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Robustness and evolvability are the main properties that account for the

stability and accessibility of phenotypes. They have been studied in a

number of computational genotype–phenotype maps. In this paper, we

study a metabolic genotype–phenotype map defined in toyLIFE, a multilevel

computational model that represents a simplified cellular biology. toyLIFE

includes several levels of phenotypic expression, from proteins to regulatory

networks to metabolism. Our results show that toyLIFE shares many simi-

larities with other seemingly unrelated computational genotype–phenotype

maps. Thus, toyLIFE shows a high degeneracy in the mapping from geno-

types to phenotypes, as well as a highly skewed distribution of phenotypic

abundances. The neutral networks associated with abundant phenotypes

are highly navigable, and common phenotypes are close to each other in gen-

otype space. All of these properties are remarkable, as toyLIFE is built on a

version of the HP protein-folding model that is neither robust nor evolvable:

phenotypes cannot be mutually accessed through point mutations. In

addition, both robustness and evolvability increase with the number of

genes in a genotype. Therefore, our results suggest that adding levels of com-

plexity to the mapping of genotypes to phenotypes and increasing genome

size enhances both these properties.
1. Introduction
Classical evolutionary models do not account for the robustness and evolvability

of phenotypes [1]. They thus fail to explain some evolutionary phenomena, such

as punctuated equilibria [2,3], constrained evolution [4] or the origins of novelty

[5,6]. In recent years, several research groups have tried to understand this impor-

tant question by studying computational mappings of molecular genotypes to

phenotypes. Some of these maps try to remain faithful to biological phenomena,

such as RNA secondary structure [7–14], protein secondary structure [15–20],

gene regulatory networks [21–24] and metabolic networks [25–28]. More abstract

models have also been developed, such as the polyomino [29–31] and toyLIFE

[32], as well as the Fibonacci map [33] and simple combinatorial maps [34,35].

The robustness and evolvability of phenotypes have also been recently studied

for the artificial life AVIDA system [36].

Even though all these models focus on different aspects of molecular biology,

all of them share some common properties. First, the mapping from genotype to

phenotype is highly degenerate: many genotypes encode the same phenotype.

Additionally, phenotype abundance (the number of genotypes encoding it) is
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not evenly distributed: most phenotypes are rare, while a few

of them are extremely abundant. The probability density func-

tion associated with phenotype abundance is a log-normal

distribution for a wide variety of models [14,34], although in

some cases it has been found to be a power law [33,34]. This

implies that rare phenotypes will not play a central role in evol-

ution: they are hard to find in a genotype space that is filled

with abundant phenotypes [12,14,37]. This degeneracy is

usually accompanied by the formation of neutral networks,

networks of genotypes encoding the same phenotype, in

which two genotypes are connected if they differ in one

point mutation—i.e. if the strings representing each genotype

differ in one letter [7,16,21,25,38]. The degree of a node in

such a neutral network—the number of neutral neighbours it

has—is called genotypic robustness. It is usually normalized

by the total number of neighbours in genotype space, and

thus represents the fraction of neighbours with the same pheno-

type [5]. Inside a particular neutral network, the degree

distribution is highly heterogeneous, but usually unimodal

[13,39]. Additionally, in RNA, the average degree of a neutral

network grows linearly with the logarithm of its abundance

[13]—this positive correlation is also observed in the polyomino

model [30], the HP model [31] and simple genotype–phenotype

maps [34], and is suggested by empirical data [40]. Neutral net-

works of abundant phenotypes percolate genotype space: they

contain genotypes that share almost no letters [5,7,21]. Conver-

sely, most abundant phenotypes are easily accessed from each

other: traversing a neutral network, many phenotypes can be

found at its boundary [5,21,25]. Moreover, abundant pheno-

types are typically found just a few mutations away from a

random genotype [5,9,30]—i.e. they are highly evolvable. This

means that these phenotypes are easily accessible from any

other phenotype, so that the search for new phenotypes

among abundant ones is a fast evolutionary process.

In [32], we presentedtoyLIFE, a multilevel model of a gen-

otype–phenotype map (see figure 1; electronic supplementary

material, §S1 for a summary of toyLIFE’s definition). toyLIFE

includes genes, proteins, regulatory networks and a simple

metabolism. Genes are binary strings of fixed length, divided

in two regions—a promoter and a coding region (figure 1a).

The coding region is translated into a sequence of 16 amino-

acids that folds on a 4 � 4 lattice, following the rules of the

HP protein-folding model [15–17] (figure 1a,d). Once folded,

we only distinguish proteins by their perimeter and folding

energy—note that this definition of folded protein is different

from other versions of the HP model. In toyLIFE, there are

2710 different proteins (electronic supplementary material,

figure S3), most of them obtained from more than one

sequence. However, there are no neutral mutations: every

change in a coding region will result (most of the time) in a

non-folding protein or (more rarely) in a different functional

protein. This is very different from what has been observed in

other versions of the HP model [17–20]. Proteins in toyLIFE

interact with each other to form dimers, and both proteins

and dimers regulate gene expression (figure 1c) and interact

with metabolites (figure 1b). The phenotype in toyLIFE can

be defined in multiple ways. Here, we will focus on a metabolic

definition of phenotype (figure 1e), similar to the one presented

in [25,41]: the set of metabolites that a genotype can metabolize

(electronic supplementary material, §S2). toyLIFE is, to our

knowledge, the only multilevel genotype–phenotype map

incorporating genetic dynamics, protein folding, regulatory

networks and metabolism.
In this paper, we investigate the characteristics of the meta-

bolic genotype–phenotype map of toyLIFE. First, we want to

assess if toyLIFE shares the properties of most computational

genotype–phenotype maps studied before. We will see that, in

spite of toyLIFE’s complexity, its properties are very similar to

many of these maps. Second, we wish to explore the robustness

and evolvability of this map. The regulatory and metabolic

functions of toyLIFE are built on a non-robust, non-evolvable

version of the HP model, in which proteins can hardly evolve

without going through non-folding intermediate steps. We

show in this article that both robustness and evolvability are

enhanced by the superposition of additional levels of organiz-

ation. Third, we will explore how robustness and evolvability

change when genome size is increased. We show that they

increase significantly, and that we can explain this tendency

in the light of toyLIFE’s details.
2. Degeneracy of the genotype – phenotype map
The size of genotype space in toyLIFE grows very quickly

with the number of genes in a genotype. Since a gene in

toyLIFE is a binary string of length 20, there are 220 different

genes. A genotype is formed by choosing g genes from

this set with replacement (the order of genes is irrelevant).

Hence, the number of genotypes with g genes is

gþ 220 � 1
g

� �
� 106g=g! (electronic supplementary material,

§S1). For g ¼ 2, this number is 5.5 � 1011, for g ¼ 3, it is 1.9 �
1017, and for larger values of g it keeps growing almost exponen-

tially. A complete exploration of these genotype spaces is well

beyond our computational possibilities in general. However,

using computational tricks, we have exhaustively analysed

the g ¼ 2 and g ¼ 3 cases—i.e. we have limited our study to

two-gene and three-gene genotypes.

We have restricted ourselves to studying those genotypes

that are able to catabolize at least one metabolite—these will

be called viable genotypes. The remaining (non-viable) geno-

types are unable to catabolize any metabolite. For g ¼ 2, there

are 1.1 � 109 viable genotypes, representing little more than

0.2% of all genotypes. For g ¼ 3, this number is 1.0 � 1015—

approximately 0.5% of all genotypes. In both cases, the

great majority of genotypes are unable to catabolize any

metabolite. But note that the space of viable genotypes is

still enormous.

Among these viable genotypes, many of them catabolize

exactly the same metabolites—they encode the same metabolic

phenotype. For g ¼ 2, there are only 775 different phenotypes,

corresponding to an average of 1.4 � 106 genotypes per pheno-

type. For g ¼ 3, there are 26 492 phenotypes, corresponding to

an average of 3.8 � 1010 genotypes per phenotype. In other

words, for both g ¼ 2 and g ¼ 3, the degeneracy of the geno-

type–phenotype map is huge. From now on, we will refer to

the set of phenotypes found for g ¼ 2 and g ¼ 3 as P2 and

P3, respectively.

The distribution of phenotype abundances is highly

skewed (figure 2a), similarly to what has been observed for

other genotype–phenotype maps. In both cases, the distri-

bution can be empirically fitted to a log-normal distribution.

We obtained the parameters empirically from the log-trans-

formed data, using maximum-likelihood. For both g ¼ 2 and

g ¼ 3, the rank distributions (electronic supplementary

material, figure S9) show a long tail, confirming that, indeed,

http://rsif.royalsocietypublishing.org/
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Figure 1. Brief overview of toyLIFE. (a) The three basic building blocks of toyLIFE are toyNucleotides, toyAminoacids and toySugars. They can be hydro-
phobic (H, white) or polar (P, red), and their random polymers constitute toyGenes, toyProteins and toyMetabolites. The toyPolymerase is a special polymer that will
have specific regulatory functions. These polymers will interact between each other following an extension of the HP model, for which we have chosen the inter-
action energies EHH ¼ 2 2, EHP ¼ 2 0.3 and EPP ¼ 0 [17]. (b) Possible interactions between pairs of toyLIFE elements. toyGenes interact through their
promoter region with toyProteins (including the toyPolymerase and toyDimers); toyProteins can bind to form toyDimers, and interact with the toyPolymerase when
bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite at arbitrary regions along its sequence. (c) A toyGene is expressed (translated) when
the toyPolymerase binds to its promoter region. The sequence of Ps and Hs of the toyProtein will be exactly the same as that of the toyGene coding region. If a
toyProtein binds to the promoter region of a toyGene with a lower energy than the toyPolymerase does, it will displace the latter, and the toyGene will not be
expressed. This toyProtein acts as an inhibitor. The toyPolymerase does not bind to every promoter region. Thus, not all toyGenes are expressed constitutively.
However, some toyProteins will be able to bind to these promoter regions. If, once bound to the promoter, they bind to the toyPolymerase with their rightmost
side, the toyGene will be expressed, and these toyProteins act as activators. (d ) toyProteins fold on a 4 � 4 lattice, following a self-avoiding walk (SAW). For each
binary sequence of length 16, we fold it into every SAW and compute its folding energy, following the HP model. Then we choose the SAW that yields the minimum
folding energy. (e) Metabolism in toyLIFE. A toyDimer is bound to a toyMetabolite when a new toyProtein comes in. If the new toyProtein binds to one of the
two units of the toyDimer, forming a new toyDimer energetically more stable than the old one, the two toyProteins will unbind and break the toyMetabolite up
into two pieces. We say that the toyMetabolite has been catabolized. (Online version in colour.)
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while few phenotypes are very abundant, most of them are

rare. For g ¼ 3, this is especially striking, since 300 pheno-

types in P3 represent nearly 99% of all genotypes—

which means that the remaining 1% is distributed among

approximately 26 000 phenotypes.

All phenotypes in P2 are also found in P3: we can always

add a gene whose product does not fold into any protein to a

viable two-gene genotype. A pertinent question, therefore, is

how abundant the phenotypes belonging to P2 are in three-

gene genotype space. We find that phenotypes in P2 take

up 99.6% of genotypes in g ¼ 3 (electronic supplementary

material, §S4). This means that the 775 phenotypes in P2

dominate the space of phenotypes for g ¼ 3. Only special com-

binations of three proteins and three promoters will yield most

of the phenotypic diversity observed for g ¼ 3. The majority of
genotypes will be extensions of two-gene genotypes with a

third gene that does not interfere with their function.

We can re-compute the histogram in figure 2a(ii) taking

the 775 phenotypes from P2 as a separate set from the

remaining 25 717 phenotypes in P3 that are not in P2 (elec-

tronic supplementary material, §S4). This reveals that the

small bump observed in the right part of the distribution of

phenotypes in P3 (figure 2a) is due to the phenotypes in

P2. When we eliminate these phenotypes, the resulting distri-

bution is much closer to a log-normal. In a sense, it is as if

both sets were somehow independent: one is formed by

two-gene genotypes with a third, non-interfering gene, and

the other is formed by all combinations of three genes that

encode new phenotypes. This influence of P2 phenotypes

decays linearly when genotype size increases (electronic

http://rsif.royalsocietypublishing.org/
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Figure 2. Neutral networks in toyLIFE. (a) The distribution of the number of genotypes per phenotype—phenotype abundance, S—for g ¼ 2 (S2, a(i))
follows a log-normal distribution, with probability density function f (x) ¼ (xs

ffiffiffiffiffiffi
2p
p

)�1 exp (� ( log x � m)2=2s2), where m is the mean and s is the standard
deviation of the normally distributed logarithm of the variable. Here m ¼ 4.742 and s ¼ 1.224, obtained using maximum-likelihood. For g ¼ 3, the distribution
of phenotype abundances (S3, a(ii)) is again very close to a log-normal distribution with m ¼ 5.604 and s ¼ 1.838. The log-normal fit is worse than in (a)
because there is a small bump in the right part of the distribution, where more abundant phenotypes are—due to the over representation of two-gene phenotypes
(see text). (b) Average degree of nodes (circles) in neutral networks (see electronic supplementary material, figure S12 for the degree distribution) versus gene
number g. The average degree kkl of a node grows linearly with gene number g, as kkl ¼ 2 27.6 þ 17.8 g (line). (c) Average robustness (circles) versus gene
number g. Robustness grows with gene number, and we can find a nonlinear relationship between both variables: kRl ¼ 0.895 2 1.392/g (line). (d ) There is a
nonlinear relationship between g and kd1l, the final distance that is reached in a random walk in which genotypes are forced to get away from the starting
genotype every step: kd1l ¼ 0.965 2 1.354/g (line). The circles represent kd1l. (e) There is a linear relationship between kd1l and the average robustness
of the genotypes as obtained in c, given by: kd1l ¼ 0.094 þ 0.972kRl (line), very close to the kd1l ¼ kRl fit. In all cases, the grey area encompasses
two standard deviations, and the fits in (b – e) were obtained using the least-squares method. (Online version in colour.)
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supplementary material, §S5), although they keep represent-

ing more than 80% of genotype space for g � 13.
3. Neutral networks in toyLIFE
Robustness can be defined as R ¼ k=kmax, where k is the degree

of a node in a neutral network, and kmax ¼ 20g is the maximum

number of point-mutation neighbours. In other words, R is the

normalized degree of a node. We can sample genotypes for

different genotype sizes, represented by g (gene number),

and plot the histogram of values of R (electronic supplemen-

tary material, figure S12). All the resulting distributions are

unimodal, as has been observed in other genotype–phenotype

maps [5,13]. toyLIFE genotypes become more robust as g
increases. In fact, there is a linear relationship between g
and kkl, the average degree of a node in a neutral network

(figure 2b): kkl ¼ 2 27.6 þ 17.8g. But kRl ¼ kkl/20g, so we

obtain kRl�0.891 2 1.378/g, which is very close to the least-

squares fit kRl ¼ 0.895 2 1.392/g, shown in figure 2c. The

linear relationship between kkl and g with slope 17.8 indicates

that, on average, for every gene we add to a genotype, nearly 18

out of 20 new mutations will be neutral. This implies that kRl
saturates at a value close to 0.9 when g increases. This result

is consistent with the results of §2, which showed that newly

added genes rarely interfere with an existing phenotype.

These new genes can be viewed as ‘junk’ in the sense that

they do not have any effect on metabolic function and that

mutations in their sequence tend to be neutral. We will see
later on that junk genes are however important, in that they

enhance evolvability in toyLIFE genotypes.

Also, taking into account that P2 phenotypes dominate in

Pg for g � 13 (electronic supplementary material, §S5), we

can estimate that Sg�17.8gS2, so logSg�q þ glog17.8, where

q is a constant. Combining this result with the linear relation-

ship between g and kkl, we obtain for toyLIFE the linear

relationship between kkl and logS, that has been observed

previously for other models [13,30,31,34] (but see figure 3

for a direct verification of this relationship).

In other genotype–phenotype maps, neutral networks

tend to have one giant component [18], although this is not

always the case: too short RNA sequences form neutral net-

works that are highly disconnected [13]. Although network

analysis is almost impossible for g�3, as networks are enor-

mous, for g ¼ 2 we can perform network analyses on all 775

phenotypes exhaustively, and compute their connected com-

ponents (electronic supplementary material, §S7). We observe

that most phenotypes are distributed in highly fragmented

neutral networks: the genotypes encoding a given phenotype

form many disjoint connected components, which are typically

small. Abundant phenotypes tend to have a larger number of

connected components, and we can find a relatively good

power-law fit between the abundance of the phenotype S2

and the number of components C: C ¼ 0.25S0.7
2 (electronic sup-

plementary material, §S7). We also observe a huge variation in

the size of connected components in g ¼ 2: although more than

98% of connected components are smaller than 1000 nodes,

some of them reach up to approximately 107 nodes. The high

http://rsif.royalsocietypublishing.org/
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fragmentation of neutral networks is due to the HP model that

underlies protein folding in toyLIFE: there are no neutral

mutations within proteins (electronic supplementary material,

§S1 and figure S3). Most mutations in a protein sequence yield

proteins that do not fold, and few mutations yield one func-

tional protein from another. Remember that each phenotype

is defined by a list of metabolites that a genotype is able to cat-

abolize. A given phenotype can be encoded by more than one

protein combination, which will be characterized by different

interactions and regulatory functions, but will catabolize

the same metabolites. When a phenotype is generated by

several protein combinations, it will be difficult to mutate

from one combination to another, and as a consequence these

combinations will usually be found in disjointed connected

components. In fact, the number of connected components

associated with a phenotype is positively correlated with the

number of protein combinations that generate it (electronic

supplementary material, §S7).

For g�2, we can estimate the distribution of neutral net-

works in genotype space using neutral random walks:

starting at a randomly chosen genotype, we perform a mutation

on it. If the resulting mutant genotype belongs to the same neu-

tral network—if it encodes the same phenotype—the mutation

is accepted. The random walk continues when we mutate the

new genotype again. If the mutant genotype does not belong

to the neutral network, the mutation is rejected, and we try to

find a new neutral neighbour for the original genotype (this

process will not work if the starting genotype does not have

neutral neighbours, a rare case). We performed 1000 neutral

random walks of length 10 000 for genotype sizes g ¼ 2 to

g ¼ 5 (electronic supplementary material, figure S15). At each

time step t, we computed dH(g0, gt), the Hamming distance

(normalized number of different positions) between the original

genotype g0 and the genotype visited at time t, gt. dH(g0, gt) is a

random variable for each t, and so we can compute its average

and standard deviation (electronic supplementary material,

figure S15). If there were no restrictions to the nodes that can be

visited in a random walk, we would expect dH(g0, gt)! 0:5

when t! 1. In other words, if there are no restrictions, the cor-

relation between g0 and gt is lost when t grows, and the distance

between them tends to the value it would have, on average, if

we randomly picked two genotypes from the network. Thus,

the evolution of dH(g0, gt) is a good measure of the size and

extension of neutral networks in genotype space. For g ¼ 2,
kdH(g0, gt)l � 0.25 when t! 1, implying that networks do

not extend very far. Considering that the total genotype space

has diameter 40, this means that the average distance between

the initial genotype and the final one is close to 10. This is not

a very high value, and it is consistent with our previous analysis

showing that neutral networks in g ¼ 2 tend to be fragmented

and small. For g . 2, kdH(g0, gt)l � 0.4 when t! 1, which

implies that the fragmented networks of g ¼ 2 space are becom-

ing more connected as g grows, facilitating the navigability of

genotype space. This suggests that neutral networks for g . 2

span large fractions of genotype space, a result consistent

with other genotype–phenotype maps.

A different way to estimate the diameter of a neutral net-

work is to perform neutral random walks in which we force

dH(gt, gtþ1) . dH(gt21, gt). That is, in addition to imposing

that a mutation is neutral in order to accept it, we also require

it to increase the distance to the original genotype. More

specifically, the process is computed as follows. We randomly

choose a genotype, and perform mutations on it, increasing

the distance every time step, until this distance can increase

no longer—if, after a large number of trials, we cannot find

a neutral mutant that is farther apart from the original geno-

type, we stop the process. We will denote the final distance

obtained in such random walks by d1. For g ¼ 2 and g ¼ 3

we randomly sampled 10 000 genotypes, whereas for g ¼ 4

and g ¼ 5 we sampled 1000 genotypes (figure 2d; electronic

supplementary material, figure S16). Consistent with pre-

vious results, random walks did not get very far for g ¼ 2,

reaching an average final distance kd1l � 0.28. For g . 2,

the final distance d1 increases. This result confirms the pre-

vious observation that navigability in these genotype spaces

is enhanced. For g ¼ 3, kd1l is a little over 0.5, while for g ¼
4 and g ¼ 5 it reaches 0.6 and 0.7, respectively. In fact, the

growth of kd1l with g is very similar to the growth of kRl
obtained in figure 2c. In that case, we had kRl ¼ 0.895 2

1.392/g. Here, it is kd1l ¼ 0.965 2 1.354/g (figure 2d ). Unsur-

prisingly, the similarity of the fits implies a linear relationship

between kd1l and kRl: kd1l ¼ 0.094 þ 0.972kRl (figure 2e),

very close to the identity function. This result has several impli-

cations. First, as g grows, neutral networks are more and more

connected, and they span larger fractions of genotype space.

It is easier to get from one extreme of the genotype network

to the other without changing the phenotype. Secondly, this

increased connectivity is due to the increase in robustness:

http://rsif.royalsocietypublishing.org/
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the robustness of a genotype is a good predictor for the size of

the connected component it belongs to. This can be easily

explained in light of our previous discussion on robustness.

Adding a new gene to a genotype will endow the latter with

an average of 18 new neutral mutations with which to explore

genotype space (figure 2b). Because the new gene will not inter-

fere with the phenotype with a high probability, it follows that

we can mutate most of its nucleotides, one by one, getting

farther away from the original genotype. In other words,

new genes in toyLIFE allow for increased navigability of gen-

otype space, because they are mostly junk genes. As we will

see later on, this property will have important consequences

for evolvability.

The fact that robustness is a good predictor for the size of

a genotype’s connected component can be combined with

the positive correlation between the logarithmic abundance

of a phenotype and the size of its largest connected com-

ponent (electronic supplementary material, §S7) to deduce

the linear relationship between the logarithm of phenotype

abundance and phenotypic robustness, giving yet another

heuristic argument for this relationship. We now turn to

compute it explicitly.

Phenotypic robustness is defined as the average of geno-

typic robustness for all genotypes encoding a phenotype Pi,

that is

RPi ¼
1

jPij
X
g[Pi

Rg,

where jPij is the number of genotypes encoding Pi. For g ¼ 2

and g ¼ 3 we sampled 107 genotypes and computed their

robustness. We then assigned each genotype to its correspond-

ing phenotype and averaged the values of robustness for all

genotypes encoding each phenotype. Note that this procedure

samples abundant phenotypes more often. For g ¼ 2, we find a

good fit to a linear relationship between the logarithm of

phenotype abundance and estimated phenotypic robustness

(figure 3a). For g ¼ 3, we identified those phenotypes belong-

ing to P2 (being the most abundant, they were sampled the
most) in green, and the rest in blue (figure 3b). The figure

shows separate relationships between the logarithm of pheno-

type abundance and phenotypic robustness. The two sets of

phenotypes cluster in two different groups, confirming once

more the idea that these two sets are qualitatively different.

Phenotypes belonging to P2 are much more robust, as a

result of them having one spare junk gene.
4. Robustness and position in genotype
Instead of considering the degree of a node in a neutral net-

work, we can focus on the neutrality of a given position of

the genotype. A genotype formed by g genes can be thought

of as a binary string of length 20g—remember that genes in

toyLIFE have 20 nucleotides, the first four forming the promo-

ter region and the remaining 16 constituting the coding region.

For a given sequence, the position i ¼ 1, . . ., 20g can either be

neutral or not—that is, when we mutate that position, we can

get a new genotype with the same phenotype or not. We can

thus define the random variable

ri ¼
1 if i is a neutral position,
0 otherwise.

�

Because ri is a random variable, we can sample it and estimate

its mean. Differences between positions may yield insights into

the details of the genotype–phenotype correspondence in

toyLIFE—i.e. some positions may always be neutral, or

always constrained. This is what we have done in figure 4,

for genotype sizes g ¼ 2 to g ¼ 5. We sampled 107 genotypes

for g ¼ 2 and g ¼ 3, and 103 genotypes for g ¼ 4 and g ¼ 5,

and computed ri for every i ¼ 1, . . ., 20g and every genotype.

The order of genes does not matter in toyLIFE by construc-

tion—implying kril ¼ kriþ20hl, for any h ¼ 0, 1, . . ., g 2 1—so

we are interested in the values of robustness for each gene.

This is why in figure 4 we only show the average values kril
for 0 � i , 20. Note that promoter regions tend to be more

robust than coding regions. This is partly due to the lack of

robustness in the version of the HP model that underlies

http://rsif.royalsocietypublishing.org/
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protein folding in toyLIFE (electronic supplementary

material, §S1 and figure S3). However, note that the superposi-

tion of regulatory and metabolic levels of the phenotype makes

the average robustness of coding regions grow, in spite of the

non-robust protein folding model. For g ¼ 4 and g ¼ 5, the

average robustness in these regions reaches values as high as

0.5 (remember that these genotypes tend to have junk genes

that increase overall robustness as g grows).

Inside the promoter region, which only affects gene regu-

lation, the first position is particularly robust. This means

that the regulatory changes it induces have no phenotypic

effect at the metabolic level. This may be due to two reasons:

either changes in the first position of the promoter region do

not affect the regulatory function—the temporal pattern of

gene expression determined by the interactions among pro-

teins—or changes in the regulatory function rarely alter the

metabolic phenotype. We performed the following simple

test of these hypotheses. For each position in the promoter

region, we sampled 104 genotypes of size g ¼ 3. We then

mutated that position and computed the new regulatory func-

tion and the new metabolic phenotype. From all 104 mutations

in the first position, 40% were neutral in both the regulatory

and the metabolic sense, 54% affected the regulatory function

but did not affect the metabolic phenotype, and the remaining

6% changed both—this means that the robustness for the first

position in this sample was 94%. For the rest of the positions,

27% of the mutations did not alter either the regulatory func-

tion or the metabolic phenotype, 32% changed regulation but

not metabolism and 41% changed both. This corresponds to

a robustness of 59%, consistent with what we observed in

figure 4. In other words, for the first position only 9% of the

mutations that affected regulation had any effect on the meta-

bolic phenotype. In addition, 40% of mutations did not affect

the regulatory function at all. For the rest of the positions, how-

ever, the number of mutations that altered regulation, 73%, was
higher. Among these, roughly 55% had an effect on phenotype

as well. So both reasons posited above are at work: not only is

the number of mutations affecting regulatory function lower in

the first position of the promoter region, but also when these

mutations do alter the regulatory function, they rarely

change the phenotype.

The lower robustness of coding regions, compared to

promoter regions, is correlated with a higher evolvability,

as will be discussed in the next Section.
5. Accessibility and evolvability
So far, we have limited our discussion of the properties of the

genotype–phenotype map in toyLIFE to the abundance of

phenotypes and the organization of their neutral networks,

without paying any attention to the connections between

different phenotypes. In this section, we will focus on the

latter question, which amounts to studying evolvability, or

how accessible phenotypes are.

The neutral networks of different phenotypes tend to be

highly interwoven in most computational genotype–pheno-

type maps, so that connections between them are very

common. The Vienna RNA group described a property of

RNA neutral networks called shape space covering [7,9]. It

implies that one can find most common phenotypes a few

mutations away from any given genotype. We checked for

the existence of this property intoyLIFE. We sampled 100 gen-

otypes for g ¼ 2 and g ¼ 3 and computed the phenotypes of all

neighbours at distances 1 to 8. We observed how many of the

300 most common phenotypes appeared in this set of neigh-

bours. The results are shown in figure 5a,b. For both g ¼ 2

and g ¼ 3 and most sampled genotypes, the number of pheno-

types discovered after eight mutations was close to 300. This

implies that toyLIFE also shares the shape space covering

http://rsif.royalsocietypublishing.org/
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property: most phenotypes are just a few mutations away from

any given phenotype. Observe, however, that for g ¼ 2 this

means a higher relative distance compared with g ¼ 3—

remember that the diameter of this network is 40—and that

the number of phenotypes discovered at that distance is

lower by comparison.

Shape space covering means that phenotypes are easily

accessible from each other through a few number of mutations.

A relevant detail in the metabolic genotype–phenotype map in

toyLIFE is that this accessibility is due only to mutations in

proteins. If we mutate only the promoters, the number of

visited phenotypes is never larger than 2, regardless of the dis-

tance. For g ¼ 2, we can give a clear explanation to this

peculiarity: of the 135 318 pairs of proteins that yield a meta-

bolic function, only 16 yield two different metabolic

phenotypes when combined with different promoters. The

rest are able to generate only one phenotype. Changing only

the promoters will not affect the metabolic function, and will

not help in finding new phenotypes. This is consistent with

the high robustness of the promoter region.

Another way to study evolvability is to compute the con-

nections between different phenotypes directly. We say that

two phenotypes are connected if at least two genotypes from

each phenotype are one point mutation away from each

other. We can then create a network of phenotypes, whose

nodes will be the phenotypes themselves, and the edges the

connections between them. This network of phenotypes is

undirected and weighted—the weight of an edge between

two phenotypes is the sum of all point mutations connecting

two genotypes encoding each phenotype. This network

admits self-loops, whose weight is twice the number of edges

connecting genotypes encoding a single phenotype—in other

words, it is the sum of the degrees of all the nodes encoding

that phenotype, which is proportional to the phenotype’s

robustness. For g ¼ 2, where we can compute the whole net-

work of genotypes with their corresponding phenotypes, we

can build this phenotype network exhaustively. The network

is formed by a giant component that includes 767 phenotypes.

We also find six additional tiny components, five of them with

just one phenotype and the remaining one with three pheno-

types (electronic supplementary material, §S9). Thus, for g ¼
2, some phenotypes will be unreachable by point mutations

from other phenotypes. For g ¼ 3, we cannot build the pheno-

type network exhaustively, but resorting to a numerical

approximation using random walks (electronic supplementary

material, §S9), we can estimate the network of connections

between the 775 phenotypes in P2—in order to study how

the addition of one gene alters the connections between these

phenotypes. The results show that all phenotypes in P2 now

belong to one giant component (electronic supplementary

material, §S9). The number of connections between pheno-

types has greatly increased as well. This is again due to the

additional junk genes. They do not only increase robustness,

but also allow for increased connections between phenotypes.

This increased connectivity can also be measured in an

alternative way. In previous work [5], evolvability has been

estimated as the number of new phenotypes discovered in a

neutral random walk along a neutral network. In figure 5c,d,

we have performed such an analysis for 10 000 genotypes for

g ¼ 2 and g ¼ 3. The results show that evolvability is much

higher for g ¼ 3. While the number of discovered phenotypes

almost stops growing for g ¼ 2, it grows quickly in g ¼ 3,

and to a much higher value than for g ¼ 2. Again, this is
due to the higher average number of connections between

phenotypes for g ¼ 3 (electronic supplementary material, §S9).
6. Discussion and conclusion
Throughout this article, we have explored the properties of

the metabolic genotype–phenotype map in toyLIFE. This

map is highly degenerate, with many more genotypes than

phenotypes, and large neutral networks traversing genotype

space. The distribution of phenotype abundances is very het-

erogeneous, and more abundant phenotypes tend to be more

robust. Common phenotypes are easily accessed from each

other, and large neutral networks allow for a fast exploration

of phenotype space.

All of these properties have been described in other geno-

type–phenotype maps [7–31,33,34]. This is somewhat

striking, given that the genotype–phenotype map in toyLIFE

is more complex than the rest of these models. It is the only

model that incorporates intermediate levels of phenotypic

expression: genes are first translated into proteins, which fold

and interact with each other, generating complex regulatory

networks that will determine the metabolic capacities of a gen-

otype. And yet the main properties shared by the rest of

genotype–phenotype maps appear here as well.

Two particular results stand out. The first is the log-normal

distribution of phenotype abundances, which has also been

observed in RNA [14] and predicted for simple combinatorial

genotype–phenotype maps [34]. The second is the positive cor-

relation between phenotypic robustness and the logarithm of

phenotype abundance, which has also been described before

[13,30,31,34]. The fact that these two relationships (as well as

other phenomena, such as shape space covering) are so wide-

spread points to a general property of these maps, which

must be related to combinatorics and network theory. Previous

work [34] has shown that, when the abundance of a phenotype

can be inferred from the genotype sequence in simple geno-

type–phenotype maps, we can use combinatorial arguments

to explain the appearance of a log-normal distribution and

the linear relationship between phenotypic robustness and

the logarithm of phenotype abundance. These arguments

would explain the presence of these properties in the case of

RNA, but do not seem to be easily translatable to toyLIFE.

We need to devote more efforts into understanding this

seemingly general property of genotype–phenotype maps.

The high robustness and evolvability of the metabolic phe-

notype in toyLIFE, particularly when genome size increases,

is remarkable because our model is built on a particularly non-

robust, non-evolvable version of the HP protein-folding

model. Proteins in toyLIFE are sequences of 16 amino-acids

that fold on a 4 � 4 lattice. One protein is defined by its perimeter

and its folding energy: this is a very different definition of

protein than the one used in most versions of the HP model

[15–20], which define a protein by its folded structure. As we

have already mentioned, there are no neutral networks in the

protein space intoyLIFE, and evolvability is very limited. How-

ever, when these proteins are paired to interact with each other,

generating regulatory networks and performing metabolic func-

tions, the resulting genotypes are robust and evolvable. So it

would seem that adding levels of expression to a phenotype

enhances both robustness and evolvability. This hypothesis

could be tested, for instance, byadding another level of complex-

ity to the phenotype intoyLIFE and checking how both of these
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properties are changed. If there is indeed a relationship between

complexity and both robustness and evolvability, this result

would suggest that more complex genotype–phenotype maps

could have an evolutionary advantage.

Alternatively, we could change the folding process in

toyLIFE and allow for promiscuous proteins—proteins that

can fold in different shapes with the same energy [42]. This

would increase connectivity in protein space and would

affect the levels of robustness and evolvability at the meta-

bolic level. Determining the extent of this change would

give us some insight into the relationship between different

levels of phenotypic expression.

On a related note, our results show that adding genes to

toyLIFE genotypes increases both robustness and evolvabil-

ity. Neutral networks of two-gene genotypes are not very

navigable, reaching only a small portion of genotype space,

and connecting with a small number of adjacent phenotypes.

However, adding a new gene to the genotype changes every-

thing: now phenotypes are easily accessed from each other

and neutral networks span genotype space. Robustness, as

we haven seen, keeps growing with genome size. The expla-

nation behind this fact is that most of the new genes will not

alter the metabolic phenotype, and will act as junk genes.

However, they can mutate without restriction, enhancing

the navigability of a neutral network. Increased navigability

allows for increased connectivity between phenotypes, thus

enhancing evolvability [43]. In other words, junk genes have

creative potential, in the sense that they allow populations to

explore a given neutral network, and then encounter new,

unexplored phenotypes. This is interesting because it extends

the usefulness of redundancy in complex genomes [44,45] to

include seemingly inert elements, whose only function is to

increase robustness and evolvability. It is also reminiscent of

the abundance of introns and non-coding DNA in eukaryotic

genomes [46]: if this non-functional DNA also enhances

robustness and evolvability in living cells, this would suggest

new arguments for the maintenance of junk DNA.
Finally, the appearance of junk genes is possibly a result

of the fact that interactions in toyLIFE are limited to be pair-

wise. There are neither trimers nor tetramers in toyLIFE,

only dimeric proteins. Only one protein or dimer can interact

with a metabolite at a given moment, and so on. As a conse-

quence, when a new gene is added to a two-gene genotype

that performs a metabolic function, it will have little potential

to create new functions. In fact, one would expect the oppo-

site: that adding a new gene would disrupt the existing

interactions, thus yielding a non-viable metabolic phenotype.

However, this is not what we observe. When adding new

genes to two-gene genotypes, most genotypes keep their

original function. We will need to perform a more detailed

exploration of this phenomenon in order to clarify the reasons

behind it.

As a final comment, note that we have not defined fitness

for toyLIFE. Previous work [47] suggests that the fitness land-

scape appearing from complex genotype–phenotype maps is

highly rugged and constrains evolutionary paths. Further

work with toyLIFE should explore possible definitions of

fitness and their corresponding fitness landscapes.
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1 toyLIFE

toyLIFE was originally presented in [1]. We give here its main details, with slight modifications in the definition of
the model.

1.1 Building blocks: genes, proteins, metabolites
The basic building blocks of toyLIFE are toyNucleotides (toyN), toyAminoacids (toyA), and toySugars (toyS). Each
block comes in two flavors: hydrophobic (H) or polar (P). Random polymers of basic blocks constitute toyGenes
(formed by 20 toyN units), toyProteins (chains of 16 toyA units), and toyMetabolites (sequences of toyS units of
arbitrary length). These elements of toyLIFE are defined on two-dimensional space (Supplementary Figure 1).

toyGenes

toyGenes are composed of a 4-toyN promoter region followed by a 16-toyN coding region. There are 24 different
promoters and 216 coding regions, leading to 220 ≈ 106 toyGenes. An ensemble of toyGenes forms a genotype.
If the toyGene is expressed, it will produce a chain of 16 toyA that represents a toyProtein. Translation follows a
straightforward rule: H (P) toyN translate into H (P) toyA. Point mutations in toyLIFE are easy to implement: they are
changes in one of the nucleotides in one of the genes in the genotype. If the sequence has a H toyN in that position,
then a mutation will change it to a P toyN, and vice versa.

toyProteins

toyProteins correspond to the minimum energy, maximally compact folded structure of the 16 toyA chain arising
from a translated toyGene. Their folded configuration is calculated through the hydrophobic-polar (HP) protein lattice
model [2, 3].

We only consider maximally compact structures. That is, every toyProtein must fold on a 4×4 lattice, following
a self-avoiding walk (SAW) on it. After accounting for symmetries —rotations and reflections—, there are only 38

toyAMINOACIDS

toyNUCLEOTIDES

toySUGARS

toyGENES

toyPROTEINS toyDIMERS

toyPOLYMERASE

toyMETABOLITES

P (polar)

H (hydrophobic)

E( ) = -2.0
E( ) = -0.3
E( ) = 0.0

Supplementary Figure 1: Building blocks and interactions defining toyLIFE. The three basic building blocks of toyLIFE are
toyNucleotides, toyAminoacids, and toySugars. They can be hydrophobic (H, white) or polar (P, red), and their random polymers
constitute toyGenes, toyProteins, and toyMetabolites. The toyPolymerase is a special polymer that will have specific regulatory
functions. These polymers will interact between each other following an extension of the HP model (see text), for which we have
chosen the interaction energies EHH =−2, EHP =−0.3 and EPP = 0 [2].
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E = -11.5

2 x (-2.0)
5 x (-0.3)
2 x  (0.0)

Supplementary Figure 2: Protein folding in toyLIFE. toyProteins fold on a 4×4 lattice, following a self-avoiding walk (SAW).
Discarding for symmetries, there are 38 SAWs (left). For each binary sequence of length 16, we fold it into every SAW and compute
its folding energy, following the HP model. For instance, we fold the sequence PHPPPPPPPPPHHHHP into one of the SAWs and
compute its folding energy (right). There are two HH contacts, five HP contacts and two PP contacts —we only take into account
contacts between non-adjacent toyAminoacids. Summing all this contacts with their corresponding energies, we obtain a folding
energy of −11.5. Repeating this process for every SAW, we obtain the minimum free structure.

SAWs on that lattice (Supplementary Figure 2).
The energy of a fold is the sum of all pairwise interaction energies between toyA that are not contiguous along

the sequence. Pairwise interaction energies are EHH = −2, EHP = −0.3 and EPP = 0, following the conditions set
in [2] that EPP > EHP > EHH (Supplementary Figure 2). toyProteins are identified by their folding energy and their
perimeter. If there is more than one fold with the same minimum energy, we select the one with fewer H toyAminoacids
in the perimeter. If still there is more than one fold fulfilling both conditions, we discard that protein by assuming
that it is intrinsically disordered and thus non-functional. Note, however, that sometimes different folds yield the
same folding energy and the same perimeter. In those cases, we do not discard the resulting toyProtein 1. Out of
216 = 65,536 possible toyProteins, 12,987 do not yield unique folds. We find 2,710 different toyProteins with 379
different perimeters. Not all toyProteins are equally abundant: although every toyProtein is coded by 19.4 toyGenes on
average, most of them are coded by only a few toyGenes. For instance, 1,364 toyProteins —roughly half of them!—
are coded by less than 10 toyGenes each. On the other hand, only 4 toyProteins are coded by more than 200 toyGenes
each, the maximum being 235 toyGenes coding for the same toyProtein. The distribution is close to an exponential
decay (Supplementary Figure 3a). The same happens with the perimeters, although with less skewness: each perimeter
is mapped by 7.15 toyProteins on average, but the most abundant perimeters correspond to 26 toyProteins, and 100
are mapped by 1 or 2 toyProteins each (Supplementary Figure 3b). As we will see later, this already induces a certain
degree of neutrality in toyLIFE phenotypes.

Folding energies range from−18.0 to−0.6, with an average in−9.63. The distribution is unimodal, although very
rugged (Supplementary Figure 3c). Note that folding energies are discrete, and that separations between them are not
equal. For instance, there are 6 toyProteins that have a folding energy of −18.0, but the next energy level is −16.3,
realised by 17 toyProteins, and yet the next level is −16.0, realised by 14 toyProteins. The mode of the distribution is
−10.6, realised by 202 toyProteins.

We can also study the structure of the toyProtein network (Supplementary Figure 3e, f). The nodes of this network
will be the 2,710 toyProteins. toyProtein 1 and toyProtein 2 will be neighbors if there is a pair of toyGenes that
express each toyProtein and whose sequence is equal but for one toyN. The weight of the edge between toyProtein1
and 2 will be the sum of such pairs of toyGenes. It is surprising that there are no self-loops in this network —there
are no mutations connecting one toyProtein to itself. In other words, although there is a strong degeneracy in the
mapping from toyGenes to toyProteins, there are no connected neutral networks. If we consider just the perimeters,
however, the neutrality is somewhat recovered: out of the 379 perimeters, 224 of them have neutral neighbors. So
there are many mutations that alter the folding energy of a toyProtein without changing the perimeter. In this sense,

1In [1], where we first presented toyLIFE, we did not use this rule: whenever a sequence folded into two folds with the same folding energy
and same number of Hs in the perimeter, we would discard them. This version of toyLIFE, therefore, is slightly different. However, the results are
qualitatively similar.
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Supplementary Figure 3: Distributions of toyProteins in toyLIFE. (a) Distribution of toyProtein abundances —that is, the
number of toyGenes that code for them. Most toyProteins are coded by few toyGenes, but some of them are very abundant: the
most abundant toyProtein is coded by 235 toyGenes. (b) Distribution of the perimeters associated with each toyProtein. Again, not
all perimeters are equally abundant, and some of them correspond to as many as 25 toyProteins, while 100 correspond to 1 or 2
toyProteins. (c) Distribution of folding energies. The range of folding energies goes from −18.0 to −0.6, with a unimodal, rugged
distribution. The mode is −10.6, a folding energy achieved by 202 toyProteins. (d) Degree distribution in the toyProtein network.
Two toyProteins are connected if there are two toyGenes coding for them that have the same sequence, except for one toyN. The
average degree is 32.2. (e) Degree distribution in the perimeter network. Two perimeters are neighbors if the toyProteins associated
to them are neighbors. The average degree is 53.3.

toyLIFE is capturing a complex detail of molecular biology: mutations appear to be neutral from one point of view
—in this case, perimeter— but are rarely entirely neutral. In other words, the value of a mutation is context and
environment-dependent. There are always some small changes in the molecule —in this case, folding energy— that
may affect their function later down the line. Real world examples of this cryptic effects of mutations on molecules
are everywhere [4–7]. Connections between toyProteins are scarce too: the average degree in the toyProtein network
is 32.2 (with a standard deviation of 25.7), a very small number — on average, each toyProtein is connected to hardly
1% of the rest of toyProteins! (Supplementary Figure 3e). The maximum degree is 190. This means that mutating
from one toyProtein to another is not easy in general. In terms of perimeters this is more relaxed, as the average
degree in the perimeter network is 53.3 (standard deviation is 38.1), with a maximum degree of 173. On average,
every perimeter is connected to 14% of the rest of perimeters: it is a small number, but it is still higher than in the
toyProtein case (Supplementary Figure 3f).

In the toyLIFE universe, only the folding energy and perimeter of a toyProtein matter to characterise its inter-
actions, so folded chains sharing these two features are indistinguishable. This is a difference with respect to the
original HP model, where different inner cores defined different proteins and the composition of the perimeter was not
considered as a phenotypic feature. However, subsequent versions of HP had already included additional traits [8].

The toyPolymerase (Supplementary Figure 1) is a special toyA polymer, similar to a toyProtein in many aspects,
but that is not coded for by any toyGene. It has only one side, with sequence PHPH, and its folding energy is taken to
be −11.0. We will discuss its function and place later on.

1.2 Extending the HP model: interactions
toyProteins interact through any of their sides with other toyProteins, with promoters of toyGenes, and with toyMetabo-
lites (see Supplementary Figure 4a). When toyProteins bind to each other, they form a toyDimer, which is the only
protein aggregate considered in toyLIFE. The two toyProteins disappear, leaving only the toyDimer. Once formed,
toyDimers can also bind to promoters or toyMetabolites through any of their sides —binding to other toyProteins or
toyDimers, however, is not permitted. In all cases, the interaction energy (Eint) is the sum of pairwise interactions for
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toyPROTEINS – toyPROTEINS

toyPOLYMERASE

toyPROTEINS
toyDIMERS

toyMETABOLITES

a b

Supplementary Figure 4: Interactions in toyLIFE. (a) Possible interactions between pairs of toyLIFE elements. toyGenes
interact through their promoter region with toyProteins (including the toyPolymerase and toyDimers); toyProteins can bind to form
toyDimers, and interact with the toyPolymerase when bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite
at arbitrary regions along its sequence. (b) When a toyDimer or toyProtein binds to a toyMetabolite with the same energy in many
places, we choose the most centered binding position. If two or more binding positions have the same energy and are equally
centered, then no binding occurs.

all HH, HP and PP pairs formed in the contact —these interactions follow the rules of the HP model as well. Bonds can
be created only if the interaction energy between the two molecules Eint is lower than a threshold energy Ethr =−2.6.
Note that a minimum binding energy threshold is necessary to avoid the systematic interaction of any two molecules.
Low values of the threshold would lead to many possible interactions, which would increase computation times. High
values would lead to very few interactions, and we would obtain a very dull model. Our choice of Ethr =−2.6 achieves
a balance: the number of interactions is large enough to generate complex behaviours, as we will see later on, while
at the same time keeping the universe of interactions small enough to handle computationally. If below threshold, the
total energy of the resulting complex is the sum of Eint plus the folding energy of all toyProteins involved. The lower
the total energy, the more stable the complex. When several toyProteins or toyDimers can bind to the same molecule,
only the most stable complex is formed. Consistently with the assumptions for protein folding, when this rule does
not determine univocally the result, no binding is produced.

As the length of toyMetabolites is usually longer than 4 toyS (the length of interacting toyProtein sites), several
binding positions between a toyMetabolite and a toyProtein might share the same energy. In those cases we select the
sites that yield the most centered interaction (Supplementary Figure 4b). If ambiguity persists, no bond is formed.
Also, no more than one toyProtein / toyDimer is allowed to bind to the same toyMetabolite, even if its length would
permit it. toyProteins / toyDimers bound to toyMetabolites cannot bind to promoters.

Interaction rules in toyLIFE have been devised to remove any ambiguity. When more than one rule could be
chosen, we opted for computational simplicity, having made sure that the general properties of the model remained
unchanged. A detailed list of the specific disambiguation rules implemented in the model follows:

1. Folding rule: if a sequence of toyAminoacids can fold into two (or more) different configurations with the same
energy and two different perimeters with the same number of H, it is considered degenerate and does not fold.

2. One-side rule: any interaction in which a toyProtein can bind any ligand with two (or more) different sides and
the same energy is discarded.

3. Annihilation rule: if two (or more) toyProteins can bind a ligand with the same energy, the binding does not
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Supplementary Figure 5: Regulatory functions in toyLIFE. (a) A toyGene is expressed (translated) when the toyPolymerase
binds to its promoter region. The sequence of Ps and Hs of the toyProtein will be exactly the same as that of the toyGene coding
region. (b) If a toyProtein binds to the promoter region of a toyGene with a lower energy than the toyPolymerase does, it will displace
the latter, and the toyGene will not be expressed. This toyProtein acts as an inhibitor. (c) The toyPolymerase does not bind to
every promoter region. Thus, not all toyGenes are expressed constitutively. However, some toyProteins will be able to bind to
these promoter regions. If, once bound to the promoter, they bind to the toyPolymerase with their rightmost side, the toyGene will
be expressed, and these toyProteins act as activators. (d) More complex interactions —involving more elements— appear. For
example, a toyProtein that forms a toyDimer with an inhibitor —preventing it from binding to the promoter— will effectively activate
the expression of the toyGene. However, it does neither interact with the promoter region nor with the toyPolymerase, and its function
is carried out only when the inhibitor is present. We call this kind of toyProteins conditional activators. (e) Two toyProteins can bind
together to form a toyDimer that inhibits the expression of a certain toyGene. As they need each other to perform this function, we
call them conditional inhibitors. As the number of genes increases, this kind of complex relationships can become very intricate.

occur. However, if a third toyProtein can bind the ligand with greater (less stable) energy than the other two,
and does so uniquely, it will bind it.

4. Identity rule: an exception to the Annihilation rule occurs if the competing toyProteins are the same. In this
case, one of them binds the ligand and the other(s) remains free.

5. Stoichiometric rule: an extension of the Identity rule. If two (or more) copies of the same toyProtein / toyDimer
/ toyMetabolite are competing for two (or more) different ligands, there will be binding if the number of copies
of the toyProtein / toyDimer / toyMetabolite equals the number of ligands. For example, say that P1 binds to
P2, P3 and P4 with the same energy. Then, (a) if P1, P2 and P3 are present, no complex will form; (b) if there
are two copies of P1, dimers P1-P2 and P1-P3 will both form; but (c) if P4 is added, no complex will form.
Conversely, if all ligands are copies as well, the Stoichiometry rule does not apply. For example, three copies of
P1 and two copies of P2 will form two copies of dimer P1-P2, and one copy of P1 will remain free.

6



toyPROTEIN

toyMETABOLITE

toyDIMER + toyMETABOLITE

toyDIMER

toyMETABOLITE
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Supplementary Figure 6: Metabolism in toyLIFE. A toyDimer is bound to a toyMetabolite when a new toyProtein comes in. If
the new toyProtein binds to one of the two units of the toyDimer, forming a new toyDimer energetically more stable than the old one,
the two toyProteins will unbind and break the toyMetabolite up into two pieces. We say that the toyMetabolite has been catabolised.

1.3 Regulation
Expression of toyGenes occurs through the interaction with the toyPolymerase, which is a special kind of toyProtein
(see Supplementary Figure 1). The toyPolymerase only has one interacting side (with sequence PHPH) and its folding
energy is fixed to value −11.0: it is more stable than more than half the toyProteins. It is always present in the
system. The toyPolymerase binds to promoters or to the right side of a toyProtein / toyDimer already bound to
a promoter. When the toyPolymerase binds to a promoter, translation is directly activated and the corresponding
toyGene is expressed (Supplementary Figure 5a). However, a more stable (lower energy) binding of a toyProtein or
toyDimer to a promoter precludes the binding of the toyPolymerase. This inhibits the expression of the toyGene,
except if the toyPolymerase binds to the right side of the toyProtein / toyDimer, in which case the toyGene can be
expressed.

The minimal interaction rules that define toyLIFE dynamics endow toyProteins with a set of possible activities not
included a priori in the rules of the model (see Supplementary Figure 5). For example, since the 4-toyN interacting
site of the toyPolymerase cannot bind to all promoter regions —because some of these interactions have Eint > Ethr—,
translation mediated by a toyProtein or toyDimer binding might allow the expression of genes that would otherwise
never be translated. These toyProteins thus act as activators (Supplementary Figure 5c). This process finds a counter-
part in toyProteins that bind to promoter regions more stably than the toyPolymerase does, and therefore prevent gene
expression —this happens if Eint(PROT) +EPROT < Eint(POLY) +EPOLY. They are acting as inhibitors (Supplementary
Figure 5b). There are two additional functions that could not be foreseen and involve a larger number of molecules.
A toyProtein that forms a toyDimer with an inhibitor —preventing its binding to the promoter— effectively behaves
as an activator for the expression of the toyGene. However, it interacts neither with the promoter region nor with the
toyPolymerase, and its activating function only shows up when the inhibitor is present. This toyProtein thus acts as
a conditional activator (Supplementary Figure 5d). On the other hand, two toyProteins can bind together to form a
toyDimer that inhibits the expression of a particular toyGene. As the presence of both toyProteins is needed to perform
this function, they behave as conditional inhibitors (Supplementary Figure 5e). This flexible, context-dependent be-
havior of toyProteins is reminiscent of phenomena observed in real cells [9], and permits the construction of complex
toyGene Regulatory Networks (toyGRNs).

1.4 Metabolism
When a toyDimer is bound to a toyMetabolite, another toyProtein can interact with this complex and break it. This
reaction will take place if the toyProtein can bind to one of the subunits of the toyDimer and the resulting complex has
less total energy than the toyDimer. As with the rest of interactions, the catabolic reaction will only take place if this
binding is unambiguous. As a result of this reaction, the toyDimer will be broken in two: one of the pieces will be
bound to the toyProtein (forming a new toyDimer), and the other one will remain free. The toyMetabolite will break
accordingly: the part of it that was bound to the first subunit will stay with it, and the other part will stay with the
second subunit. Note that the toyMetabolite need not be broken symmetrically: this will depend on how the toyDimer
binds to it (Supplementary Figure 6).

1.5 Dynamics in toyLIFE

The dynamics of the model proceeds in discrete time steps and variable molecular concentrations are not taken into
account. A step-by-step description of toyLIFE dynamics is summarised in Supplementary Figure 7. There is an initial
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Supplementary Figure 7: Dynamics of toyLIFE. Input molecules at time step t are toyProteins (Ps) (including toyDimers (Ds))
and toyMetabolites, either produced as output at time step t−1 or environmentally supplied (all toyMetabolites denoted Ms). Ps and
Ds interact with Ms to produce complexes P-M and D-M. Next, the remaining Ps and Ds and the toyPolymerase (Pol) interact with
toyGenes (G) at the regulation phase. The most stable complexes with promoters are formed (Pol-G, P-G and D-G), activating or
inhibiting toyGenes. P-Ms and D-Ms do not participate in regulation. Ps and Ds not in complexes are eliminated and new Ps (dark
grey) are formed. These Ps interact with all molecules present and form Ds, new P-M and D-M complexes, and catabolise old D-M
complexes. At the end of this phase, all Ms not bound to Ps or Ds are returned to the environment, and all Ps and Ds in P-M and
D-M complexes unbind and are degraded. The remaining molecules (Ms just released from complexes, as well as all free Ps and
Ds) go to the input set of time step t +1.

set of molecules which results from the previous time step: toyProteins (including toyDimers and the toyPolymerase)
and toyMetabolites, either endogenous or provided by the environment. These molecules first interact between them
to form possible complexes (see Section 1.2) and are then presented to a collection of toyGenes that is kept constant
along subsequent iterations. Regulation takes place, mediated by a competition for binding the promoters of toyGenes,
possibly causing their activation and leading to the formation of new toyProteins. Binding to promoters is decided in
sequence. Starting with any of them (the order is irrelevant), it is checked whether any of the toyProteins / toyDimers
(including the toyPolymerase) available bind to the promoter —remember that complexes bound to toyMetabolites are
not available for regulation—, and then whether the toyPolymerase can subsequently bind to the complex and express
the accompanying coding region. If it does, the toyGene is marked as active and the toyProtein / toyDimer is released.
Then a second promoter is chosen and the process repeated, until all promoters have been evaluated. toyGenes are
only expressed after all of them have been marked as either active or inactive. Each expressed toyGene produces one
single toyProtein molecule. There can be more units of the same toyProtein, but only if multiple copies of the same
toyGene are present.

toyProteins / toyDimers not bound to any toyMetabolite are eliminated in this phase. Thus, only the newly ex-
pressed toyProteins and the complexes involving toyMetabolites in the input set remain. All these molecules interact
yet again, and here is where catabolism can occur. Catabolism happens when, once a toyMetabolite-toyDimer com-
plex is formed, an additional toyProtein binds to one of the units of the toyDimer with an energy that is lower than
that of the initial toyDimer. In this case, the latter disassembles in favor of the new toyDimer, and in the process
the toyMetabolite is broken, as already mentioned in Section 1.4 and Supplementary Figure 6. The two pieces of

8



the broken toyMetabolites will contribute to the input set at the next time step, as will free toyProteins / toyDimers.
However, toyProteins / toyDimers bound to toyMetabolites disappear in this phase —they are degraded—, and only
the toyMetabolites are kept as input to the next time step. Unbound toyMetabolites are returned to the environment.
This way, the interaction with the environment happens twice in each time step: at the beginning and at the end of the
cycle.

9



2 A note on toyMetabolites
There are 2m binary strings —toyMetabolites— of length m. From lengths 4 to 8, therefore, there are

8

∑
m=4

2m = 496

toyMetabolites. However, due to the interaction rules of toyLIFE, a particular string and its reverse —i.e. HPPHPPPP
and PPPPHPPH— will be treated the same way by toyLIFE organisms. Therefore, for all practical purposes, we will
consider each string and its reverse as the same toyMetabolite, thus staying with 274 of them. Additionally, there are
60 toyMetabolites that cannot be catabolised in toyLIFE (Supplementary Figure 8). For all lengths, toyMetabolites
formed by all Ps and one H at one extreme, or all Hs and one P at one extreme, are unbreakable. This is because there
is no unambiguous way in which a toyDimer can bind to these toyMetabolites. There are two of these toyMetabolites
for each length, making a total of 10. Additionally, the toyMetabolite PPHP cannot be broken due to the same reason.
Symmetrical toyMetabolites, in general, cannot be catabolised either. Because of the interaction rules described in
Section 1, only symmetrical toyDimers can bind to these toyMetabolites. But symmetrical toyDimers cannot be
broken: any toyProtein that can bind to one subunit will be able to bind the other one. Because of the disambiguation
rules, no binding is produced, and catabolism does not occur. There are 52 symmetric toyMetabolites —because they
repeat half the sequence, there are

8

∑
m=4

2[
m+1

2 ] = 52

of them, [x] being the integer part of x —odd-length symmetrical toyMetabolites repeat m+ 1 toySugars, hence the
[(m+ 1)/2] exponent. However, three symmetrical toyMetabolites of length 7 —namely, PPPHPPP, PPHPHPP and
PPHHHPP— can actually be broken. So there are 49 unbreakable symmetrical toyMetabolites. Added to the previous
11 unbreakable toyMetabolites, we get the total of 60. As a result, the total number of toyMetabolites up to length 8
is 214.

It is somewhat interesting that, as an emergent property of the model, some toyMetabolites are not able to be
catabolised. Moreover, it is not that these toyMetabolites are irrelevant to the model: if they are present, they will
interact with symmetric toyDimers, affecting the regulatory output of cells. So these toyMetabolites could function as
signalling molecules.

What happens with longer toyMetabolites? Because of the way interactions have been defined in toyLIFE, longer
toyMetabolites can be considered as unions of shorter ones. For instance, a toyMetabolite of length 9 is (in terms of
interactive potential) equal to two toyMetabolites of length 8. If a genotype is able to catabolise one of these, it will
be able to catabolise the longer one, so the metabolic phenotype for toyMetabolites of arbitrary length is uniquely
determined by considering lengths up to 8 toySugars.

m=4

m=5

m=6

m=7 m=8

Supplementary Figure 8: Unbreakable toyMetabolites. There are 60 unbreakable toyMetabolites: 49 of them are symmetrical,
other 10 are chains of all Hs or all Ps in a row, and the last one is PPHP. Because of the interaction rules in toyLIFE, only symmetrical
toyDimers would be able to bind these toyMetabolites, and therefore they cannot be broken.
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3 Rank plots for phenotypes in g = 2 and g = 3

0 10000 20000
phenotypes

100
102
104
106
108
1010
1012

S
3

g=3
a b

0 200 400 600
phenotypes

101

103

105

107

S
2

g=2

Supplementary Figure 9: Phenotype frequencies vary enormously in toyLIFE. Rank plots for all phenotypes in g = 2 (a) and
g = 3 (b). Both plots show a long tail of small phenotypes. In particular, for g = 3, only 300 phenotypes in P3 represent almost 99%
of all genotypes. The remaining 26,000 phenotypes are extremely rare by comparison.
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4 Comparison between the g = 2 and g = 3 case
In Supplementary Figure 10a, we represent the abundance of a phenotype for g = 2 (S2) versus its corresponding
abundance for g = 3 (S3), for each phenotype in P2. The Figure also shows a power-law fit, log10 S3 = 6.064+
0.986log10 S2, corresponding to S3 = 106.064S0.986

2 ≈ 106S2, a linear fit. This means that the abundance ordering
between these phenotypes does not change when exploring genotypes with one more gene. The goodness of the
fit is further shown in Supplementary Figure 10b, which represents the histogram of values of log10(S3/S2). The
distribution is concentrated around its mean, 5.996, very close to the value 6.064 obtained in Supplementary Figure
10a. This second result confirms that the abundance of P2 phenotypes in g = 3 space is equal to their corresponding
abundance in g = 2 space times 106. Where does this factor come from? Recall that there are 220 ∼ 106 toyGenes in
toyLIFE. A factor of almost 106 between S3 and S2 means that we can add almost any toyGene to a given two-gene
genotype, and the resulting phenotype will be the same: it will not interfere with the original function. This is a
remarkable fact.

Moreover, if we look at the distribution of relative abundances of P2 phenotypes —computed as phenotype abun-
dance divided by the total number of viable genotypes— for g = 2 and g = 3 (Supplementary Figure 10c), we obtain
a linear relationship again: R3 = R2. Which means that the relative abundance of the phenotypes for g = 2 is very
similar to the relative abundance they represent for g = 3. But the sum of the relative abundances for g = 2 is equal to 1
—there are only 775 phenotypes in P2. Accordingly, the sum of relative abundances for g = 3 is close to 1 —actually,
it is 0.9964.

Finally, let us look again at the histogram of phenotype abundance distributions in g = 3 that we obtained in
Figure 1c (main text). We can re-compute the histogram taking the 775 phenotypes from P2 as a separate set from
the remaining 25,717 phenotypes in P3 − P2. If we compute the respective histograms for both sets, we obtain
Supplementary Figure 10d. In green we have represented the 775 phenotypes in P2. It is not surprising that their
distribution follows a log-normal law again: it follows immediately from Figure 1a (main text) and from the linear
relationship shown in Supplementary Figure 10a. What is relevant, however, is that the bump we observed in Figure
1c (main text) is gone in the histogram of the remaining 25,717 phenotypes (in blue).
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Supplementary Figure 10: Two-gene phenotypes dominate phenotype space in the three-gene case. (a) The 775 phe-
notypes belonging to P2 also appear in P3. This figure represents the corresponding abundance of each phenotype in both
genotype spaces: S2 and S3 are, respectively, phenotype abundance for g = 2 and g = 3. Green line represents the linear fit
log10 S3 = 6.064+ 0.986log10 S2, which is close to the linear fit S3 ∼ 106S2. (b) Histogram of log10(S3/S2) for each of the 775
phenotypes in P2. The mean of the distribution is 5.996. (c) Relative abundance of the 775 phenotypes in P2 (R2) versus their
relative abundance for g = 3 (R3) —computed as phenotype abundance divided by number of viable genotypes. Green line is
R3 = R2. The close fit means that the phenotypes from P2 dominate phenotype space for g = 3. (d) Abundance distribution of
phenotypes in P3, taking the 775 phenotypes in P2 and rescaling them — we have obtained the two histograms as if they came from
independent distributions for clarity. The green histogram represents the phenotypes in P2, and the blue histogram the remaining
25,717 phenotypes in P3. New log-normal fits are drawn: µ3 = 5.449, σ3 = 1.619 (blue line), µ2 = 10.730, σ2 = 1.196 (green line).
Note that the log-normal fit for three-gene phenotypes is much better once we take into account the 775 phenotypes in P2. All fits in
this and subsequent Supplementary Figures have been done using the least squares method.
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5 Relevance of P2 phenotypes
A relevant question now is how important the 775 phenotypes in P2 are for larger genotypes. Exhaustive sampling
of genotype spaces larger than g = 3 is out of our possibilities, but we can perform random samples of genotypes
for different values of g and observe the fraction f of observed phenotypes that belong to P2. This is represented in
Supplementary Figure 11. Observe that, although this fraction decays linearly with gene size as f = 1.02− 0.02g,
the slope of the decay is very small, and therefore the fraction is always high —higher than 80% for g≤ 13. In other
words, phenotypes in P2 continue to dominate phenotype space in toyLIFE for a moderate number of genotype sizes.

4 6 8 10 12
g

0.6

0.7

0.8

0.9

1.0

f

Supplementary Figure 11: The dominance of two-gene phenotypes decays linearly with genotype size. For each g, we
sample 10,000 viable genotypes and compute their phenotypes, counting how many phenotypes belong to P2. We then represent
the fraction f versus g. The data can be fitted to a linear function: f = 1.02− 0.02g (green line). The fraction of phenotypes
belonging to P2 decays with g, albeit very slowly.
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6 Robustness histograms in toyLIFE
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Supplementary Figure 12: Genotypes in toyLIFE typically have a large number of neutral neighbors. Distribution of
robustness for genotypes for different values of g (gene number) for g = 2 to g = 5. Robustness is defined as the normalized degree
of a node in the networks: R = k/kmax, where k is the degree of a node in the neutral network, and kmax = 20g is the maximum
degree in the network. Normalisation allows us to compare values for different genotype sizes. For g = 2 and g = 3, we sampled 107

genotypes, whereas for g = 4 and g = 5 we sampled 1,000 genotypes. All distributions are unimodal, and more or less concentrated
around the mean.
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7 Connected components for g = 2

For g = 2 we can perform network analyses on all 775 phenotypes exhaustively, and compute their connected com-
ponents (Supplementary Figure 13). We observe that most phenotypes are distributed in highly fragmented neutral
networks: the genotypes corresponding to a given phenotype cluster in many disjoint connected components (Sup-
plementary Figure 13a): the number of connected components C is never smaller than 4 and is usually much larger.
Moreover, these connected components tend to be small: if we consider Cmax, the maximal component associated to
each neutral network, its average relative abundance SCmax/S2 is 0.033 (Supplementary Figure 13b). Only 63 phe-
notypes have connected components that are larger than 10% the phenotype abundance —among these are the largest
connected components for g = 2, including one giant network that contains 56,889,472 nodes!

Large phenotypes tend to have a larger number of connected components, and we can find a relatively good power-
law fit between the abundance of the phenotype S2 and the number of components C: C = 0.25S0.7

2 (Supplementary
Figure 13c). The relationship between S2 and the relative size of Cmax is noisy (Supplementary Figure 13d): smaller
phenotypes have less connected components and therefore the relative size of the maximal component is high. As the
number of components increases, most of them tend to have equal, small sizes. However, the largest phenotypes with
the greatest number of connected components also have the largest connected components, as we pointed out before,
so there is a positive correlation between S2 and the absolute size of its maximal component, SCmax. This last fact is
represented in Supplementary Figure 13e.

In short, there is a huge variation in the size of connected components in g = 2. We can plot the distribution
of sizes of all connected components Ci —irrespective of the phenotype they belong to (Supplementary Figure 13f).
The average component size, SCi , is 301.4, but we can see from the histogram that the distribution has a long tail.
Therefore, although most connected components are smaller than 1,000 nodes — roughly 98.5%!— some of them
reach up to ∼ 107 nodes.

The high disconnection in connected components is due to the HP model that underlies toyProtein folding. Any
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Supplementary Figure 13: Neutral networks in toyLIFE are highly fragmented for g = 2. (a) For all 775 phenotypes in P2,
we computed the number of connected components (C) of the associated neutral network. This figure represents the distribution of
the decimal logarithm of C per neutral network. No single phenotype has less than 4 connected components. (b) For each neutral
network, we take the maximal component Cmax and plot the distribution of the logarithm of its relative size —that is, the logarithm of
SCmax divided by S2. (c) The abundance of the phenotype and the number of components are related via a power law: C = 0.25S0.7

2 .
(d) The relationship between the relative abundance of Cmax and the abundance of the phenotype is very noisy, but (e) there is a
positive correlation between the absolute abundance of Cmax and the abundance of the phenotype. The green line represents the
power law fit SCmax = 0.050.9

2 . (f) Distribution of the logarithm of abundance of all connected components Ci for g = 2.
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Supplementary Figure 14: Most phenotypes in P2 are obtained by a small number of pairs of toyProteins. (a) Distribution
of the number of pairs of toyProteins that generate a given phenotype. For example, if both {1,1}, {1,2} and {3,4} generate a given
phenotype, there are 3 pairs of toyProteins that generate it. (b) Due to the HP model that underlies toyProtein folding, the more pairs
of toyProteins are able to generate a given phenotype, the larger the phenotype and, because of the power-law relationship obtained
in Supplementary Figure 13c, the more connected components that will belong to the phenotype. The green line represents the
power-law fit C = 22.093P1.032.

given phenotype in P2 will be obtained by some set of pairs of toyProteins. Supplementary Figure 14a shows that
this distribution is highly skewed, with a long tail: 28.64% of phenotypes in P2 are obtained by less than 10 pairs
of toyProteins, while one phenotype is obtained by 9,808 pairs of toyProteins. The problem, therefore, is not due to
a small set of toyProteins associated to each phenotype. Rather, the cause of the disconnection between connected
components is due to the lack of neutral mutations among proteins and the difficulty to reach different proteins in
toyLIFE (see main text).
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8 Random walks in toyLIFE
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Supplementary Figure 15: Neutral networks in toyLIFE span a large fraction of genotype space (1). For each genotype
size, from g = 2 to g = 5, we performed 1,000 neutral random walks starting at randomly chosen genotypes. The length of the
random walks was 10,000 time steps. The figure represents the average Hamming distance 〈dH〉 (blue line) between the genotype
visited at time t, gt , and the original genotype g0, plus minus one standard deviation (grey area), empirically obtained from the data.
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Supplementary Figure 16: Neutral networks in toyLIFE span a large fraction of genotype space (2). Distribution of d∞ for
genotypes with different values of g (gene number) for g = 2 to g = 5. We performed 10,000 (for g≤ 3) or 1,000 (for g > 3) neutral
random walks, forcing them to increase the Hamming distance to the original genotype. We stopped when the random walk could
not get farther.
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9 Connections between phenotypes
For g = 2 we can build the phenotype network exhaustively. The network is not entirely connected: there is a giant
component that includes 767 nodes out of the 775, and six additional tiny components, five of them with just one node
and the remaining one with three nodes. Additionally, the results show that the average degree is low, just 22.1, with
a standard deviation of 17.3 (Supplementary Figure 17a). The maximum degree is 151 and the minimum is 2. The
largest weights are always those of the self-loops —that is, the majority of connections in the genotype network do
not change phenotype, consistently with our previous discussion on robustness. In fact, because not all phenotypes are
equally large, we can compute the weighted average degree of the network —giving more weight to larger phenotypes.
The result is an average degree of 54.0, illustrating that larger phenotypes are more connected than the average.

For g = 3, we cannot build the phenotype network exhaustively. We will resort to a numerical approximation, in
order to estimate the degrees of the nodes and their relative weights. Suppose we perform a random walk over all
viable genotypes —jumping among them without any additional rule. If all genotypes are connected to each other
—given our results for g = 2, this does not seem a terrible assumption— then we expect that, as the length of the
random walk tends to infinity, every phenotype is visited proportionally to its abundance, and that the visits from one
phenotype to another are proportional to the actual number of connections between them. The average number of visits
(per time step) from phenotype i to j as time tends to infinity will be the same as the number of connections between
phenotypes i and j, divided by the total number of connections leaving i. We can check if this approach is accurate
by performing the random walk for g = 2, for which we have the actual connection data. We performed a random
walk starting at a randomly chosen genotype for 109 time steps. The relative weights computed by this method are
close to the actual weights, as shown in Supplementary Figure 17b. The correlation between both variables is 0.978:
the outliers correspond to small phenotypes, which are hardly visited in the random walk. Supplementary Figure 17c
shows that the estimated degree distribution is very similar to the actual one (Supplementary Figure 17a). Having
made sure that this approach works, we repeated it for g = 3, again with a random walk of length 109 time steps. We
restricted the random walk to the 775 phenotypes in P2: we wanted to study how the addition of one gene altered
the connections between these phenotypes. When one mutation left this set of phenotypes, we considered it as lethal.
The results obtained show that all phenotypes in P2 now belong to one giant component —there is one phenotype that
does not appear in the sample, but did belong to the giant component in g = 2, so it must belong to it in g = 3. The
average degree is higher, 101.1, with a standard deviation of 90.3 (Supplementary Figure 17d). The maximum degree
is 553, and the minimum is 4. The degree distribution is much wider, and the connectivity between phenotypes has
been greatly enhanced. The weighted average degree is 333.3, again showing that larger phenotypes are much more
connected than smaller ones.
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Supplementary Figure 17: Connections between phenotypes in toyLIFE. (a) Degree distribution of the phenotype network
in g = 2. Two phenotypes are connected if there is at least one genotype belonging to the first that can mutate into another genotype
belonging to the second phenotype. The average degree is 22.134. (b) Estimated relative weight between phenotypes versus actual
relative weight. Estimation performed by a random walk among all viable genotypes in g = 2. Length of the random walk is 109.
The correlation between both variables is 0.978. (c) Estimated degree distribution from the previous random walk, for g = 2. (d)
Estimated degree distribution for g = 3, using a random walk among genotypes belonging to phenotypes in P2.
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