genotype space.

14

t=0

t=1

t=2

t=3

diffusion

diffusion

diffusion

t t+1

input

diffusion

output

a b

Supplementary Figure S9: Obtaining the cellular automata rules from the truth table. With the

truth table in Figure 1b, we show how to construct the cellular automaton. As before, white means the

cell is empty, blue that protein B is present, orange that protein A is present, and grey that both (or

the dimer) are. a Suppose we want to compute the update rule for the triplet white-white-orange, i.e.

the expression state of a white cell surrounded by white and orange. There is an intermediate diffusion

step where protein A propagates to the central cell, and because protein A promotes its own expression,

in time step t + 1 the central cell will express protein A too. We repeat this process with each of the

43 = 64 triplets. b As an example of how this rule works, we start with a 9-cell long tissue with one

cell expressing protein A and another expressing protein B. In the diffusion step, protein A propagates

to the adjoining cells. Thus, in time step t = 1 three cells express protein A, while every remaining cell

(except the one expressing protein B at t = 0) is blue. In the next step, protein A again propagates to

adjoining cells: note that now one of the cells is grey. This actually prevents the further propagation of

protein A and this cell will always express protein B. The remaining tissue alternates between blue and

white, as seen in Figure 1d. In practice, this process is not computed every time: the update rules for

each cellular automaton are found following the procedure in a and then used directly to compute the

evolution of the tissue.

15

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
0 0

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
0 0

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0

0
0 0

1 0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
0 0

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
0 1

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
0 1

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
0 1

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
0 1

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
1 0

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
1 0

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
1 0

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
1 0

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
1 1

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
0

0
1 1

1

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
1 1

0

A(t) B(t) A(t+1) B(t+1)
0

1

0
0

0
1 1

1
1

1

0
1

0
1 1

1

I) 8.216 x 109 II) 106 III) 1.652 x 109 IV) 3 x 106

V) 9 x 106 VI) 1.71 x 108 VII) 3.0 x 107 VIII) 0.2 x 106

IX) 3.536 x 109 X) 7 x 106 XI) 1.971 x 1011 XII) 1.9 x 107

XIII) 1.42 x 108 XIV) 106 XV) 4.92 x 108 XVI) 1.293 x 109

Supplementary Figure S10: There are sixteen GRNs that generate the pattern in Figure 3b. Truth

tables for all GRNs that generate the desired pattern. The number next to the label represents how

many genotypes (binary sequences of length 40) are mapped into that particular GRN. Notice the wide

variation in abundances.

16

Supplementary Figure S11: Phenotypic bias is observed in the distribution of abundances at all

phenotypic levels. (a) The distribution of abundances of cellular automata (CA) follows a log-normal

law, just like the distribution of GRNs (R2 = 0.64). (b) Likewise, the distribution of abundances of

patterns can also be fitted by a log-normal distribution, although the fit is rather noisy (R2 = 0.42),

given that we only have 176 patterns to fit.

17

0 100 200 300

K

10 10

10 8

10 6

10 4

10 2

100

S

caa) b) c)

Supplementary Figure S12: Simple phenotypes are more common in genotype space. We approx-

imated the algorithmic complexity (K̃) of GRNs (a), cellular automata (b) and patterns (c) following

the work by Dingle et al. [11] (Methods), and plotted them against phenotype abundance (S). The dis-

parity in lengths between the string representation of different phenotypic levels explains the difference

in magnitude in the values of K̃: GRNs are represented as binary strings of length 12, cellular automata

become binary strings of length 128 and patterns become binary strings of length 6,200. Dingle et al.

conjecture that many input-output maps have the property that simple outputs (as measured by their

algorithmic complexity) should be mapped by more inputs. In our case, this would mean that simple

phenotypes are more abundant in genotype space. This figure confirms this prediction for our three

phenotypic levels. Lines represent the upper bound computed in [11], S = 2−aK̃ , with a ≈ log2 N/max K̃,

where N is the number of phenotypes and the maximal K̃ is computed over all possible phenotypes

(which is straightforward in our case as we know the complete maps). GRNs and cellular automata do

not always lie below the upper bound. This could be explained because the results obtained by Dingle

et al. rely on asymptotic approximations with long strings, but the strings coding these two phenotypic

levels are not very long, so asymptotic approximations may fail. Another more likely possibility is that

these systems have a degree of pseudo randomness to them that makes them appear complex when

they are not.

18

Supplementary Figure S13: Equally fit GRNs appear as the endpoint of evolutionary simulations in

proportion to their relative abundance in genotype space. Although all sixteen GRNs are equally fit

(see main text), evolutionary simulations in which populations undergo Wright-Fisher dynamics do not

find every GRN with equal probability. On the contrary, those GRNs that are more abundant in genotype

space appear more frequently as an endpoint of our simulations, in agreement with Refs. [12,13]. In fact,

the fraction of times a given GRN is the endpoint of the simulations is almost exactly its abundance in

genotype space relative to that of all sixteen GRNs. The discrepancies are a result of limited numerical

sampling: we performed 10,000 replicates of the evolution experiments. Linear fit is approximately y = x

(R2 ≈ 1.0).

19

References

[1] Arias, C. F., Catalán, P., Manrubia, S. & Cuesta, J. A. toyLIFE: a computational framework to

study the multi-level organisation of the genotype-phenotype map. Sci. Rep. 4, 7549 (2014).

[2] Catalán, P., Wagner, A., Manrubia, S. & Cuesta, J. A. Adding levels of complexity enhances both

robustness and evolvability in a multi-level genotype-phenotype map. J. Roy. Soc. Interface 15,

20170516 (2018).

[3] Li, H., Helling, R., Tang, C. & Wingreen, N. Emergence of preferred structures in a simple model

of protein folding. Science 273, 666–669 (1996).

[4] Dill, K. A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509

(1985).

[5] Aharoni, A. et al. The’evolvability’of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

[6] Amitai, G., Gupta, R. D. & Tawfik, D. S. Latent evolutionary potentials under the neutral muta-

tional drift of an enzyme. HFSP J. 1, 67–78 (2007).

[7] Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective.

Ann. Rev. Biochem. 79, 471–505 (2010).

[8] Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary

adaptation in an RNA enzyme. Nature 474, 92–95 (2011).

[9] Hoque, T., Chetty, M. & Sattar, A. Extended HP model for protein structure prediction. J.

Comput. Biol. 16, 85–103 (2009).

[10] Piatigorsky, J. Gene Sharing and Evolution: the Diversity of Protein Functions (Harvard University

Press, 2007).

[11] Dingle, K., Camargo, C. Q. & Louis, A. A. Input–output maps are strongly biased towards simple

outputs. Nat. Comm. 9, 761 (2018).

[12] Schaper, S. & Louis, A. A. The arrival of the frequent: how bias in genotype-phenotype maps can

steer populations to local optima. PLoS ONE 9, e86635 (2014).

20

[13] Greenbury, S. F., Schaper, S., Ahnert, S. E. & Louis, A. A. Genetic correlations greatly increase

mutational robustness and can both reduce and enhance evolvability. PLoS Comput Biol 12,

e1004773 (2016).

21

