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Networks of social interactions are the substrate upon which civilizations are built.
Often, we create new bonds with people that we like or feel that our relationships are
damaged through the intervention of third parties. Despite their importance and the
huge impact that these processes have in our lives, quantitative scientific understanding
of them is still in its infancy, mainly due to the difficulty of collecting large datasets
of social networks including individual attributes. In this work, we present a thorough
study of real social networks of 13 schools, with more than 3,000 students and 60,000
declared positive and negative relationships, including tests for personal traits of all
the students. We introduce a metric—the “triadic influence”—that measures the
influence of nearest neighbors in the relationships of their contacts. We use neural
networks to predict the sign of the relationships in these social networks, extracting
the probability that two students are friends or enemies depending on their personal
attributes or the triadic influence. We alternatively use a high-dimensional embedding
of the network structure to also predict the relationships. Remarkably, using the triadic
influence (a simple one-dimensional metric) achieves the best accuracy, and adding the
personal traits of the students does not improve the results, suggesting that the triadic
influence acts as a proxy for the social compatibility of students. We postulate that the
probabilities extracted from the neural networks—functions of the triadic influence
and the personalities of the students—control the evolution of real social networks,
opening an avenue for the quantitative study of these systems.

social networks | triadic influence | relationship prediction | machine learning

Positive relationships help individuals thrive in society, whereas negative ones can
jeopardize our chances of success and happiness. Social relationships arise from
interactions between individuals and have been studied on different time scales and
contexts (1, 2). As a result, social networks are formed, with individuals as nodes and
interactions as links (3), and they can be studied and characterized using a complex
network approach (4) in order to assess the many implications of social structure in our
lives (5). A great deal of research has been carried out on social networks by aggregating
the interactions that occur over a certain period of time to define links, starting from
the pioneering work of Moreno (6). However, such an approach does not capture the
dynamics of relationships, which is necessary to advance our understanding of the field
(7). Large efforts have been devoted to this question in recent years, mainly using
empirical data with different degrees of time resolution, such as, e.g., letter exchanges (8),
mobile phone communications (9, 10), spatial mobility (11), or face-to-face interactions
(12–14). (See also ref. 15 for a review.) All these analyses have led to many interesting
insights into the evolution of relationships, but the issue of the mechanisms that explain
how/why these relationships are created and evolve remains elusive.

Several models have been proposed to explain different aspects of the empirical
observations. The first attempts were devoted to reproduce some of the structural
properties observed in social networks, such as the small world phenomena (16) or
the rich-get-richer effect (17, 18). Starnini et al. (19) proposed a simple model based
on random walks and individual attractiveness to describe face-to-face interactions. For
social networks, Jin et al. (20) studied networks with exponential decay of tie strengths
to represent friendships. Other approaches have resorted to exponential random graph
models (21) or stochastic actor-oriented models (22). Finally, regression models that
incorporate a selection of individual traits have also been considered for online social
networks (23). Still, none of these approaches sheds light on friendship formation in real
life, taking into account the characteristics of the individuals and how some relationships
can influence others.

In this paper, we contribute toward the understanding of friendship formation by
adopting a different point of view, namely that of link prediction in networks (24).
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The problem of link prediction, as originally formulated, is about
temporal networks: Given the graph of connections between
certain entities or nodes during some interval, the task is to
predict the set of links in a later interval. Notwithstanding this
definition, the same idea applies to many different situations, such
as recommendation systems (25), bioinformatics (26), scientific
collaboration networks (27), criminal networks (28), or even
estimating the reliability of network data (29), to name a few.
In the case of online social networks, link prediction has been
considered, for example, by Song et al. (30) or Hao (31). (See ref.
32 for a review.) Much less has been explored regarding real-world
social networks, in particular, friendship networks (33), due to
the difficulty of collecting data on reasonably complete social
networks that include personal attributes in real settings. For this
reason, the discussion has been devoted in many cases to ego
networks (i.e., data on disconnected individuals who mentioned
their friends) and to the meaning of friendship (34).

In this work, we study social networks collected in 13 complete
high schools in Spain, containing more than 3, 000 individuals
and 60, 000 declared relationships between them. All students
completed tests including information about their self-declared
gender, cognitive results, and other variables that measured their
selfishness/prosociality. Performing link prediction on this data,
we are able to extract the probability that two students will be
friends/enemies depending on their personalities. We also studied
how this probability is affected by other relationships, defining
a metric that we have termed triadic influence. Although we
analyze static networks, our results suggest that the probabilities
that we extract determine the mechanisms that control the initial
formation of relationships and the evolution of the whole social
network.

Results

Data collection was carried out in 13 schools in different areas
of Spain, with a total of 3, 395 students. They were asked to
choose with whom they were related within their school by
picking names from a school list. Then, they had to rate the
relationship as very bad, bad, good, or very good, which we
codified as −2, −1, +1, and +2, respectively. We recovered
60, 566 declared relationships; SI Appendix for more details. In
addition, we also collected data on the students’ gender (self-
reported), cognitive skills (measured by the cognitive reflection
test, CRT), and their prosociality (Methods for details on these
individual features). With this information, we build a directed
weighted network, with each link representing a relationship that
goes from the nominator to the nominee—two nodes can be
connected by links in both directions—weighted by the reported
rating. Additionally, each node represents one student and has
his/her individual attributes (gender, CRT, and prosociality).
Fig. 1 presents a sketch of the kind of social network that we will
study. We have included several figures studying the structure of
these social networks in SI Appendix, Figs. S1–S4.

In this work, we study the correlations between the personal
features of both students and the type of relationship between
them as well as the influence of other students on that rela-
tionship. We have used artificial neural networks to perform
link prediction within our dataset from two complementary
viewpoints: The first one focuses on the local structure, using
the personality traits of both students and the influence of the
nearest neighbors as described in the next section; the second
one uses only the structural information of the network—the
undirected and unweighted graph—to predict relationships. In
what follows, we discuss these two approaches separately.
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Fig. 1. Diagram of a social network that includes personality traits and
computation of the triadic influence. To predict the relationship from node 0
to node 1, we can use the individual features of both students (represented by
the sliders within their body) and/or the triadic influence I01. The directions
of these relationships are marked by arrows going from the nominator to
the nominee, whereas the weight/intensity is represented with colors and
edge labels (dark green, close friend; green, friend; yellow, dislike; orange,
enemy). Thick arrows highlight the relationships that enter the calculation
of I01. To compute I01, we select all directed paths of length 2 from
node 0 to node 1 (0 → node → 1). In this example, they are 0-5-1 and
0-6-1. The path 0-3-1 is not a directed path (the direction of the edges is
0 → 3 ← 1) and therefore is not included in the calculation of I01. Thus,
I01 = w05w51 + w06w61 = 2 · 2 + (−1) · 2 = 2.

Predicting with the Personality Traits and the Influence of the
Nearest Neighbors. Fig. 1 shows a sketch of the social network
with all the information available to perform link prediction.
It shows the students (nodes) with their traits (sliders) and
relationships of different types between them. In this section, we
use only local properties of the network to predict the relationship
between two students, namely the individual features of both
students (e.g., nodes 0 and 1 in Fig. 1) and the directed weighted
paths of length 2 between them. Specifically, we define a variable
that we term triadic influence as Iij ≡

(
W 2)

ij =
∑

k wikwkj,
where wik is the weight of the link that goes from node i to node
k (Fig. 1 for an example). The triadic influence condenses into one
scalar the influence of third parties; e.g., if node i declares node k
as a friend and k does the same with j, it adds a positive number
to Iij (your friend’s friends are likely to be your friends), whereas
a path containing links of the opposite sign will lead to a negative
contribution (your enemy’s friends or your friend’s enemies are
likely to be your enemies). Iij adds up the contribution from all
directed paths of length 2 between i and j. Interestingly, there is
a connection between the concept of triadic influence and social
balance theory that gives further insight into its meaning. Social
balance theory (35–37) is an attempt to explain the dynamics of
signed networks by classifying local motifs into stable or unstable.
A key role in the theory is played by triangles: Triangles with an
odd number of negative links (e.g., two persons who are enemies
while sharing a common friend) are unstable, eventually evolving
into a more balanced configuration by changing one link’s sign
or removing one link. In this context, the triadic influence adds
up in one scalar the contribution of all the triads that are closed
by that specific link, taking into account that our social network
is weighted and directed. If Iij is positive, it indicates that more
triads will be socially balanced if the link ij is positive, and the
opposite for a negative value of the triadic influence.

For simplicity, we will train a neural network to correctly
classify all relationships in the network into two classes: friends
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and enemies (Methods for more details). We used different combi-
nations of the triadic influence and the individual characteristics
of the students as input for the deep neural network (NN)
and trained it to output the correct value for each relationship
in the training dataset (Methods for a full description of the
neural network and the training process). With our procedure,
we obtain the probability that two students relate through a
relationship belonging to one of the two classes (friends or
enemies) as a function of the corresponding inputs. To avoid
using a misleading metric of performance, since our classes are
unbalanced—there are more declared friends than enemies—we
assess the performance of our method using the balanced accuracy
on the test dataset (38). To compute it, after training the NN,
we feed it with all relations in the test dataset and assign the label
“friend” or “enemy” to the class with the highest probability. The
balanced accuracy is then computed as

bAcc =
1
2

(
N C

+

N T
+

+
N C
−

N T
−

)
,

where N C
α is the number of samples belonging to classα (+ friend

or− enemy) that were correctly classified from the total number
of samples belonging to that class (N T

α ). This is more informative
than other performance metrics because if either the NN classified
everything in the same class or guessed at random, we would
obtain bAcc = 1/2 regardless of the number of samples in
each class, whereas if all relations were correctly predicted, then
bAcc = 1 (Methods).

Fig. 2 collects the accuracies achieved using the NN to predict
the relationships between students with different combinations
of predictors. We first study relationships i → j with at
least one directed path of length 2 from i to j; see Fig. 1
and Methods for more details. The results are shown in the
four upper bars of Fig. 2. (SI Appendix for the distribution
of relationships per number of directed paths of length 2,
SI Appendix, Fig. S2.) We train the classifier using four sets
of predictors: (1) triadic influence and personal information
(gender, CRT, and prosociality) of the pair of nodes, (2) triadic
influence, (3) personal information, and (4) only students’
prosociality. Just as a clarification, in case (1), we use as input for

the NN the triadic influence (a scalar) and the individual traits
of both students (a 6-dimensional array) to predict the correct
label of that relation (friend or enemy). Methods for a detailed
explanation of how the value of the considered features—gender,
CRT, and prosociality—are gathered and computed.

The highest balanced accuracy, 86%, is achieved using the
triadic influence as input, either in combination with personal
information of both students (1) or alone (2). It is remarkable
that such a high accuracy for the prediction of the nature
of a relationship (friend/enemy) can be obtained with just a
scalar (the triadic influence) and that a 6-dimensional array
containing information about both students’ characteristics does
not improve on that. This suggests that the triadic influence is
encoding information about the prosociality of i and j as well
as their gender and CRT. We postulate that Iij will probably
also encode (at least partially) any other relevant information for
the determination of the sign of a relationship, such as political
views, hobbies, sexual orientation, etc., …because our friends
(and enemies) reflect on us our own idiosyncrasy (“known by the
company we keep”). This suggests that Iij can act as a proxy for
personal compatibility when individual traits are not available.

On the other hand, using only the personal traits of both
students (3) yields bAcc = 60%. We studied the three attributes
(gender, CRT, and prosociality) separately, and prosociality
turned out to be the most predictive. Surprisingly, although
gender homophily is important for the creation of links, it
does not seem to be as relevant when predicting the sign of the
relationship; SI Appendix, Figs. S6 and S7 for more details. In fact,
using only students’ prosociality to predict their relationship (4)
already yields bAcc = 57%, above the accuracy of a random guess
(50%). Note that prosociality is calculated with students’ answers
to three simple questions (Methods). It is really remarkable that
such a simple metric is already predictive of the nature of the
social relationship between two individuals.

Finally, we study separately the relationships that do not have
directed paths of length 2 connecting i to j (i.e.

(
A2)

ij = 0,
with Aij being the adjacency matrix of the network); therefore,
there is no triadic influence between i and j. These results are
shown by the two Bottom bars of Fig. 2. Since this dataset is
much smaller (2% of all relationships, i.e., 1, 211 out of a total

(1) Triadic influence +
personal info.

(4) Prosociality

(5) Personal information

(6) Prosociality 

Balanced Test Accuracy

(2) Triadic influence

(3) Personal information

Fig. 2. Balanced test accuracy for different choices of information used to train the NN. Purple bars correspond to relationships where there is at least one
directed path of length 2 from i to j ((A2)ij > 0, Aij being the adjacency matrix of the network). We train the classifier using four sets of predictors: (1) triadic
influence and personal information (gender, CRT, and prosociality), (2) triadic influence alone, (3) personal information alone, and (4) just students’ prosociality.
In all four cases, we trained 10 different NN with random initializations and show here the mean bAcc. Yellow bars correspond to the bAcc for relationships
that have no directed paths of length 2. In this case, we use just two sets of predictors: (5) personal information and (6) students’ prosociality. These cases use
10-fold cross-validation to estimate the performance of the prediction. Error bars represent the SE of the mean in all cases.
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of 60, 566; SI Appendix, Fig. S2 for more details), we assess
the performance of the classifier using 10-fold cross-validation to
ensure that our results are robust. We study two sets of predictors:
(5) the complete personal information of the students (gender,
CRT, and prosociality) and (6) just the prosociality. The mean
bAcc for the 10 realizations within 10-fold cross-validation is
57% for (5) and 55% for (6). Note that the mean bAcc seems
to decrease compared to the case when

(
A2)

ij > 0 (purple bars),
although the significance of this difference is low given that error
bars corresponding to cases (3) and (5) as well as (4) and (6)
either overlap or are very close.

Interpreting the Probabilities Learned by the Neural Network.
It is important to note that until now, we have chosen to assess
the performance of our prediction using bAcc for the sake of
simplicity. However, the NN learns more than this; in particular,
it learns to predict the probability that a relationship belongs
to each of the classes in the dataset. (Methods for a detailed
explanation of how this is achieved through the minimization
of the cross-entropy loss function.) The great advantage of using
low-dimensional inputs is that we can interpret what the NN is
learning. We can plot the probability that a sample belongs to

a class (friend/enemy) as a function of the different predictors.
In Fig. 3A we plot this probability as a function of the triadic
influence. We use the 10 different NNs trained for Fig. 2 (2)
and plot the average probability of being friends and enemies
for a pair of students with a given triadic influence. The colored
area around both curves represents the SD of the probabilities.
The probability of being friends saturates to 1 when the triadic
influence Iij � 1 and drops to 0 if the triadic influence Iij . 0
(the probability of being enemies is the complementary because
both add up to 1). The probability curves of being friends and
being enemies cross around Iij ≈ 5. Note that this is the only
information used when computing the accuracy bAcc because
we identify each relationship with the most probable one, as
predicted by the NN. However, the probabilities learned by
the neural network (which minimize the cross-entropy loss,
Methods) contain much more information and could be used
to generate ensembles of social networks or to simulate their
evolution using stochastic Markov chains. It is worth mentioning
that, although the probability curves change abruptly around
Iij ≈ 0, this change slows down as the triadic influence increases,
thus displaying an asymmetric behavior on both sides of the
crossing point Iij ≈ 5. These probabilities are reminiscent
of the asymmetric behavior presented by the distribution of

A
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(to
)

Prosociality (from)

Probability being enemiesC

Pr
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lit
y 

(to
)

Prosociality (from)

Probability being friendsD

B

Fig. 3. Probabilities of being friends/enemies as a function of the triadic influence and prosociality. Panel (A) shows the probability learned by the NN as a
function of the triadic influence. We performed 10 simulations that led to the accuracy shown in the (2) bar in Fig. 2. Continuous lines in panel (A) correspond to
the mean, whereas the shaded area corresponds to one SE of the mean. Panel (B) shows the distribution of friends/enemies as a function of the triadic influence.
Note that the probabilities in panel (A) display an asymmetry reminiscent of the distribution of the data. Panel (C) and (D) display the mean probabilities learned
by the 10 NN used in Fig. 2 (4); they show the probability of having a friendly/enmity relationship as a function of the prosociality of both students, the nominator
(from) and nominee (to). Both probabilities are normalized to 1.
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friend/enemy relationships, shown in panel (B). A linear model
can capture the transition at Iij ≈ 5, but it cannot capture the
asymmetry in the probabilities (SI Appendix, Fig. S5).

Fig. 3 C and D display the probability of being enemies and
friends, respectively, as a function of the prosociality of both
students (nominator/nominee), averaged over the 10 simulations
used for case (4) of Fig. 2. Similarly to the case of the triadic
influence, even though bAcc is fully determined by the curve
where the probability is 0.5, the profiles shown in these figures
convey much more information. In particular, we can see that
the probability that two students with 0 prosociality are enemies
is above 70%, which is in line with what one would expect:
Selfish people declare to have more enemies and are declared
enemies more often than altruists (SI Appendix, where this can
also be directly observed in the raw data, SI Appendix, Fig. S4).
Alternatively, two highly prosocial students are friends with a
probability higher than 60%. Note also that both colormaps
are approximately symmetric with respect to the diagonal. This
implies reciprocity: The probability that i declares j as a friend
is approximately the same as the probability that j does the same
with i.

Predicting with the Structural Information of the Social
Network Alone. In the previous sections, we use local
information—individual features and triadic influence—to pre-
dict relationships. Complementary to this, in this section, we will
attempt to make the same predictions using only the structure of
the network—excluding weights, link directions, and individual
features—hoping to shed light on the role played by the structure
of the network for the creation of different relationships. We will
merge labels {+1, +2} into a unique “friends” label and labels
{−1,−2} into a unique “enemies” label so that predictions can
be binary. In order to do that, we will create a node embedding
by assigning to each node a d -dimensional array of features—
which will replace the array of individual features used in the

previous section. A 128-dimensional embedding is created with
Node2Vec (39), an algorithm that explores the neighborhood of
each node using biased random walks (Methods for more details
and SI Appendix, Figs. S8 and S9). The embeddings of all nodes
are then used as inputs to train different models in order to
predict the relationships in the network. We show here the case
where we train a neural network, although we have also used a
random forest (SI Appendix, Fig. S10) obtaining similar results.

We create the embeddings for all nodes once and keep them
throughout. We then train a neural network to predict the
relationship between pairs of students (friends/enemies) using
both their embeddings as input. This is akin to using the
individual features of both students in the previous section; only
this time embeddings encode information about the environment
surrounding each node. We have trained and tested the neural
network using two alternative treatments: In treatment I, we
have chosen at random 20% of the relationships from all high
schools as the test dataset and trained the neural network using
the rest of the relationships; in treatment II, we have created a
test dataset with all the relationships inside one specific age level
from one high school and trained the model using all the other
relationships. For treatment I, we trained the neural network 390
times, every time changing the train and test datasets as well as
the initialization of the neural network (the embeddings do not
change). For treatment II, there are 39 different age levels within
the 13 high schools that we study, and we trained 10 different
neural networks for each age level—390 simulations in total.

The results corresponding to treatments I and II are summa-
rized in Fig. 4. In this figure, we show the accuracy as a histogram
after carrying out treatments I and II for the 390 simulations—
purple and orange bars, respectively. For treatment I, where we
train and test on random relationships, the average accuracy is
∼75%, and the accuracy is always above 60% (purple bars).
However, when we test on a complete age level that was excluded
from the training dataset the performance degrades (treatment

Fig. 4. Distribution of balanced accuracy for the 13 high schools. Each histogram is composed of a sample of N = 390 points, which are different simulations
for the same treatment. The histograms are normalized so that the area under the curve is 1. The purple (dark) histogram represents treatment I where we
use a random pick of edges as the test set. The orange (light) histogram represents treatment II, where we pick a specific age level from a high school as the
test set. The same figure for a random forest model is included in (SI Appendix, Fig. S10).
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II), the mean accuracy is now ∼60% (orange bars), and there
are some instances where the model is not doing better than a
dummy model (bAcc ∼ 50%).

The fact that the model has predictive power using only
structural information shows that there is a structural difference
between the environments of friendly and adversarial relation-
ships. Besides, since the predictive power of the model decreases
when testing on an isolated age level, this suggests that the
structure of most age levels contains specific information that
is not present in the rest of the data. We have used two
dimensionality-reduction techniques to plot the embeddings
corresponding to the relationships (SI Appendix, S11–S14). We
observe that the relationships form clusters corresponding to the
different age levels contained in each school. This proves that the
relationships belonging to different age levels occupy different
regions of input space. Therefore, when we validate taking
relationships at random, we are testing the model in regions of
input space that have been used during training (interpolation),
whereas when we test on relationships in a complete age level,
we are testing outside the regions explored during training
(extrapolation), explaining the decrease in accuracy observed in
Fig. 4.

Discussion

In this paper, we have applied techniques for link prediction
to gain insight into the mechanisms behind the formation and
evolution of social networks. This has been possible due to
the large amount of data that we have collected, comprising
individual features of more than 3, 000 students as well as their
corresponding network of personal relationships—over 60, 000
connections. The picture of the network dynamics that emerges
from our work is as follows. Some initial relationships appear
between pairs of students, promoted by their prosocial stance.
As a matter of fact, we have shown that the prosociality of both
students by itself is capable of predicting isolated relationships
significantly better than a purely random guess. This is actually
a very strong claim because many of those initial relationships
are now hidden among many other relationships that emerged
afterward, and the isolated ones that we can find now are
probably very sensitive to noise or trolling (e.g., students that
label randomly other peers as friends/enemies). We hypothesize
that isolated relationships continue to emerge until directed paths
of length 2 dominate the dynamics of network formation. As
discussed in previous sections, paths of length 2 are equivalent
to intermediate students who can get two of their contacts
in touch with each other. This mediation, quantified by the
triadic influence, is an extremely good predictor of relationships,
with accuracies as high as 86%. Interestingly, when we focus
on relationships that are not isolated (there are directed paths
of length 2 connecting both students), prosociality is still a
good predictor of them. This suggests that some of these
relationships might have originated as isolated relationships and
that prosociality is still important even when the relationship
is not isolated. Complementary to this, we have observed that
the accuracy achieved by the triadic influence does not improve
if we also provide personal information about the students.
This implies that the triadic influence somehow subsumes
the information on the students’ characteristics, rendering it
irrelevant to predict relationships. It is still an open question
whether information obtained from more elaborated personality
tests could improve on the predictions achieved by the triadic
influence alone.

On the other hand, we have used state-of-the-art algorithms to
create an embedding for each student that contains information
about their surrounding, considering only the undirected and
unweighted networks. We have shown that this structural
information can be used to predict the type of relationship
between two students. The embedding of each node is created
using a random walk exploration of its surrounding, the depth of
which is a parameter that we can vary (Methods). Depending on
the typical length of the exploring random walks, this method can
gather different structural information. The maximum length of
the random walks used in this study is L = 4 (SI Appendix,
Fig. S6). Therefore, the Node2Vec algorithm is exploring the
local structure of each student. This aligns with the results
achieved using the triadic influence, suggesting that the closest
contacts in the network—the local environment—are the ones
that influence the creation/transformation of relationships the
most. Although predictions using the triadic influence achieve
higher accuracies, it is remarkable that this method can predict the
sign of a relationship using only structural information (without
using the weights or directions of the edges).

Interestingly, ref. 40 suggests that individuals with similar
genotypes may not be actively selected into friendships. In-
stead, they may be placed into these contexts by institutional
mechanisms outside their control. Our conclusions could be
interpreted similarly; the triadic influence may act as a social
force that encourages students that are compatible (incompatible)
to have positive (negative) relationships, akin to the popular
knowledge “to be judged by the company you keep.” In this case,
prosociality would be still a good predictor of the relationship
even though it was the social context—the triadic influence
in our case—which promoted the relationship. This raises an
important point that we want to stress: Predictability does not
imply causality. Another situation that highlights the difficulty
of disentangling cause and effect is that at the time we collected
the data, many relationships that nucleated in isolation due to
prosociality alone were now surrounded by multiple directed
paths of length 2, and we have shown that the triadic influence
is a very good predictor of the label of these relationships, even if
their existence predated the paths entering the computation of the
triadic influence. Therefore, while our results suggest a nucleation
mechanism based on individual traits followed by growth and
evolution of the network dominated by the triadic influence,
they do not prove that this is indeed the case. In order to assess to
what extent this idea describes what is actually happening in real
networks, a possibility would be to use the probabilities that we
have learned through our link prediction techniques to simulate
growing/evolving networks and then compare these simulations
with real data. In particular, it will be extremely interesting to
collect data for the same network at different times to test the
plausibility of different mechanisms of network evolution based
on the probabilities learned here. If our proposal remains a good
candidate to explain how networks form and evolve, then specific
questions of interest arise, such as when the paths of length 2
begin to dominate over the primitive relationships existing in
a network or how a local change in the sign of a relationship
can lead to a cascade of changes with global effects on the
social network.

Finally, it is worth mentioning that our results come from
data from a large number of surveys but from a very specific
population, namely, teenagers in secondary schools in Spain.
Thus, the generality of our results should be validated by
gathering similar data from other collectives and performing
similar analyses.
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Materials and Methods

Data Collection. Surveys were conducted in 13 Spanish high schools
(mandatory education, 11 to 15 y of age). The study was approved by the
Ethics Committees of Universidad Carlos III de Madrid and Universidad Loyola
Andalucía, and the surveys were subsequently carried out in accordance with
the approved guidelines. Consent was obtained from the schools which adopted
this as a research project of their own and in turn got informed consent
from the participants’ parents. Students participated always voluntarily and
signed informed consent prior to beginning the survey. The surveys were
delivered through a computer interface and included direct questions about their
relationships as well as some others aimed at identifying personal attributes.
To elicit relationships, students could choose from a list containing all the other
students in their own school. The number of classes participating in the study in
each school depended on the availability of time and the decisions of the school
direction. The data corresponding to one of the schools, also included in this
work, were presented in full detail in ref. 41. For each student, we collected the
following:

• General data: School ID, age level, class, and a student ID assigned by the
software for the purpose of this study.

• List of relationships:All the relationships declared by the student (very good,
good, bad, and very bad) were collected with the student IDs of the nominees
and the corresponding labels (+2, +1,−1,−2).

• Individual traits:
– Gender, which included 1,789 males, 1,720 females, and 4 nonbinary

people.
– Cognitive reflection test (CRT), computed using the answer to 3

questions about logic (42, 43), and yielding values 0, 1, 2, and 3.
– Prosociality, evaluated through the answer to the three following

questions about sharing (qi ranks the level of selfishness of each
answer):

* What do you prefer? A) 10e for you and 10e for your partner
(q1 = 0) B) 10e for you and 0e for your partner (q1 = 1).

* What do you prefer? A) 10e for you and 10e for your partner.
(q2 = 1) B) 10e for you and 20e for your partner (q2 = 0).

* What do you prefer? A) 10e for you and 10e for your partner
(q3 = 0) B) 20e for you and 0e for your partner (q3 = 1).

The selfishness score is s = q1 + q2 + q3, and the prosociality index
is obtained as p = 1− (s/3). This task is based on (44) (see ref. 45
for details).

Predicting Relationships Using Local Information. Our social networks are
directed graphs representing the relationships between all the students within
each of the high schools of our study. We kept only the students who answered
all the tests about their individual features (described above), a total of 3,395
students and 60566 relationships. Relationships are gathered in the weighted
adjacency matrix W , with elements wij ∈ {−2,−1, 0, 1, 2} corresponding
to the value of the relationship that student i declares to have with student
j (wij = 0 if there is no declared relationship). Note that wii = 0 and that
W is not symmetric (relations are not necessarily reciprocal). Additionally, the
individual traits described above (self-declared gender, CRT, and prosociality)
are stored in the nodes ni of the graph. A key quantity used in this work is
the triadic influence Iij ≡ (W2)ij =

∑
k wikwkj. It quantifies the aggregated

contribution of the directed paths of length 2 that go from i to j. Note that triadic
influence considers only directed paths from i to j and that Iij 6= Iji in general.

In order to use a neural network to predict the declared relationships between
students, we would like to avoid having highly unbalanced classes, and therefore,
we define a task with only two classes: friends (we consider here only +2
relationships) or enemies (we merge here relationships−2 and−1). We have
also considered a more unbalanced case, with the friend class corresponding
to relationships with labels +1 and +2, and the results were qualitatively
analogous. In any case, when we compute the triadic influence Iij, we keep
all the labels in the network {−2,−1, 1, 2} (Fig. 1 for an example). In this

section, we use a deep neural network with one hidden layer, ReLu activation
(see e.g. ref. 46), and 100 hidden units. The input dimension depends on the
data we want to use to predict the relationship. Our neural network is a nonlinear
function of the inputs and the internal parameters (numbers that change their
value during training), which outputs a vector of dimension two. Let us call these
outputs f(I ,W)i, where I stands for the inputs corresponding to one specific
relationship (triadic influence, gender of both students …),W are the internal
parameters of the network, and i = 0, 1 indicates one of the two classes in our
dataset (friends/enemies). Then, these outputs are put into a SoftMax function
(see e.g. ref. 46) such that

q(I ,W)i ≡
ef(I ,W)i

ef(I ,W)0 + ef(I ,W)1
,

where q(I ,W)i can be interpreted as the probability that a specific sample,
characterized by inputsI , belongs to class i = 0, 1. Training the neural network
amounts to minimizing a loss function such that q(I ,W)i resembles the actual
probability distributionp(I)i = δi,`(I) for each sample—`(I) being the label
of that input data and δi,j = 1 if i = j and 0 otherwise. We use the cross-entropy
loss function

L = −
∑
k,i

p(Ik)i log(q(Ik ,W)i) = −
∑
k

log(q(Ik ,W)`(Ik)),

where the index k runs over all samples in the dataset. Note that if
q(Ik ,W)`(Ik) = 1 for all k, the network would predict with 100% certainty the
correct label for all samples. In this situation,L = 0, indicating that for the set of
parametersW , the functionL reaches an absolute minimum. Hence, training
the neural network amounts to minimizing L with respect to the parameters
W . We have used stochastic gradient descent with an initial learning rate of
0.1 and a decaying factor of 0.99. We use a minibatch of size 20, and unless
otherwise stated, we minimize for 200 steps and compute the accuracy in the final
step. We observe that 200 minimization steps are enough to find a minimum
of the loss function, which does not decrease further by using more steps or
larger minibatches. Since we do not use all the data during training, we simply
oversample the class with the smallest number of samples so that each minibatch
has the same number of samples from each class. In the case of the prediction of
isolated relationships (two Bottom bars of Fig. 2), the dataset is greatly reduced.
To ensure that our results are robust, we use a 10-fold cross-validation approach
and report the mean value and an error bar representing the SD from the
mean. In this case, we train for 1,000 minimization steps using a dynamical
loss function with oscillations of amplitude 10 and a period of 5 minimization
steps. A dynamical loss function weights the contribution of each class to the
loss function with proportionality factors that oscillate during minimization. This
process changes the topography of the loss function landscape (47) and helps
the model find deeper and wider minima of the loss function. (See ref. 48 for
further details.)

Predicting Relationships Using Global Information. The steps followed in
the process of creating the embeddings and predicting the class of a relationship
are as follows:

• Passing the graph as an object to Node2Vec (39) yields a 128-dimensional
vector for each node (an embedding). Node2Vec is defined by the two
hyperparameters (p, q), which describe the space explored by the random
walks. We use (p = 1, q = 4) after doing a hyperparameter optimization.
The characterization of the typical random walk in this process can be found
in SI Appendix, Figs. S8 and S9.

• We merge the embeddings of each pair of nodes that are connected in the
graph to create the embedding of each edge (relationship), leading to other
vectors of 128 components, e.

• The structural representation for each edge, e, is the input that we use to
predict the label, friends/enemies of the relationships in the training dataset.
We oversample the training data (test data are left untouched) using the
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SMOTE technique (49). This method produces new samples by interpolating
close existing points in the 128-dimensional space.

• We apply two different machine learning procedures: a random forest and an
artificial neural network.

The artificial neural network was implemented in the standard library
TensorFlow (50) with one input layer of 128 neurons and 3 hidden layers—
the sizes of the network layers are 128, 64, 32, and 8—and we use the
ReLu activation function. The final output included a sigmoid function. To
select the size of the input layer—the embedding dimension—its size was
increased until the accuracy reached a plateau. The number of hidden layers
has been chosen in a similar way obtaining the best results in a cross-
validation procedure. The number of neurons in each hidden layer was changed
sequentially to optimize the final accuracy. We also used a random forest model
following previous designs in the literature (51) which provided similar results
(SI Appendix, Fig. S10).

Data, Materials, and Software Availability. The data and codes to reproduce
the results contained in this manuscript are available at https://github.com/
miguel-rg/triadic-influence (52) and https://zenodo.org/record/7647000#.Y-
5eDtLMJH4 (53).
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Supporting Information Text10

1. Statistical analysis of the data11

Our dataset compromises 13 schools with 3395 students and 60566 declared relationships, where we have already removed12

the students that did not answer all the questions about personality (around 3% of the students) and the relationships that13

included them. From the 13 schools considered, 3 of them are in the Region of Madrid and the rest are in Andalucía. In this14

Supplementary Materials we will name the schools in Andalucía as t11_1, . . . , t11_10, whereas the schools in Madrid will be15

t1, t2 and t6.16

Students can declare to have a very good (+2), good (+1), bad (−1) or very bad (−2) relationship with any other student17

in their school. The distribution of the four types of relationships changes among schools although some features are common,18

see Fig. S1. For all schools, the most numerous relationships are good (+1) relationships, accounting between 40 and 50% in19

most schools. On the contrary, the least abundant relationships are the very bad ones (−2). In addition to this, we see some20

differences between the schools in Madrid and Andalucía but we leave a detailed study of these features for a future work.21

According to the main text, the most important information to predict a relation between students i and j is the triadic22

influence. This quantity accounts for the influence that third people have on other relationships, and uses the directed paths of23

length 2 that connect i to j. For this reason, it is interesting to know how many relationships have a particular number of paths24

of length 2 connecting the starting node (i) and the final node (j). Figure S2 encodes this information. We have plotted each25

school separately (color lines) and all the schools together (black line). From the plot, we can see that 2% of all relationships do26

not have any path of length 2 connecting the starting and final node. The violin plot helps to visualize each school separately.27

Although there is variation between schools, the peak of the joint distribution (black line) is around 5 or 6 paths of length 2.28

Prosociality is computed for each student. Students answer 3 questions that lead to a scalar that takes values 0, 0.33, 0.66 or 129

(see Methods). The proportion of students per prosociality value is similar between schools, see Fig. S3, and resembles the30

distribution of relationships (Fig. S1). The largest group of students in most schools is students with prosociality 0.66, while the31

smallest group corresponds to antisocial students (0). Again, there is an apparent difference between the schools in Andalucía32

and Madrid. The latter seem to have a larger proportion of very social students 1 compared to the schools in Andalucía.33

This seems to be in good agreement with the distribution of relationships where schools in Madrid showed more very good34

relationships (+2). We leave a detailed study of this phenomenon for future work.35

Figure S4 shows the average number of friends/enemies that are nominated by (or that nominate to) students of different36

prosociality values. Clear general trends indicate that students of high prosociality nominate and are nominated as friends37

more often, whereas students with low prosociality belong to negative relationships in a larger proportion than highly prosocial38

students. These results are in good agreement with the probabilities learnt by the neural network in the main text, where39

students with low prosociality had a larger probability of being enemies whereas highly prosocial students have a larger40

probability of being friends.41

In the case where we use a simple fully connected neural network, we aim to learn the probability that two students are42

friends or enemies based on descriptors that we have selected/defined a priori, such as the personal information of each student43

and a new metric proposed by us, the triadic influence. Our goal is to learn these probabilities because we expect them to be44

the foundations for future work that use them to simulate the evolution of social networks. However, even a linear model could45

use the triadic influence to predict the value at which the sign of a relationship would change, this highlights that the triadic46

influence is an extremely good predictor for the sign of relationships. Fig. S5 shows that a linear model can also capture the47

transition where the most probable relationship goes from enemy to friends. Panel (c) shows the percentage of friend and enemy48

relationships for each value of the triadic influence: there is a transition around 5 above which the percentage corresponding to49

friends is higher than enemies. Note that the linear model can capture the correct point at which the transition occurs, however,50

it cannot capture the asymmetry in the probability distribution that stems from the different distribution of friend/enemy51

relationships (one distribution is sharper whereas the other one is flatter).52

Considering homophily in the formation and sign of the relationships. Homophily is present in the creation of links in our53

dataset. From Fig. S6, we see that female and male students form roughly twice as many relationships with other students that54

self-identify with the same gender than with students of the opposite gender. However, in our case we are more interested in55

the type (friend/enemy) of that relationship. In this case, homophily plays also a role. For example, from all the relationships56

that male students form with other male students, 86% are positive, whereas they only declare a 73% of the relationships57

with female students as positive. The case of female students is similar, although the effect of homophily is less strong. They58

declare a 71% of their relations with male students as positive versus a 78% for their relationships with other female students.59

However, although these effects exist, note that if we directly transformed these proportions to probabilities, the probability of60

being friends is always above 50%, regardless of the gender combination. One of the key ideas in our work is that the triadic61

influence acts as a proxy for social compatibility. This means that all the factors that can lead/promote a positive/negative62

relationship are (at least partially) contained in the triadic influence. This is true in the case of homophily, the distribution63

of triadic influence is very similar for all the gender combinations (male-male, female-female, male-female and female-male),64

see Fig. S7. In particular, there is no significant difference depending on the combination of genders, the transition occurs65

approximately in the same point (Iij ∼ 5) and because of that the triadic influence can be used as an universal predictor.66
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2. Predicting using only the structure of the network: additional information on the creation of the embedding and67

alternative results using a Random Forest68

We include here some additional information to clarify how the Node2vec algorithm works. Node2Vec builds the embedding for69

each node using random walks. The configuration of hyperparameters that we have chosen (p = 1 and q = 4) leads to local70

exploration. To create the embedding of one node we use 420 random walks, each of them composed of 30 movement attempts.71

In order to get some intuition, we show in Fig.S8 the path followed by three random walks starting from different nodes, we72

show RWs that does not stay fixed in the initial node, although that is the most probable situation. The local exploration73

of the surrounding of the node by the random walks is confirmed by Fig.S9, which shows the distribution of lengths for the74

random walks with the hyperparameters used in our work (see Methods).75

Finally, to complement the results shown in the main text, we also include here the results for a second method using the76

embeddings as input. We have used a Random Forest (scikit-learn (1)). A Random Forest is an algorithm that divides the77

data into random ensembles of predictors and data. From these randomly chosen pieces of data, the algorithm builds and78

trains decision trees. The final decision is then made on the most popular answer within this population of decision trees. We79

used a maximum depth of 7 levels for our decision trees. Fig. S10 depicts qualitatively analogous results to the ones achieved80

with the neural network and shown in the main text.81

3. Embedding visualization82

In order to improve our understanding of the node embedding, we show in this section the results corresponding to two83

different methods for dimensionality reduction. We use Principal Component Analysis (PCA) and t-distributed Stochastic84

Neighbor Embedding (TSNE). In both cases, we reduce the dimension from 128 to 2, and color each point after applying these85

unsupervised techniques with other properties of the relationships, such as their sign.86

We show in figures S11 and S12 two-dimensional representations of the embeddings. In these figures, each dot represents a87

relationship (a link) in the social network. Color represents the sign of each relationship (friends/enemies). Both methods show88

that the embedding is not linearly separable in two dimensions for the sign of the relationship.89

As it can be seen in figures S11 and, especially, in S12, relationships tend to form clusters. We looked for the correlations of90

this clusters with other node variables, which we recall they are not using during the creation of the embedding. We made91

the same plots as before, but colored by age level (fig.S13 and fig.S14). The colors in this picture refer to the different age92

levels present in our dataset: the sixth (and last) grade of primary school, and the four different grades of secondary school93

(ESO in Spanish). Note that not all the schools had all levels. A dot of a color corresponding to an age level corresponds to a94

relationship where both individuals correspond to that age level. A green dot, for example, would correspond to a relationship95

where both students are in the second grade of secondary school. The label "Intergroup" classifies all the cases where individuals96

in the relationship belong to different age levels. For example, a student from the last grade of primary school who has a97

relationship with someone from the first grade of secondary school.98

The conclusion from the pictures where color represents age level is much more clear, the clusters both in PCA and TSNE are99

related to the age levels that exist in every high school. This clusterization around age levels provides an intuition of why the100

embedding performs poorly when it has to guess the sign of a relationship for a particular age level that it was not included101

during training. This detriment of generalization may suggest that each age level contains particular information important for102

the analysis.103
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Fig. S1. Proportion of the different types of relationship at each school. Students declare relationships with values −2, −1, 1, 2, from nemesis to best friends. These
relationships are directed, from student i → j with value Wij . We have studied 13 schools with 3395 students in total, and 60566 declared relationships. Most common
relationships are +1 followed by +2, −1 and −2. We observe similar percentages across schools.
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Fig. S2. Percentage of relationships according to the number of paths of length 2 connecting the same nodes. For each relationship from i to j we compute the number of
paths of length 2 that go from i to j, after this we compute the number of relations with a specific number of length-2 paths. Upper panel displays a color line for each school
(see legend) and a thicker black line for the distribution corresponding to the complete dataset (clustering all the schools together). Bottom panel show a violin plot for each
school to ease visualization.
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Fig. S3. Distribution of prosocial behavior across schools. Prosocial behavior takes values 0, 0.33, 0.67, 1 and bars correspond to the percentage of students in each school
that display a certain level of prosociality. Distributions are similar across schools although t1, t2 and t6 (schools in Madrid) seem to have a larger proportion of very prosocial
students (1) when compared to the other schools from Andalucía.

6 of 18



(a)

(b)

(c)

(d)

Prosociality Prosociality

ProsocialityProsociality

Fig. S4. Statistics for the number of friends and enemies depending on the prosociality of the students. We merge here −2 and −1 relationships into an enemy category and
+2 and +1 relationships as friends. Panel (a) shows the average number of people nominated as friends by a student of a specific prosociality, whereas panel (b) shows the
average number of people that nominate someone of a specific prosociality as a friend. Panels (c) and (d) are analogous to (a) and (b) but for enemies. Students with high (low)
prosociality tend to nominate and be nominated as friends (enemies) more frequentely. Error bars correspond to the error of the mean.
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(a)

(b)

(c)

Fig. S5. Panels (a) and (b) show the output of the neural network and the probability of being friends/enemies predicted by these outputs. The continuous lines show the
nonlinear model described in the manuscript whereas the dashed lines show a linear model (the same NN without the ReLu nonlinearities). Panel (c) shows the percentage of
friend and enemy relationships for each value of the triadic influence.
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Fig. S6. Total number and percentage of relationships that connect students that self identify as male or female.
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Fig. S7. Triadic influence distribution of friend/enemy relationships male-male, female-female, male-female and female-male relationships.

10 of 18



Fig. S8. Network representation of the students in one of the classes in the dataset, together with three examples of random walks used by Node2Vec to create the embedding
of one node. The random walks are controlled by the hyperparameters (in our case p = 1 and q = 4), they measure the probability of exploring or staying in a certain node
along the path. From the figure, we can see that Node2Vec is exploring the local environment of the node.
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Fig. S9. Distribution of path lengths in the random walks used by Node2Vec. This length is the shortest path between the origin of the random walk and the farthest node in
that walk. A walk of length 0 means staying at the same node. We can therefore understand the locality of the algorithm. The shortest path length has an average and standard
deviation of 0.80 ± 1.07, which shows again that embeddings are mainly built with local structure.
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Fig. S10. Predictions achieved with a Random Forest. Distribution of balanced accuracy for the 13 high schools. Each histogram is composed of a sample of N = 390 points,
that are different simulations for the same treatment, and then normalized such that the area of the histogram sums 1. The purple/dark histogram represents treatment I
whereas the orange histogram represents treatment II, that is, using an specific age level from a high school as the test set.
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Fig. S11. Principal Component Analysis reduction to 2 dimensions for the embedding representation of each relationship, each panel represents a different high school. Color
represents the type of relationship, blue represents a friendship and red an enmity. The data cannot be easily separated in this representation.
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Fig. S12. t-distributed Stochastic Neighbor embedding representation in two dimensions for the relationships of the 13 high schools. As in the figure before, each panel
corresponds to a high school and color represents the type of relationship. As in the case of PCA, there is no clear separation for the type of relationships.
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Fig. S13. Principal Component Analysis embedding representation in two dimensions for the relationships of the 13 high schools. Each panel represents a high school and the
color represents the age level the students belongs to. Due to lack of data, there are high schools where only one age level is available. However, in high schools where there
are more than one age level, the data clearly form clusters that map to the different age levels.

16 of 18



Fig. S14. t-distributed Stochastic Neighbor Embedding representation in two dimensions for the relationships within the 13 high schools, where color represents the age level
the students belongs to. The analysis is similar to the one made for the previous figure, but in this case is even clearer. Relationships form clusters that correspond to the
different age levels present in each high school.
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