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Large sets of genotypes give rise to the same phenotype, because phenotypic

expression is highly redundant. Accordingly, a population can accept mutations

without altering its phenotype, as long as the genotype mutates into another

one on the same set. By linking every pair of genotypes that are mutually acces-

sible through mutation, genotypes organize themselves into neutral networks

(NNs). These networks are known to be heterogeneous and assortative, and

these properties affect the evolutionary dynamics of the population. By study-

ing the dynamics of populations on NNs with arbitrary topology, we analyse

the effect of assortativity, of NN (phenotype) fitness and of network size. We

find that the probability that the population leaves the network is smaller the

longer the time spent on it. This progressive ‘phenotypic entrapment’ entails

a systematic increase in the overdispersion of the process with time and an accel-

eration in the fixation rate of neutral mutations. We also quantify the variation of

these effects with the size of the phenotype and with its fitness relative to that of

neighbouring alternatives.
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1. Introduction
The relationship between genotype and phenotype, the ways in which this map

conditions the adaptive dynamics of populations, or the imprints that life

histories leave in the genomes of organisms are essential questions to be

solved before a complete evolutionary theory can be achieved. Genotypes,

which encode much of the information required to construct organisms, are

occasionally affected by mutations that modify the phenotype, their visible

expression and the target of natural selection. Many mutations are neutral

instead [1], varying the regions of the space of genotypes that can be accessed

by the population [2] and conditioning its evolvability [3] but leaving the

phenotype unchanged. The relation between genotype and phenotype is not

one-to-one, but many-to-many. In particular, genotypes encoding a specific

phenotype may form vast, connected networks that often span the whole

space of possible genotypes. The existence of these networks in the case of pro-

teins was postulated by Maynard Smith [4] as a requirement for evolution by

natural selection to occur. Subsequent research has shown that these networks

do exist for functional proteins [5], for other macromolecules like RNA [6], and

generically appear in simple models of the genotype–phenotype map-mimicking

regulatory gene networks [7], metabolic reaction networks [8] or the self-assembly

of protein quaternary structure [9].

Nevertheless, systematic explorations of the topological structure of neutral

networks (NNs) have been undertaken only recently, despite the fact that some

of the implications of NN structure on sequence evolution were identified long

ago. For instance, Kimura’s neutral theory [1] postulated that the number of

neutral substitutions in a given time interval was Poisson distributed. That

assumption had an underlying hypothesis that was not explicitly stated at

the time, namely that the number of neutral mutations available to any geno-

type was constant, independent of the precise genotype, of time or of the

expressed phenotype. In other words, NNs were assumed to be homogeneous

in degree. A consequence was that the variance of the number of mutations
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accumulated should equal the mean, and the dispersion

index (R, the ratio between the variance and the mean) must

then be equal to 1. Very early, however, it was observed that

R was significantly larger than 1 in almost all cases analysed

[10–12]. The appearance of short bursts of rapid evolution

was ascribed to episodes of positive Darwinian selection [12]

that may reflect fluctuations in population size in quasi-neutral

environments, where epistatic interactions would become

relevant [13].

The fact is that NNs are highly heterogeneous. Some

genotypes are brittle and easily yield a different phenotype

under mutation. They have one or few neighbours within

the NN. Other genotypes, instead, are robust and can stand

a very large number of mutations while maintaining their

biological or chemical function. The existence of variations in

the degree of neutrality of genotypes (in their robustness)

was soon put forth as a possible explanation for the

overdispersion of the molecular clock [13]. Nowadays, the dis-

tributions of robustness of the genotypes in several different

NNs have been measured, turning out to be remarkably

broad [14–16]. The effects of fluctuating neutral spaces in

the overdispersion of the molecular clock have been investi-

gated in realistic models of evolution for proteins [17] and

quasi-species [18], and also from a theoretical viewpoint [19].

In this contribution, we explore three features of NNs

whose consequences in the rate of fixation of mutations have

not been systematically investigated. They are (i) the corre-

lations in neutrality between neighbouring genotypes, (ii) the

degree of redundancy of phenotypes (the size of NN), and

(iii) the fitness of the current phenotype in relation to accessible

alternatives. First, the degree of neutrality is not randomly

distributed in the NN. Thermodynamical arguments [20,21]

and analyses of full NNs [22] indicate that genotypes tend

to cluster as a function of their robustness, implying that

NNs belong to the class of the so-called assortative networks.

It is known that populations evolving on NNs tend to occupy

maximally connected regions in order to minimize the

number of mutations changing their phenotype [2]. In assorta-

tive networks, neutral drift entails a canalization towards

mutation–selection equilibrium, progressively increasing the

rate of fixation of neutral mutations through a dynamical

process that we dub phenotypic entrapment. Second, there is

abundant evidence coming from computational genotype–

phenotype maps [9,23–24] and from empirical reconstruction

of NNs [25] that the average robustness of a given phenotype

grows with the size of its associated NN: here, we quantify the

effect of a systematic difference in average degree on the prob-

ability of fixation of neutral mutations. Third, the difference in

fitness between genotypes in the current NN and their muta-

tional neighbours affects the probability that a mutation (be it

neutral, beneficial or deleterious) gets fixed in the population,

and with it, as we explicitly show, the rate of the molecular

clock during intervals of strictly neutral drift.

With the former goals in mind, we develop an out-

of-equilibrium formal framework to describe the dynamics

of homogeneous, infinite populations on generic NNs. We

demonstrate that the population keeps memory of its past

history because, as time elapses, the likelihood that it

visits genotypes of increasingly higher robustness augments

in a precise way that we calculate. This is a consequence of

assortativity and a dynamic manifestation of the ‘friendship

paradox’ [26] described in social networks (your friends

have more friends than you). As a result, the probability
that the population leaves the network explicitly depends

on the elapsed time. Further, the decline of this probability

with time entails a systematic acceleration of the rate of

accumulation of neutral mutations. The degree of entrap-

ment is higher, the larger the NN and the broader the

difference between the fitness of the current phenotype

and that of accessible alternatives. These results are fairly

general and have implications in the derivation of effective

models of phenotypic change and in the calibration of

molecular clocks.
2. Dynamical model
2.1. Description of neutral networks and populations
In the following sections, we employ terms related to

dynamics on complex networks to describe the dynamical

process undergone by a homogeneous population on an

NN. Genotypes are the nodes of the network, and two

nodes are linked if the corresponding genotypes can be

mutually accessed through a single mutation. Links are all

identical, so we assume that the mutational process affects

all genotypes in the same way. The robustness of a node is

a quantity proportional to its degree k, that is, to the

number of links leading to other nodes within the NN (or

the number of neutral mutations).

For the sake of analytical tractability, we use a mean-

field-like description of the NN. This amounts to assuming

that all nodes of the same degree (robustness) are equivalent

with respect to the dynamics, and therefore the network can

be characterized only through its degree distribution, p(k) (the

probability that a node has degree k or the distribution of

robustness values), and its nearest-neighbour degree distri-

bution pnn(kjk 0) (the probability that a degree k 0 node’s

neighbour has degree k), where k, k 0 ¼ 1, . . . , z. We are

assuming that there is a maximum degree z in the NN.

This is always true if genotypes are sequences whose loci

are taken from a finite alphabet (e.g. f0, 1g, nucleotides or

amino acids). If there are A different types in the alphabet,

sequences have length L, and mutations refer just to point

mutations (the most widely studied mutational process),

then z ¼ (A 2 1)L. Typically, thus, z� 1.

The strength of correlation between the degree of neigh-

bouring nodes is measured through the degree–degree
correlation coefficient r. This is a quantity that characterizes

the assortativity of a network and is defined as the Pearson

correlation coefficient (cf. the covariance) between the

degree of nodes and the degree of their neighbours. For a net-

work with i ¼ 1, . . . , M nodes, each with degree ki and whose

neighbours have on average degree knn
i , r is defined as

r ¼
PM

i¼1 (ki � k)(knn
i � knn)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1 (ki � k)
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 (knn

i � knn)
2

q , (2:1)

with k ¼M�1
P

i ki, knn ¼ M�1
P

i knn
i . The largest value of

assortativity r ¼ 1 is achieved when the average degree of

neighbours of node i equals its degree, knn
i ¼ ki. Anticorrela-

tions in degree yield negative values of r. By definition,

21 � r � 1.

We assume that all genotypes in an NN have the same fit-

ness, so evolution is strictly neutral within the network. We

should only take into account non-neutral mutations that

get fixed, that is, that move the population from a node in
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its current NN to a node of a different NN. As of neutral evol-

ution, population dynamics distinguishes two basic regimes.

If m denotes the mutation rate and Ne the (effective [27])

population size, these correspond to low (mNe � 1) and

high (mNe � 1) mutation rates. For high mutation rates,

populations are heterogeneous, and we need an ensemble

of individuals coupled through replication and mutation to

account for their evolution. This is a complex situation

where quasi-species dynamics comes into play, and one has

to resort to computational simulations to describe its

dynamics [18]. In this study, we work in the limit mNe � 1,

where every mutation either gets fixed in or disappears

from the population before a new mutation occurs, so the

population is always homogeneous and its evolution is

effectively described as a single random walk (RW) on the NN.
 rface
12:20141010
2.2. Dynamics
We describe the dynamical process that begins with the arri-

val of a random walker to the NN and ends when it leaves to

a neighbouring NN. In particular, we aim at describing the

entrapment effect that occurs while the walker remains

within the NN. Let us mention, at this point, a fact that will

become clear later on: because of frequent jumps in and out

of NNs, populations will hardly spend a long enough time

within a single NN to reach the equilibrium distribution.

Therefore, the relevant process to describe is the transient

dynamics that starts with arrival at the NN, instead of the

asymptotic behaviour within the phenotype. For this

reason, we require a good estimation of the initial probability

distribution of arrival at any node of the NN.

The process starts as soon as the walker jumps to a node

of the NN from outside. We assume that the initial jump is

equally likely to occur through any link of the NN pointing

outwards, so the probability that a node of degree k is

chosen as the entry node should be proportional to the

number of outbound links z 2 k and to the abundance of

nodes of degree k. This yields the initial condition

P0(0) ¼ 0, Pk(0) ¼ z� k
z� kkl

p(k), k ¼ 1, . . . , z: (2:2)

The state i ¼ 0 does not describe any node, but it proves con-

venient to introduce it to represent the exterior of the NN.

Hence, P0(t) is the probability that the process ends at any

time t . 0; the choice P0(0) ¼ 0 means that the process

begins as soon as it ‘leaves’ the exterior.

Because the mean-field description assumes that all nodes

of the same degree are equivalent, the RW on the NN can be

further described as a stochastic process X(t) taking values in

the set f0, 1, . . . , zg. These values represent the degree of the

node the walker is in at time t, with state 0 corresponding to

the exterior of the NN, as just described. When the walker

jumps to state 0 the phenotype changes, and other consider-

ations are needed to follow up the evolution. For our

purposes, the process ends at this point, so 0 is an absorbing
state (the only one in this process).

The stochastic process just introduced is a continuous-time

Markov chain with transition rate

Pr{X(tþ dt) ¼ kjX(t) ¼ k0} ¼ mkWkk0dtþ o(dt): (2:3)

Element Wkk0 of matrix W is the conditional probability that,

given that a jump occurs when the process is at a node of

degree k0, it ends up at a node of degree k. Within our
mean-field description, this probability can be simply

obtained as

Wkk0 ¼
k0

z
pnn(kjk0), k, k0 . 0, W0k0 ¼ 1� k0

z
,

k0 . 0, W00 ¼ 0:

(2:4)

As mentioned above, the rationale for this choice is that z 2 k0

links of the node where the RW is located point outside the

NN and k 0 point inside, and if the process stays within the

NN (probability k 0/z), the probability that the node it

jumps to has degree k is pnn(kjk 0). The nearest-neighbour

degree distribution pnn(kjk 0) is zero if p(k 0) ¼ 0 and is normal-

ized otherwise; therefore,

Xz

k¼0

Wkk0 ¼ 1, for all k0 such that p(k0) . 0: (2:5)

2.3. Leaving the neutral networks
Let us now discuss the meaning of the transition ratesmk. If k . 0,

the RW jumps to a node that belongs to the NN, and thus the

mutation is neutral. Hence, mk¼ m, because, in that case, the

mutation rate is also the rate of fixation of neutral mutations in

a population of arbitrary size [28]. On the other hand, m0 implies

a jump outside the NN, hence a phenotypic change. The new

phenotype will have, in general, a different fitness, and the rate

at which non-neutral mutations go to fixation in a population

of effective size Ne is m0 ¼ mNe( f � 1)=( fNe � 1), where f is the

fitness of the current phenotype relative to that of the phenotype

the process jumps to [27]. The ratio f ; m0/m can take any value

in the interval 0�f�Ne. The lower bound occurs, if purifying

selection eliminates any phenotype other than the current one;

the upper bound is the rate at which the population adopts a

highly fitter new phenotype. Neutral changes of phenotype

correspond to f ¼ 1.

There is a simplification implicit in the expression of f,

though. If the neighbouring NNs are diverse in fitness

values, f should be replaced by an appropriate average over

this diversity—weighted with the probabilities of jumping to

these other NNs. In any case some factor, 0 , f , Ne accounts

for the differences in the fitness between the current NN and

those of its neighbouring NNs. For the discussion to come,

we do not need to be more specific about its precise form.

2.4. Master equation
The probability distribution of the process is Pk(t) ; Pr

fX(t) ¼ kg, which stands for the probability that at time t
the process sits on a node of degree k ¼ 1, . . . , z, or is outside

the NN, if k ¼ 0. This probability satisfies the master equation

_Pk ¼
Xz

j¼0

[mkWkjPj � mjW jkPk], k ¼ 0, 1, . . . , z: (2:6)

A few considerations transform (2.6) into a handier expression

for further calculations. To begin with, we can set m ¼ 1, i.e.

measure time in units of m21. Let us also introduce the support
of p(k), i.e. the set S ; {k : 1 � k� z, p(k) . 0}. Thus, any

k � S has p(k) ¼ 0, pnn( jjk) ¼ 0, and, given definition (2.2),

Pk(0) ¼ 0. Therefore, according to (2.4), for any k � S, the

master equation (2.6) becomes _Pk ¼ �[fþ (1� f)k=z]Pk,

whose solution is Pk(t) ¼ Pk(0)e�[fþ(1�f)k=z]t ¼ 0.

Because of this result, we can ignore in (2.6) any index

k � S, that is, those degrees that are not represented by any

http://rsif.royalsocietypublishing.org/
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node in the NN. Accordingly, if we introduce vector

P ; (Pk)`, k [ S and matrices

F ¼ diag fþ (1� f)
k
z

� �
, A ¼ pnn(kjj) j

z

� �
,

k, j [ S,

(2:7)

the master equation (2.6) simply becomes

_P ¼ �(F�A)P: (2:8)
org
J.R.Soc.Interface

12:20141010
3. Results
3.1. Time spent on the neutral networks
An important quantity characterizing the process is the prob-

ability that, after a time t, the population is still on the NN.

This probability can be calculated as Q(t) ; 1 2 P0(t) ¼ 1 . P(t),
where 1 ¼ (1, . . . , 1)`. For k ¼ 0, equation (2.6) yields
_Q ¼ f[k � P(t)�Q], where k ¼ (k=z)`, k [ S, a differential

equation that can be rewritten as the integral equation

Q(t) ¼ e�ft þ f

ðt

0

e�f(t�t)k � P(t) dt: (3:1)

In appendix A, we prove that the eigenvalues ak of matrix F 2 A

are all real and different. Therefore, denoting uk and vk the corre-

sponding right and left eigenvectors, respectively, we can write

Q(t) ¼
X
k[S

qke�akt, qk ;
[vk � P(0)](uk � 1)

(vk � uk)
, k [ S: (3:2)

(Note that
P

k[S qk ¼ Q(0) ¼ 1.)

Equation (3.2) makes apparent that, in general, the lifetime

distribution of the process before leaving the NN is not expo-

nential, but displays many different time scales, as many as

elements in the set fakg. Asymptotically, Q(t) � qmine�amint,

with amin the smallest eigenvalue. Thus, the rate at which

the process leaves the NN tends to a minimum as time

elapses—in other words, it gets more and more trapped
within the NN. Eventually, mutation–selection equilibrium

is reached, and the process can be described through a

unique time scale, amin.
3.2. Mutation accumulation
Perhaps the most immediate consequence of this entrapment

of the evolutionary process in an NN is that the observed rate

at which neutral mutations accumulate increases with time.

Together with the stochastic nature of the dynamics, the con-

sequence is twofold: on the one hand, the molecular clock

gets accelerated during those periods of strictly neutral evol-

ution; on the other hand, overdispersion of the molecular

clock varies non-monotonically with time, as we show in

the following.

In order to analyse how mutations accumulate with time,

we need to introduce Pk(m, t), the probability that the process

is at time t at a node of degree k of the NN, having undergone

exactly m mutations. Introducing Pm(t) ; (Pk(m, t))`, k [ S,

the dynamic equation for this vector can be written as

_Pm ¼ APm�1 � FPm, (3:3)

which is valid for all integers m if we assume Pm(t) ¼ 0 for all

m , 0. Obviously Pm(0) ¼ P(0)dm,0, with P(0) the initial

probability distribution (2.2).
In order to extract information on the mean and variance

of the number of mutations accumulated at time t, it is useful

to introduce the moment-generating function

G(u, t) ;
X

m
Pm(t)emu, (3:4)

so that

mr(t) ; kmrlðt) ¼ lim
u!0

@r

@ur

X
k[S

Gk(u, t)

 !
: (3:5)

Multiplying equation (3.3) by emu and summing on m, we

obtain the dynamic equation for G(u, t)

@

@t
G(u, t) ¼ (euA� F)G(u, t): (3:6)

Setting u ¼ 0 shows that G(0, t) ¼ P(t), the solution of (2.8),

hence m0(t) ¼ Q(t).
Differentiating (3.6) with respect to u yields, for u ¼ 0,

@

@t
Gu(0, t) ¼ (A� F)Gu(0, t)þAG(0, t)

and
@

@t
Guu(0, t) ¼ (A� F)Guu(0, t)þA[2Gu(0, t)þG(0, t)],

9>>=
>>;

(3:7)

(subscripts u denote partial derivatives).

Solving simultaneously equations (2.8), and (3.7), and

using (3.5) yields m0(t) ¼ Q(t), m1(t) and m2(t). We are not

yet done, because these are not the quantities required to esti-

mate magnitudes related to the molecular clock: actual

measurements are always performed on extant populations,

so we need the mean m(t) and variance n(t) in the number

of mutations conditioned on remaining within the NN at

time t. These are obtained as

m(t) ¼ m1(t)
m0(t)

, v(t) ¼ m2(t)
m0(t)

�m(t)2: (3:8)

Correspondingly, the overdispersion of the molecular clock at

time t should be computed as

R(t) ;
v(t)
m(t)

¼ m2(t)
m1(t)

�m1(t)
m0(t)

: (3:9)
4. Examples
In this section, we compare analytical and numerical results for

the dynamics of a RW (representing a homogeneous popu-

lation) on networks differing in size, fitness and topological

features. Our aim is to better understand the quantitative

effect of these variables on the dynamics of the population,

paying particular attention to the time scales involved, to the

change in overdispersion with time and to variations in the

rate of fixation of mutations. We analyse a random network

(with near zero assortativity and a well-defined average

degree) as well as two highly assortative networks with either

only two degrees or a constant degree distribution. Our final

example comes from secondary structure RNA networks,

which share several properties with other natural NN.

4.1. Random network
Despite its apparent simplicity, equation (2.8) cannot be ana-

lytically solved in general. An interesting exception is the case

of a random network constructed by randomly drawing links

http://rsif.royalsocietypublishing.org/
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between pairs of nodes. In this situation, the degree follows a

Poisson distribution and, consequently, the average degree is

well defined. Even this special case is exactly solvable only

for f ¼ 1.

In a random network, there is no correlation between the

degree of a given node and that of its nearest neighbours. If

the network is infinitely large, its assortativity r ¼ 0—

though a residual assortativity will be typically obtained

when the number of nodes is finite. This lack of correlation

reflects in the probability that a node’s neighbour has

degree k only depends on its own degree. As a matter of

fact, pnn(kjj) ¼ (k=kkl)p(k). (Here, and in what follows,

kkrl ;
P

k krp(k)). For this special case,

F ¼ I, A ¼ kj
zkkl

p(k)

� �
, (4:1)

and deriving an expression for Q(t) is straightforward (see

appendix B). The resulting formula is

Q(t) ¼ zr� kkl
r(z� kkl)

e�t þ (1� r)kkl
r(z� kkl)

e�(1�r)t, r ;
kk2l
zkkl

: (4:2)

Despite the ease of this case, and the fact that the NN has no

fitness advantage with respect to the average neighbouring

NN (f ¼ 1), we can already observe what turns out to be a

generic property of heterogeneous networks: the lifetime of

the RW within the NN is not exponentially distributed. For

random networks, there are only two time scales: the ‘stan-

dard’ one, m21, and a slower one, with characteristic time

(1 2 r)21m21. The reason for this non-exponential behav-

iour—and for the equivalent effect that will arise in any

heterogeneous network—is that the RW comes in the NN

preferentially through nodes of low inner connectivity (high

outer connectivity) and as time passes without leaving the

NN it progressively moves towards the regions of higher con-

nectivity (note that the mean degree of a node’s neighbour is

kk2l=kkl . kkl), from which escaping is less probable. Thus,

the first scale corresponds to walkers which leave the net-

work in very few steps, whereas the second (slow) scale

characterizes walkers that have spent some time in the NN.

Further insights can be gained by calculating the overdis-

persion (3.9) (see appendix B), whose expression for this case

becomes

R(t) ¼ 1þ (zr� kkl)rte�rt

(1� r)kklþ (zr� kkl)rte�rt : (4:3)

Figure 1 shows the probability Q(t) to remain on the network

at time t, the overdispersion R(t) of the molecular clock with

time and the mutation rate (measured as the time derivative

of the mean number of mutations) for an Erdös–Renyi

random network. In figure 1a, as well as in all other plots,

Q(t) is represented as a function of the rescaled variable ft.
The reason is that, as can be seen, there is a partial collapse

of all Q(t) curves (but see the Discussion for forthcoming

examples). In addition, the case f ¼ 0 is not included,

because f ¼ 0 implies that the RW cannot leave the NN

and, therefore, Q(t) ¼ 1, for all t. For the Erdös–Renyi

random networks, the fast time scale is barely visible, due

to the fact that the RW becomes rapidly trapped. The slow

time scale actually dominates the dynamics: for the values

chosen, (1� r) ≃ 0:47 (case f ¼ 1) and the coefficient of the

corresponding exponential in Q(t) is about 10 times larger

than that of the fast time scale.
Figure 1b shows the typical behaviour of the overdisper-

sion on heterogeneous NN: an initial increase up to a

maximum followed by a decay to an asymptotic value. Inter-

estingly, even for f ¼ 1 (corresponding to equation (4.3)), a

4% overdispersion is reached before it decays to its asymp-

totic value, a process that requires about 10 mutations (t �
10 m21). As values of f diminish, the asymptotic value of

R(t) monotonically increases. Three features that will show

up in the remaining examples as well should be highlighted:

first, f has a strong, non-trivial effect on overdispersion;

second, it is in the transient where overdispersion reaches

its largest value; third, the rate of accumulation of muta-

tions increases with f (it therefore diminishes the larger the

difference between the fitness of the current NN and its

neighbouring phenotypes).

In figure 1c, we can appreciate how the ticking rate of the

molecular clock undergoes an acceleration from its initial

value, eventually reaching a steady rate higher than the one

it started off from. The change occurs at a time t � 10 m21,
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which corresponds to the number of mutations accumulated.

Note that, owing to the heterogeneity of the network, the

initial mutation rate is already higher than m. As we stated

earlier, the stationary state is not attained in general. Now,

we can quantify this statement by estimating the time

t1%(f ) by which only 1% of the RWs remain on the network.

This time can be obtained by numerically solving Q(t1%) ¼

0.01—it can be approximately read from figure 1a. In order

to estimate the range of t values where typical trajectories

on the NN should be found, we have calculated the time

t99%(f ) as well, when only 1% of the trajectories have left

the network. The interval (t99%(f ), t1%(f ),) is represented as

a dashed line within two arrows in figure 1c (and all sub-

sequent (c) panels). As can be seen, the maximum variation

in R(t) and in the mutation rate is achieved within that time

interval, whereas mutation–selection equilibrium is rarely

attained. Note that t99%(f ) and t1%(f ) decrease with increas-

ing f. The acceleration of the molecular clock along neutral

evolution, which is higher the smaller f, is a feature that

will reappear in all subsequent examples, and probably

stands as the best illustration of the phenotypic entrapment

produced by NN. Typically, most RWs will leave the network

before reaching the asymptotic neutral ticking rate, and

certainly before the RW has had time to explore a significant

fraction of the NN [29].

4.2. Two-degree network
Consider now a network with M nodes such that p(k)¼ 1/2 for

k ¼ k1, k2 (k1 , k2), and 0 otherwise. The M/2 nodes of each

degree are randomly connected between them, except for L
links that connect (also randomly) nodes of the two different

degrees. Accordingly, pnn(kijki) ¼ 1 – 2L/(Mki) and pnn(kjjki) ¼

1–2L/(Mki), for j=i. The nearest-neighbour degree distri-

bution clearly reflects, in this case, the trapping power of

more connected regions: note that the probability of entering

the group of high connectivity (k2) from that of low connec-

tivity is higher than the probability of leaving it, pnn(k1jk2) ,

pnn(k2jk1). The asymmetry of pnn reflects the entrapment by

progressively more connected regions of the NN.

In terms of the variables ‘ ; 2L/(Mz), k ¼ (k2 þ k1)/2z
and d ¼ (k2 2 k1)/(2z), matrix A 2 F becomes

A� F ¼ f(k� d)� ‘� f ‘
‘ f(kþ d)� ‘� f

� �
, (4:4)

and the resulting probability (3.2) of remaining trapped

within the NN at time t is

Q(t) ¼ qþe�aþt þ q�e�a�t, (4:5)

where

q+ ¼
1

2
1 +

‘� (1� k)�1fd2

D

" #
,

a+ ¼ ‘þ f(1� k) + D,

(4:6)

with D ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ f2d2

p
. Thus, the dynamics on a two-degree

network is characterized by two time scales, with coefficients

q+ further determining the relative weight of each one in

the process between arriving at the NN and achieving

maximum entrapment.

Despite the formal similarity of Q(t) with the solution for

an Erdös–Renyi network, there are important quantitative

differences between the two cases. Figure 2a illustrates the

presence of the two time scales, here clearly visible (note
the change in the horizontal scale with respect to figure 1a).

The probability to stay on this two-degree network is also sig-

nificantly higher after a fixed time, which speaks for longer

trajectories in comparison with those on a random network.

The average degree does not play an essential role in this be-

haviour, because it has value 16, slightly below the random

network previously studied; this nonetheless, the two-

degree network is more efficient at trapping the RW. Let us

now explain why the curves for Q(t) collapse so nicely in

this case. This is owing to the very low value of

‘ ≃ 5� 10�6 for the parameters chosen. As a result, the two

time scales are well approximated as a� ≃ f(1� k2=z) and

aþ ≃ f(1� k1=z), thus nearly scaling with f as long as

f � ‘. Hence, the collapse of the Q(t) curves is a particular

feature of this network and does not hold in general, as the

next example will show.

Differences in overdispersion between the random and

the two-degree network are still more remarkable. Figure 2b
(note the logarithmic scale in the y-axis) represents R(t),
showing an extraordinary increase in overdispersion with

time, especially as f decreases. Although not shown in the

picture, R(t) eventually converges to 1, albeit the time

required is huge. This is another important difference with
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the random network, where the overdispersion saturates at

values R(t! 1) . 1. This is due to the persistence of hetero-

geneity in the degree from the viewpoint of the RW. Whereas

in the random network, the walker visits nodes of diff-

erent degree once mutation–selection equilibrium has been

reached, in the two-degree network the region of low connec-

tivity is mostly invisible to the dynamics, trapped in the large

cluster of high-connectivity nodes. Nonetheless, there is an

enormous dispersion in the time required for a particular tra-

jectory to become trapped; this fact explaining the growth of

overdispersion, the delayed achievement of its maximum

value and the slow convergence to equilibrium.

Similar differences can be observed in the mutation rate,

depicted in figure 2c, compared with that for the Erdös–

Renyi network. The acceleration of the molecular clock for

this network is very large (over an order of magnitude with

respect to the initial ticking rate). In addition, as f decreases,

the acceleration occurs at earlier times, an effect that was

much milder in the Erdös–Renyi network. As a matter of

fact, these curves collapse nicely when they are represented

as a function of ft, as happened with Q(t). The asymptotic

mutation rate is independent of f, because, similar to what

happens with overdispersion, the RW does not see any differ-

ence in the degrees visited at large times, even for different

values of f. The next example clarifies how f affects the trap-

ping strength of nodes with different degree, and the

resulting variation in the asymptotic mutation rate.
102
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Figure 3. Dynamics of a RW on a network with a constant degree distri-
bution, with parameters described in the main text. (a) Probability Q(t)
that the RW stays on the network after a time t. (b) Overdispersion of
the network. (c) Mutation rate. The assortativity is r � 0.9997. For the
sake of comparison, these plots share scale with figure 2.
4.3. Constant degree distribution network
This example shares some similarities with the previous one,

but now nodes of all degrees between a minimum kmin ¼ 2

and a maximum value appear in equal amounts. In addition,

the fraction of links connecting nodes of different degrees is

notably larger. Consider a network with a degree distribution

p(k) ¼ 1/50, 2 � k � 51, N ¼ 20 000 nodes, and z ¼ 52. In

order to generate an assortative network, we proceed as fol-

lows. First, we assign an arbitrary index to the nodes (with

no meaning whatsoever) and divide them up into blocks of

400(¼20 000/50) consecutive nodes. We then assign degree

2 to the first block, degree 3 to the second block and so on

until exhausting the nodes. Now, we randomly connect the

nodes, in such a way that the probability to connect a pair

of nodes at positions i and j is taken proportional to

expf2d/200g, where d ¼ ji 2 jj. With this procedure, nodes

with similar degree are preferentially connected, and high

assortativity is ensured. It is not possible to derive any

exact expression for Q(t) or R(t), though the results can be

interpreted in the light of our previous examples.

Figure 3a shows the presence of many different time

scales that become dominant at different times and cause a

systematic bending of Q(t). The visibility of the different

time scales is related to the presence of significant fractions

of nodes of different degrees together with the canalization

of the dynamics towards regions of increasingly higher con-

nectivity—a consequence of assortativity. This behaviour

differs from that of the two-degree network, where the curva-

ture region was small and owing to the cross-over between

the only two time scales involved. Overdispersion can

reach very high values, even once mutation–selection equili-

brium has been reached, and so does the mutation rate

(figures 3b,c).
In a network of this kind, the larger f the less diverse is

the set of different degrees visited by the RW in the asympto-

tic state. This responds to the fact that trajectories that survive

for long times are preferentially concentrated in highly

connected regions. As f decreases, nodes of lower degree

become more competent at trapping the dynamics, causing

two effects. First, the asymptotic time scale amin changes,

decreasing in absolute value with f. Second, differences

between the trajectories are less pronounced the larger f,

such that the maximum in the overdispersion and the largest

acceleration of the clock are reached at earlier times. Third,

the asymptotic values of R(t) decrease with f, and those of

the mutation rate increase. At mutation–selection equili-

brium, however, nodes with the highest connectivity cannot

fully trap the RW, such that nodes of lower degree are visited

frequently enough to yield R(t) . 1, attaining larger values

the lower f. In the asymptotic state, thus, the RW is more

delocalized (in terms of the visited degree), the lower the

value of f. The fact that, at high f, those RW remaining on

the NN preferentially visit nodes of high degree is respon-

sible for the larger ticking rates observed—reaching values

orders of magnitude bigger than initially.
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4.4. RNA networks
Secondary structure RNA NNs (here RNA networks for

short) are a paradigm of the genotype–phenotype map,

and many important properties on their topology and on

genotype–phenotype mapping are known in detail. An

RNA network is formed in principle by all the sequences

that yield the same minimum free energy secondary struc-

ture. Usually, links are drawn between pairs of sequences

in the set that differ in a single point mutation. In general,

this leads to a number of disjoint connected components.

Because dynamics are well defined on connected networks,

we will assume that we work with subsets of the

genotype–phenotype map that fulfil this condition. Among

other properties known, there is a broad variability in the

number of sequences that fold into a given phenotype for a

fixed sequence length (several orders of magnitude) [6,30];

the average degree of an RNA network grows logarithmically

with its size (number of genotypes leading to the same phe-

notype) [22], and RNA networks are highly assortative, with

an index r that increases on average with size and approaches

1 [22]. In this section, we discuss the results obtained for RNA

networks of sequences of length 12. The genotype–pheno-

type map for this case is fully known, with networks of

sizes spanning four and a half orders of magnitude [22].

We have chosen two connected NNs formed by geno-

types that belong to different phenotypes. In dot–bracket

notation, these are ...((.....)) and (((.....))).; the first phenotype

can be obtained from 14 675 different sequences which are

grouped into four different connected subnetworks. As an

example, we have chosen a connected component of size

M ¼ 1965. The second phenotype is more abundant, corre-

sponding to the minimum free energy folded state of 142

302 sequences. As a second example, we have chosen one

of its largest 17 connected subnetworks, of size M ¼ 21 908.

Curves for Q(t), R(t) and the mutation rate are plotted in

figure 4. As can be seen, the behaviour of these networks is

quantitatively comparable to the Erdös–Renyi random net-

work. In RNA, there is a monotonic change in the slower

time scale and in the equilibrium value of overdispersion

with network size. This responds to the particular relation-

ship between size and degree exhibited by secondary

structure RNA networks, where kkl/ ln M. The connection

between the slower time scale and average degree can be

made explicit in the calculations for random networks

(equations (B 1) and (4.2)), and despite the high assortativity

of RNA networks, it also shows up here. The degree distri-

bution p(k) of RNA networks is very peaked for M small,

though its variance increases with M faster than it does for

a Poisson degree distribution [22]. Whether these differences

lead, for realistic values of M, to significant departures from

the behaviour of random networks remains to be seen.
5. Discussion
Certain features of the dynamics of homogeneous popu-

lations on NNs are generic, resulting from two ubiquitous

topological properties: heterogeneity and assortativity. In

general, the dynamical process that begins when the popu-

lation enters the NN and finishes when mutation–selection

equilibrium is achieved is characterized by as many different

time scales as different degrees of robustness are found in the

NN. These time scales successively show up along the
transient and affect the process of mutation fixation. As

time elapses, regions of increasingly higher degree are vis-

ited, causing entrapment of the population. The actual time

spent on a NN should increase as the difference between

the fitness of the current phenotype and that of neigh-

bouring alternatives grows, because fitter phenotypes trap

populations for longer times.

Some of the features here described directly affect

evolutionary dynamics on realistic NNs and, therefore, quan-

titative properties of the actual mutation substitution process.

We have used as an example RNA secondary structure NNs,

because this is the only case we are aware of where exhaustive

studies of the genotype–phenotype map encompassing the

whole space of genotypes have been performed [22,31]. Still,

the networks we may use to compute quantities such as over-

dispersion are limited by current computational power. The

average size of an RNA network for sequences of length l
grows as 0.673l3/22.1636l, which is an astronomically large

number even for moderate values of l [6]. For instance, a natu-

ral tRNA 76 nt long should have a NN formed by over 1028

different sequences. There is partial evidence that, as the

http://rsif.royalsocietypublishing.org/
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length of genotypes increases, the degree distribution of the

corresponding NNs broadens, whereas assortativity grows

with size [22]. If this is so, several different time scales

should be visible and relevant in the dynamic process of

mutation fixation in any realistic scenario. An additional

example is provided by the NNs of natural proteins with

known folds that have been computationally studied.

Although the techniques used only permit a partial explora-

tion of those immense NNs, the degree distributions

obtained are remarkably broad [14]. There is sufficient

evidence as well that protein NNs are highly assortative [20].

Network heterogeneity, together with stochasticity in the

appearance and fixation of mutations, translates into poten-

tially large values of R(t). In most cases, overdispersion

changes non-monotonically, presenting a maximum value

at intermediate times, before equilibrium is reached. The

value of evolutionary time in our model yields an upper

bound to the number of mutations accumulated up to time

t, because we have defined time in units of m21, where m rep-

resents the rate of attempted mutations. Therefore, typical

trajectories accumulate between a few and a few tens of

mutations before leaving the network, a range where the

strongest variation in R(t) and mutation rates occurs. The

non-monotonicity of R(t) has been observed in realistic

models of protein evolution [14]. In an exhaustive analysis

of thousands of protein sequences in several Drosophila
species [32], it has been demonstrated that R(t) is time- and

gene-dependent, and that it should be described as a function

of a phylogeny’s level of divergence. The former observations

are in full qualitative agreement with our results.

For any time t, R(t) . 1 as long as genomes with different

robustness (nodes with different degree) are visited with non-

zero probability. There might be some extreme cases, such as

the two-degree networks we have analysed, when only nodes

with the same degree are visible to the population at

mutation–selection equilibrium. In those special situations

(and, trivially, if the network is homogeneous), R(t) ¼ 1 is

recovered, in agreement with Kimura’s initial guess on the

Poissonian nature of the substitution process. However, this

is a very atypical situation that cannot be expected to occur

in any realistic case. That network heterogeneity increases

overdispersion had already been acknowledged before [19].

What had not been realized is the fact that this effect is stron-

ger during transients; that transients are unavoidable,

because evolution on NN begins preferentially in regions of

low robustness; and that—depending on the value of f—

equilibrium may be virtually unreachable before a mutation

hits a fitter phenotype, driving the process again far from

equilibrium. Indeed, the number of mutations that have to

be accumulated to attain equilibrium vary from slightly less

than a hundred to a few thousands, a situation not reached

by any typical trajectory unless f is close to 1. It would be

interesting to consider other mutational mechanisms, such

as recombination, which might affect the nature of equili-

brium and the length of the transient. For example, it has

been shown that, under recombination, the mutation–

selection equilibria of populations replicating on NNs display

a higher degree of robustness (are thus more entrapped) than

those corresponding to simple point mutations [29].

There might be some natural systems where the accumu-

lation of mutations, and therefore the transient time before

equilibrium is achieved, proceeds at a pace significantly

higher than that in most genes or proteins, namely RNA
viruses, viroids and miRNAs. These three systems are charac-

terized by high mutation rates and, in RNA viruses and

miRNAs, a correlation between selection for thermostabi-

lity and increased robustness to mutations has been

detected (a phenomenon called plastogenetic congruence)

[33,34]. Viroids, which share several structural properties

with miRNAs, also increase robustness along evolution [35]

and present a limited effect of mutations on their structure

[36]. The higher robustness of these systems with respect to

randomized counterparts is an indirect evidence of phenoty-

pic entrapment and, therefore, of populational states closer to

mutation–selection equilibrium. Their corresponding phylo-

genies might be excellent testing beds for the theoretical

results here derived.

Evolutionary dynamics on heterogeneous and assortative

networks with phenotype-dependent size has important

consequences regarding the molecular clock [37]. First,

there is an increase in the rate at which mutations are

fixed as time elapses, with an occasional maximum in its

value during the transient. When the population first

enters the network, the probability that it stays is relatively

low. However, if it remains, the neutral mutation that is con-

sequently fixed does it in a typical time that depends on the

robustness of the current genotype. Because robustness sys-

tematically increases along the transient in assortative

networks, the age of a population which has accumulated

few neutral mutations will be systematically underestimated

if a regularly ticking molecular clock is assumed. This pre-

diction is in agreement with observations of a steady

increase in R(t) along phylogenies [32] where, moreover, a

gene-dependent R(t) was identified. Second, the ticking

rate of the clock depends on f, that is, on the fitness value

of the current phenotype (or NN) relative to neighbouring

phenotypes: the smaller f, the higher the trapping power

of the network, a situation that causes larger overdispersion

and lower asymptotic mutational rates. Finally, even

sequences of the same length may belong to NNs that

differ in size in several orders of magnitude. The ticking

rate of the clock is unavoidably dependent on robustness,

which in its turn is a function of phenotype size in all geno-

type–phenotype maps studied [9,22–25]. Reliable

estimations of NN sizes, at hand with appropriate compu-

tational algorithms [38], should aid in the calibration of

neutral evolutionary rates. This information could be com-

bined with knowledge of R(t) in homologous genes with

the same function (thus presumably characterized by the

same NN). Finally, the R(t) and the NN sizes of different

genes in diverging lineages could be compared in order to

disentangle time-dependent changes in R(t) from variation

owing to phenotype sizes, extending studies such as those

in reference [32].

The results here obtained do not contradict observations

revealing a decrease in the ticking rate of the molecular clock

along phylogenetic branches [39,40], because most fixed

mutations are in those cases subjected to selection. In this

sense, our model addresses a partial aspect of phylogenies,

namely strictly neutral evolution. A tractable model of how

NNs of different fitness intermingle in the space of genomes

may bring about the formulation of mean-field dynamical

models, such as the one here presented, that simultaneously

take into account neutral drift and selection without discard-

ing the complex architecture of the space of genotypes.

Actually, it is plausible that the integration of several different

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.

10

 on November 19, 2014http://rsif.royalsocietypublishing.org/Downloaded from 
structural features of phenotypes may clarify why the molecu-

lar clock depends so strongly on specific cases analysed [41].

Indeed, there are several mechanisms known to affect the uni-

formity of rates of molecular evolution [42]. In the light of the

results here presented, also the particular topology of NNs, the

degree of adaptation of populations and the abundance of

the current phenotype should be taken into account when

calibrating molecular clocks.
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Appendix A. Solving for Q(t) in general
According to equation (3.1), to obtain Q(t), we first need to

compute P. Except for very specific choices of pnn(kjj ) and

f, the master equation (2.8) needs to be solved numerically.

We prove here that matrix F 2 A has s (the cardinal of set

S) different real eigenvalues—which justifies formula (3.1).

Let us define M(x) ; F 2 xA, where x is a complex vari-

able. Standard perturbation theory [43] tells us that the

eigenvalues of M(x) form a set of analytic functions of x
with constant cardinality, except for a finite set of singular
points in the complex plane—where at least two of the eigen-

values coalesce. But M(0) ¼ diag(f þ (1 2 f )k/z), k [ S, so

it has s different real eigenvalues (s being the cardinal of

S), provided f= 1. Therefore, M(x) will also have s different

eigenvalues—hence will be diagonalizable—except when x is

one of those singular points. Now, x ¼ 1 will not be a singu-

lar point for almost any probability distributions p(kjj ). But if

p(kjj ) happens to be one of those singular distributions, then

the analysis to come is still valid for x ¼ 1þ e, for arbitrarily

small e (because the singular points are isolated in the com-

plex plane). Thus, we can eventually take the limit e! 0

without changing the conclusions.

We now show that all eigenvalues of M(x) are real. To

that aim let us introduce the (non-singular) matrix D ¼

diag((z/k)p(k)), k [ S. Then, the elements of T(x) ; M(x)D

are [(1 2 f ) þ fz/k]p(k)dkj 2 xpnn(k, j ), where pnn(k, j ) is the

fractions of links of the NN joining two nodes of degrees k
and j. Hence, T(x) is a symmetric matrix and therefore all

its eigenvalues are real. But then so are the eigenvalues of

M(x), because M(x) ¼ T(x)D21, which has exactly the same

eigenvalues as the symmetric matrix D 2 1/2T(x)D21/2.
Let uj and vj, j [ S, be the right and left eigenvectors of

M(1) corresponding to the eigenvalue aj. They verify the

orthogonality condition vk . uj/ dkj. Then, the solution of
_P ¼ �M(1)P can be obtained as

P(t) ¼
X
k[S

vk � P(0)

vk � uk
e�aktuk: (A 1)

Substituting this result into (3.1) yields (3.2).
Appendix B. Q(t) and R(t) for random networks
To obtain Q(t), we left-multiply (2.8) by k`. This leads to

d

dt
k � P ¼ �(1� r)k � P, r ;

kk2l
zkkl

, (B 1)

whose solution is simply

k � P(t) ¼ k � P(0)e�(1�r)t, k � P(0) ¼ (1� r)kkl
z� kkl

: (B 2)

Substituting into (3.1) finally yields (4.2).

As for overdispersion, from equations (3.7), we can derive

_m1 ¼ �m1 þ G1 þ k � P,

_G1 ¼ �(1� r)G1 þ rk � P,

_m2 ¼ �m2 þ G2 þ 2G1 þ k � P

and _G2 ¼ �(1� r)G2 þ r (2G1 þ k � P),

9>>>>>=
>>>>>;

(B 3)

with the initial condition m1(0) ¼ m2(0) ¼ G1(0) ¼ G2(0) ¼ 0.

Combining the former two equations and the latter two, we

obtain

d

dt
(Gi � rmi) ¼ �(Gi � rmi), i ¼ 1, 2, (B 4)

which, given the null initial conditions, yield Gi ¼ rmi.

Therefore, the four equations (B 3) reduce to

d

dt
m1 ¼ �(1� r)m1 þ k � P

and
d

dt
(m2 �m1) ¼ �(1� r)(m2 �m1)þ 2rm1:

9>>=
>>; (B 5)

Using (B 2), this linear system can be readily solved as

m1(t) ¼ (1� r)kkl
z� kkl

te�(1�r)t

and m2(t) ¼ (1� r)kkl
z� kkl

(rt2 þ t)e�(1�r)t,

9>>>=
>>>;

(B 6)

from which overdispersion can be obtained as (4.3).
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