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a b s t r a c t

Recent experimental evidence [Grujić Fosco, Araujo, Cuesta, Sánchez, 2010. Social experiments in the

mesoscale: humans playing a spatial Prisoner’s dilemma. PLoS ONE 5, e13749] on the spatial Prisoner’s

Dilemma suggests that players choosing to cooperate or not on the basis of their previous action and

the actions of their neighbors coexist with steady defectors and cooperators. We here study the

coexistence of these three strategies in the multiplayer iterated Prisoner’s Dilemma by means of the

replicator dynamics. We consider groups with n¼2, 3, 4 and 5 players and compute the payoffs to every

type of player as the limit of a Markov chain where the transition probabilities between actions are

found from the corresponding strategies. We show that for group sizes up to n¼4 there exists an

interior point in which the three strategies coexist, the corresponding basin of attraction decreasing

with increasing number of players, whereas we have not been able to locate such a point for n¼5. We

analytically show that in the limit n-1 no interior points can arise. We conclude by discussing the

implications of this theoretical approach on the behavior observed in experiments.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few years, different mechanisms have been proposed
to explain the origin and stability of cooperation (Nowak, 2006). One
of these mechanisms involves assortment of cooperators (Fletcher
and Doebeli, 2009), in particular through the existence of a spatial or
social structure dictating who interacts with whom (cf. network
reciprocity in Nowak, 2006). Cooperators might then interact mainly
with each other and keep the benefits of cooperation to the extent
that they perform better than defectors or free riders in peripheral
positions. This idea stems from the work by Nowak and May (1992b),
who carried out a simulation of the iterated Prisoner’s Dilemma (PD)
(Rapoport and Guyer, 1966; Axelrod and Hamilton, 1981) on a lattice
in which every individual interacted with her eight nearest neighbors.
Their finding of sizable proportions of cooperative actions even when
the temptation to defect was quite large stimulated a large amount of
work on evolutionary game theory on graphs (for reviews see, e.g.,
Szabó and Fáth, 2007; Roca et al., 2009). Unfortunately, in spite of the
large body of theoretical work devoted to this issue, it has not been
possible to reach a general conclusion about how the existence of

structure on a population could promote cooperation: indeed, it was
shown that the emergence and survival of cooperative behaviors
depended so crucially on the details of the models that their
applicability to real life situations was dubious, at best.

In view of this situation, in the last few years a number of
groups have carried out experiments to probe the relationship
between population structure and cooperation with real human
subjects (Kirchkamp and Nagel, 2007; Traulsen et al., 2010; Grujić
et al., 2010). Arguably, the main conclusion of this research is that
lattice-like structures do not seem to promote cooperation, at
least not to an extent different from what is found in dyadic or
small group experiments (Kagel and Roth, 1995; Camerer, 2003).
While the lack of promotion of cooperation is well established,
the reasons proposed by the different teams to explain the
experimental observations are different, and there is no consen-
sus yet as to what is the way the subjects updated their decisions
during the experiment. In particular, Kirchkamp and Nagel (2007)
focused on disproving the imitation strategy proposed by Nowak
and May (1992b), a conclusion also supported by Grujić et al.
(2010). On the other hand, Traulsen et al. (2010) fitted their
results to a payoff-dependent imitation behavior—Fermi rule
(Szabó and Töke, 1998)—finding that they needed a large amount
of random mutation to explain their observations.

In the above context, the analysis carried out by Grujić et al.
(2010) brought in an alternative way to understand the experi-
mental observations by building upon the idea of reciprocity
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(Trivers, 1971), i.e., the fact that individuals behave depending on
the actions of their partners in the past. In iterated two-player
games, this idea has been studied through the concept of reactive
strategies (Nowak and Sigmund, 1989a,b, 1990; Nowak and May,
1992a) (see Sigmund, 2010 for a comprehensive summary on this
matter), the most famous of which is Tit-For-Tat (Axelrod and
Hamilton, 1981), given by playing what the opponent played in
the previous run. Reactive strategies generalize this idea by
considering that players choose their action among the available
ones with probabilities that depend on the previous action of the
opponent. For the simple case of two strategies (say C and D),
players choose C with probability p following a C from their
partner and with probability q after a D from their partner.
Subsequently this idea was further developed by considering
memory-one reactive strategies (Nowak et al., 1995; Sigmund,
2010), in which the probabilities depend on the previous action of
both the focal player and her opponent—i.e., the focal player
would choose C with some probability following a (C,C) outcome,
and so on.

In iterated multiplayer games, such as public goods games or
multiplayer Prisoner’s Dilemmas (IMPD), reciprocity arises in the
form of conditional cooperation (Fischbacher et al., 2001; Gächter,
2007): individuals are willing to contribute more to a public good
the more others contribute. Conditional cooperation has been
observed a number of times in public goods experiments (Croson,
2007; Fischbacher and Gächter, 2010), often along with a large
percentage of free-riders. The experiment by Traulsen et al.
(2010) showed also evidence for such a behavior in a spatial
setup. Grujić et al. (2010) extended this idea in their analysis to
include the dependence of the focal player’s previous action,
introducing the so-called moody conditional cooperation (cf.
Fig. 1). In this strategy, players are more prone to cooperate after
having cooperated than after having defected, and in the first case
they are more cooperative the more cooperative neighbors they
have. This behavior has not been reported before in spatial games
and appears to be a natural extension of the reactive strategy idea
to multiplayer games (among the very many other extensions one
can conceive). On the other hand, and from an economic view-
point, which is an important part of the analysis of human
behavior, this type of strategy update scheme responds to the
often raised questions on payoff-based rules. In economic inter-
actions it is usually the case that agents perceive the others’
actions but not how much do they benefit from them, and
therefore the use of action updates depending, e.g., on the payoff
differences, may be questionable. This seems to be the case even if

this information is explicitly supplied to the players (Grujić et al.,
2010).

Interestingly, the conclusion of Grujić et al. (2010) had a new
feature as compared to the other two experiments (Kirchkamp
and Nagel, 2007; Traulsen et al., 2010), namely the heterogeneity
of the population: aside from the already mentioned moody
conditional cooperators, there were a large minority of defectors,
i.e., players that defected all or almost all the time, and a few
cooperators, that cooperated at practically all rounds. This hetero-
geneity, also found to be very important in public goods experi-
ments (Fischbacher and Gächter, 2010) had also been observed in
four-player experiments by Kurzban and Houser (2005), who
reported that their subjects could be roughly classified into three
main types, including defectors, cooperators and conditional
cooperators (called reciprocators in the original work), albeit they
did not check for dependences on the past actions of the players
either. Both Kurzban and Houser (2005) and Grujić et al. (2010)
checked that the payoffs obtained by every type of player were
more or less the same, thus suggesting that the population in the
lattice experiment might be at an evolutionary equilibrium.

In this paper we address the question of the existence and
stability of such a heterogeneous or mixed equilibrium in the
multiplayer iterated Prisoner’s Dilemma. It is important to under-
stand that we are not addressing the issue of the evolutionary
explanation of moody conditional cooperation. This is a very
interesting but also very difficult task, and in fact we do not even
have an intuition as to how one can address this problem in a
tractable manner. Our goal is then to understand whether or not
the coexistence of moody conditional cooperators, defectors, and
a small percentage of cooperators, as observed in the experiment,
is theoretically possible. In so doing, we will shed light on
experimental and theoretical issues at the same time. On the
experimental side, our results show that there is coexistence for
groups of two or three players for parameters reasonably close to
those found in the experiment, but not for larger groups. As we
will see in the Discussion section, this prediction has important
consequences related to the adequacy of replicator dynamics to
describe the experimental result or to the cognitive capabilities of
human subjects in dealing with large groups. We will also discuss
there the ways in which our theoretical approach and the
experiment may differ, something that can also have implications
of its own. On the theoretical side, we present an analysis of a
population of players interacting through a multiplayer Prisoner’s
Dilemma including strategies that generalize the ideas behind
reactive strategies, as mentioned above. To our knowledge, this

Fig. 1. Probabilities of cooperating after playing C or D, conditioned to the context (number of cooperators in the previous round) in the two experiments by Grujić et al.

(2010). Parameters of the fitted lines will be used later as inputs for our replicator dynamics study. The line fitted to the probabilities of cooperation after playing D is

strictly horizontal.
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has not been carried out before, at least to the extent we are doing
it here, in which we are able to show how this coexistence
depends on the size of the groups considered. We believe that the
approach we are presenting may be useful for other researchers
working on related problems.

With the above goals in mind, we introduce below a model in
which populations consisting of the three types of individuals
discussed above, namely cooperators, defectors, and moody con-
ditional cooperators, play a multiplayer iterated Prisoner’s
Dilemma with populations evolving according to the replicator
dynamics. We have considered different group sizes, from n¼2
through n¼5 players, a size whose outcome is well described by
the limit n-1, which we analyze separately. In the following, we
report on our findings concerning this system beginning by a
detailed introduction of our model (Section 2). The key to our
analytical approach is the payoff matrix, whose computation we
carry out by means of Markov chain techniques. Section 3 presents
the calculation in full detail for n¼2 players (i.e., the standard
iterated Prisoner’s Dilemma) and, subsequently, proceeds to the
replicator dynamics analysis of the so-obtained payoff matrix. We
then extend our approach to larger groups (n¼3, 4, 5) in Section 4.
As this becomes more and more cumbersome, in Section 5 we
address the limit n-1 analytically finding exact results about the
possible equilibria of the model. Finally, Section 6 concludes by
comparing our results to the experiments and discussing the
implications of such a comparison in terms of theoretical explana-
tions of the observed behavior and their shortcomings.

2. Game, strategies and payoffs

Let us consider a well-mixed population of players who interact
via iterative multiplayer Prisoner’s dilemmas (IMPDs). In these
games, players interact in groups of n players. Every round each
player adopts an action, either cooperate (C) or defect (D), and
receives a payoff from every other player in the group according to a
standard Prisoner’s dilemma payoff matrix (a cooperator receives R

from another cooperator and S from a defector; a defector receives T

from a cooperator and P from another defector; payoffs satisfy
T4R4P4S). We note that this is a generalized version of a public
goods game: in the latter, if there are k cooperators, a defector
receives bk whereas a cooperator receives b0ðk�1Þ�c (b0 ¼ b in a
standard public goods game). In a multiplayer PD, a defector
receives ðT�PÞkþPðn�1Þ whereas a cooperator receives
ðR�SÞðk�1ÞþSðn�1Þ, and hence choosing b¼ T�P, b0 ¼ R�S and
c¼ ðP�SÞðn�1Þ the IMPD becomes a generalized public goods game.
Notice an important difference with respect to the standard public
goods game: in this generalized version (bab0) the difference
between the payoff received by a cooperator and a defector depends
on the number of cooperators.

Inspired by the experimental results of Grujić et al. (2010) but
keeping at the same time as few parameters as possible, we will
classify players’ strategies into three stereotypical behaviors:
mostly cooperators, who cooperate with probability p (assumed
relatively close to one) and defect with probability 1�p; mostly
defectors, who cooperate with probability 1�p0 and defect with
probability p0 (for simplicity we will assume p0 ¼ p); and moody
conditional cooperators, who play depending on theirs and their
opponents’ actions in the previous round. Specifically, if they
defected in the previous round they will cooperate with prob-
ability q, whereas if they cooperated in the previous round they
will cooperate again with a probability

pCðxÞ ¼ ð1�xÞp0þxp1, ð1Þ

where x is the fraction of cooperative actions among the oppo-
nents in the previous round, and p0op1.

At this point, we would like to mention that our results do not
depend qualitatively on the ‘‘moodiness assumption’’; in fact, we
have checked that redoing the calculations we will present below
for plain conditional cooperators (as those found by Fischbacher
et al., 2001; Gächter, 2007) leads only to quantitative changes in the
results. Therefore, we present our discussion in terms of moody
conditional cooperators as they are empirically more relevant.

To complete the definition of the model, we need to specify how
the populations of the different strategies are going to evolve in
time. Players interact infinitely often in an IMPD, so payoffs both
increase in time and depend on the whole history of play. It thus
makes sense to use the (time) average payoffs to study the evolution
of the game in terms of the abundance of the three strategies
considered. As these strategies are defined depending on players’
actions in the round immediately before, a multiplayer game with n

players and given populations of each type of player can be
described as a finite state Markov chain whose states are defined
by the actions taken by the n players. Of course the chain is different
for different compositions of strategies in the group. In any case,
given that all outcomes have non-zero probability, the chain is
ergodic and therefore there is a well defined steady state (Karlin and
Taylor, 1975). Average payoffs are readily obtained once the prob-
ability vector in the steady state is known, and subsequent evolution
is described through imitation via replicator dynamics (Hofbauer
and Sigmund, 1998). In the next section we develop all this
formalism in full detail for the case n¼2, i.e., for the usual iterated
PD, taking advantage that in this case the expressions that arise can
be written in a compact way. The cases with more than two players
are dealt with in Section 4 in a more sketchy manner.

3. Two-persons game (iterated PD)

3.1. General scheme of the approach

In the case n¼2 the states of the Markov chain are described as
CC, CD, DC, and DD, where the first action is the focal player’s and
the second one is the opponent’s. The transition probability matrix
will be denoted as

M¼

CC CD DC DD

CC

CD

DC

DD

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

0
BBBB@

1
CCCCA

, ð2Þ

where mij gives the probability that players who played i in the
previous round play j in the present round (i,jA {CC, CD, DC, DD}).
The matrix M will of course depend on the nature of the two players
involved, so there will be nine different matrices. Denoting ‘mostly
cooperators’ by C, ‘mostly defectors’ by D and ‘moody conditional
cooperators’ by X, the six combinations are CC, CD, CX, DD, DX, XX.
As we stated above, the Markov chains so defined are always
ergodic; consequently, the corresponding stationary probability
vector, which we will term p¼ ðpCC,pCD,pDC,pDDÞ, is obtained by
solving the equation p¼ pM (Karlin and Taylor, 1975). Note that
there is such a stationary probability distribution p for each of the
six combinations of two players, as we will see below. Now, once the
probability distribution is known, the payoff matrix W ¼ ðwijÞ,
providing the average payoff that a player of type i gets when
confronted to a player of type j (i,jA {C, D, X}) in an IMPD (in this
section, n¼2, an iterated PD) can be computed as

wij ¼ RpCCþSpCDþTpDCþPpDD: ð3Þ

These payoffs can then be used in the replicator dynamics to finally
find the evolution of the three strategy population.

J. Grujić et al. / Journal of Theoretical Biology 300 (2012) 299–308 301
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3.2. Payoff computation

Of the six combinations of players, three yield a trivial
stationary vector p because they do not depend on the previous
actions, namely those which do not involve the strategy X. The
corresponding payoffs are therefore straightforward to compute,
and we have (recall the focal player is denoted by the first
subindex)

wCC ¼ p2Rþpð1�pÞSþð1�pÞpTþð1�pÞ2P, ð4Þ

wCD ¼ pð1�pÞRþp2Sþð1�pÞ2Tþð1�pÞpP, ð5Þ

wDC ¼ ð1�pÞpRþð1�pÞ2Sþp2Tþpð1�pÞP, ð6Þ

wDD ¼ ð1�pÞ2Rþð1�pÞpSþpð1�pÞTþp2P: ð7Þ

The payoffs for the cases where the moody conditional
cooperators, X, play, require computing the corresponding sta-
tionary probability. Let us begin with the Markov matrix (2) for a
mostly cooperator (C) and a conditional cooperator (X), given by

M¼

pp1 pð1�p1Þ ð1�pÞp1 ð1�pÞð1�p1Þ

pq pð1�qÞ ð1�pÞq ð1�pÞð1�qÞ

pp0 pð1�p0Þ ð1�pÞp0 ð1�pÞð1�p0Þ

pq pð1�qÞ ð1�pÞq ð1�pÞð1�qÞ

0
BBBB@

1
CCCCA, ð8Þ

from which the stationary probability vector is given by

p¼ ðpq,p½1�pCðpÞ�,ð1�pÞq,ð1�pÞ½1�pCðpÞ�Þ

1þq�pCðpÞ
, ð9Þ

where pC(x) is given by (1) (notice that it represents the average
probability for a conditional cooperator to cooperate, given that
she cooperated in the previous round, whereas her mostly
cooperator opponent cooperates with probability p). Therefore,
inserting (9) in (3) and having in mind who the focal player is, we
arrive at

wCX ¼ ½1þq�pCðpÞ�
�1fpqRþp½1�pCðpÞ�Sþð1�pÞqT

þð1�pÞ½1�pCðpÞ�Pg, ð10Þ

wXC ¼ ½1þq�pCðpÞ�
�1fpqRþð1�pÞqSþp½1�pCðpÞ�T

þð1�pÞ½1�pCðpÞ�Pg: ð11Þ

The case for a mostly defector facing a moody conditional
cooperator can be obtained immediately by realizing that the
defector behaves as a mostly cooperator whose probability of
cooperating is 1�p instead of p, hence we find trivially

wDX ¼ ½1þq�pCð1�pÞ��1fð1�pÞqRþpqT

þð1�pÞ½1�pCð1�pÞ�Sþp½1�pCð1�pÞ�Pg, ð12Þ

wXD ¼ ½1þq�pCð1�pÞ��1fð1�pÞqRþpqS

þð1�pÞ½1�pCð1�pÞ�Tþp½1�pCð1�pÞ�Pg: ð13Þ

Finally, if two conditional cooperators confront each other, the
Markov matrix becomes

M¼

p2
1 p1ð1�p1Þ ð1�p1Þp1 ð1�p1Þ

2

p0q p0ð1�qÞ ð1�p0Þq ð1�p0Þð1�qÞ

qp0 qð1�p0Þ ð1�qÞp0 ð1�qÞð1�p0Þ

q2 qð1�qÞ ð1�qÞq ð1�qÞ2

0
BBBB@

1
CCCCA, ð14Þ

and has a stationary vector p which, up to normalization, is
proportional to a vector a with components

aCC ¼ q2ð1þp0�qÞ,

aCD ¼ qð1�p1Þð1þp1�qÞ,

aDC ¼ qð1�p1Þð1þp1�qÞ,

aDD ¼ ð1�p2
1Þð1�p0�qÞþ2qp0ð1�p1Þ: ð15Þ

From this result one can compute wXX as in the other eight cases.
With the payoffs we have computed, we are now in a position to
proceed to the dynamical study.

3.3. Replicator dynamics

Denoting x¼ ðxC,xD,xXÞ (with xCþxDþxX ¼ 1) the vector with
the population fractions of the three types of players, the
dynamics of xi is described by the replicator equation

_xi ¼ xi½ðWxÞi�x �Wx�, ð16Þ

where W is the payoff matrix obtained above.
In order to use this dynamics in connection with the experiment

of Grujić et al. (2010), we need to recall the payoffs used in that work,
namely T¼10, R¼7, P¼S¼0 (i.e., a weak Prisoner’s dilemma as in
Nowak and May, 1992b). Two consecutive experiments were carried
out, leading to two different sets of parameters for the behavior of the
players. Fig. 2 shows the dynamics resulting for both sets of
parameters, whose specific values are listed in the caption. As we
may see, there are no interior points, which would indicate equilibria
in which the three strategies coexist, as observed in the experiment.
The only equilibria we find for these parameters are in the corners of
the simplex, C being always a repeller, D an attractor and X being a
saddle point or an attractor depending on the parameters. In the case
where D and X are both attractors it is X that has the largest basin of
attraction (almost the entire simplex). Therefore, the results for this
model do not match what is observed in the experiment. However,

DX

C

DX

C

Fig. 2. Phase portraits of the replicator dynamics for 2-players IMPD games with

three strategies (C, D, and X) for the parameters inferred from experiment 1 (top;

p¼0.83, q¼0.26, p0¼0.44, p1¼0.60) and experiment 2 (bottom; p¼0.83, q¼0.21,

p0¼0.34, p1¼0.98). Rest points marked in the plot can be repellers (white), saddle

points (grey) or attractors (black).
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it is important to keep in mind that in the experiment players played
with their eight neighbors, this being the reason why we will later
address the dynamics of IMPDs with larger groups.

Notwithstanding this first result, as we will now see it is very
interesting to dwell into the n¼2 case in more detail. For the
purpose of illustrating our results, let us choose the behavioral
parameters to be p¼0.83, q¼0.20, p0¼0.40, and p1¼0.80, which are
values we could consider representative of both experiments.
Inserting these parameters into the calculations above, we find that
the payoff matrix is given by

0 �0:3366 �0:4367

1:6434 0 �0:1800

1:0026 �0:0526 0

0
B@

1
CA: ð17Þ

This type of matrix belongs to a class of games studied by Zeeman
(1980) [compare it with matrix (A.1) in Appendix A]. In fact, in a
region of parameters near those that can be inferred from the
experiments of Grujić et al. (2010) the game behaves as a Zeeman
game. The Zeeman game has five rest points (see Appendix A): an
unstable one at the C corner, a stable one at the D corner, a saddle
point at the X corner, and two mixed equilibria on the C–X and on
the D–X edges of the simplex. Besides, under certain constraints (cf.
(A.3)) there is also an interior point.

Turning now to our example matrix (17), its non-trivial rest
points turn out to be (0, 0.7739, 0.2261), (0.3034, 0, 0.6966),

and (0.1093, 0.3876, 0.5031). The stability of these mixed, interior
equilibria depends on the parameters (see Appendix A). For the
present case, the situation is similar to that shown in Fig. A1(a).
Thus the evolution of this system is governed by the presence of
two attractors: the interior point and the D corner, each with a
certain basin of attraction. A key feature of the class of problems
we are considering is that the precise location of the interior rest
point is very sensitive to the values of the parameters. Figs. 3–6
illustrate what happens to it when each of the four probabilities
that define the strategies are changed around the values given
above. Generally speaking, the figures show that the interior point
approaches either one of the rest points on the edges C–X and D–
X, while these in turn move along their edges. The specific details
depend on the parameter one is considering as can be seen from
the plots. We have also found that larger changes in the para-
meters can make the interior point coalesce with the mixed
equilibrium on the C–X edge – thus transforming the dynamics
into the one sketched in Fig. A1(c) – or even change the Zeeman
structure of the payoff matrix yielding different stable equilibria
(generally at the corners). Notice that – particularly so in experi-
ment 2 – the values of the parameters are not far from those
producing the plots of Figs. 3–6. This indicates that, while we
would not expect a two-person theory to describe quantitatively
the experiments, the existence of an interior point with the same
kind of mixed population as observed is possible with minor
modifications of the parameters.

DX

C

DX

C

DX

C

Fig. 3. Phase portraits of the replicator dynamics for 2-players IMPD games with three strategies (C, D, and X) for different values of p: 0.80 (left), 0.83 (middle), and 0.90

(right). Other parameters: q¼0.2, p0¼0.4, p1¼0.8. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In all three cases the

inner point as well as the xD¼1 point are the only attractors of the system.

DX

C

DX

C

DX

C

Fig. 4. Phase portraits of the replicator dynamics for 2-players IMPD games with three strategies (C, D, and X) for different values of q: 0.10 (left), 0.15 (middle), and 0.30

(right). Other parameters: p¼0.83, p0¼0.4, p1¼0.8. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In the last two cases

the inner point as well as the xD¼1 point are the only attractors of the system. In the latter case the point xD¼1 has merged with the saddle in the edge xC¼0 becoming a

saddle point. Correspondingly, the basin of attraction of xD¼1 has disappeared.
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4. Games involving more than two players

Having discussed in depth the replicator dynamics for the IPD
with mostly cooperators, mostly defectors and moody conditional
cooperators, with the result that an interior point with a sizable
basin of attraction exists for a wide range of parameters, we now
increase the number of players to check whether the theory is a
valid description of the experimental results. The mathematical
approach for the case when more than two players are involved is
similar to that for two players, only computationally more
involved. The Markov transition matrix (2) now describes a chain
containing 2n states, n being the number of players. These are
described as all combinations of C or D actions adopted by each of
the n interacting agents. On the other hand, there will be
(nþ2)(nþ1)/2 such matrices displaying all possible combinations
of the three strategies (C,D,X). Obtaining the expressions for them
is of course straightforward, but doing it analytically for n42 is
out of question. Once the matrices are obtained computing the
vector p containing the 2n stationary probabilities for each of the
states simply amounts again to solving the linear system p¼ pM,
readily providing the payoffs for any strategy i when confronted
with any set i1, . . . ,in of strategies of the n�1 opponents. The
result can be cast in a tensor W ¼ ðWi,i1 ,...,in�1

Þ. For a population
composition x the payoff received by an individual of strategy i

will thus be

WiðxÞ ¼
X

i1 ,...,in�1 ¼ C,D,X

Wi,i1 ,...,in�1
xi1 � � � xin�1

, ð18Þ

and the average payoff of the population will be

W ðxÞ ¼
X

i ¼ C,D,X

xiWiðxÞ: ð19Þ

Finally, the replicator dynamics is then given by

_xi ¼ xi½WiðxÞ�W ðxÞ�: ð20Þ

Expression (18) can be further simplified if we exploit the
symmetry implicit in public goods games, where the identity of
the players is not at all relevant, only the number of them using a
given strategy. This means that many payoffs are equal because

Wi,i1 ,...,in�1
¼WiðnC,nD,nXÞ, ð21Þ

i.e., the payoff obtained by an i strategist only depends on the
number nC of cooperators, nD of defectors, and nX of conditional
cooperators (nCþnDþnX ¼ n�1) she is confronted to. Then

WiðxÞ ¼
X

nC þ nD þ nX ¼ n�1

nC ,nD ,nX Z 0

ðn�1Þ!

nC!nD!nX!
WiðnC,nD,nXÞx

nC

C xnD

D xnX

X : ð22Þ

As in Section 3, for the parameters obtained from the experi-
ments there is no interior point that describes the coexistence of the
three strategies. We subsequently proceeded as in the previous case
and tried to find ranges of parameters for which such an interior
point exists. It turns out that for groups of n¼3 players sets of
parameters can also be found where the dynamics is similar to that
for n¼2 (see Fig. 7 for an example), albeit the parameters for which
this happens are a bit different—but still reasonably close to those
of the experiments of Grujić et al. (2010). As in the two player case,

DX

C

DX

C

DX

C

Fig. 5. Phase portraits of the replicator dynamics for 2-players IMPD games with three strategies (C, D, and X) for different values of p0: 0.20 (left), 0.40 (middle), and 0.50

(right). Other parameters: p¼0.83, q¼0.2, p1¼0.8. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In all three cases the

inner point as well as the xD¼1 point are the only attractors of the system.
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Fig. 6. Phase portraits of the replicator dynamics for 2-players IMPD games with three strategies (C, D, and X) for different values of p1: 0.70 (left), 0.75 (middle), and 0.85

(right). Other parameters: p¼0.83, q¼0.2, p0¼0.4. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In all three cases the

inner point as well as the xD¼1 point are the only attractors of the system.
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the structure displayed in this figure turns out to be extremely
sensitive to variations in the parameters. Although we will not go
into the details of those modifications here, we find it interesting to
note that Fig. 7 shows an evolution of the interior point with
increasing p very similar to that for n¼2 (cf. Fig. 3), albeit with more
drastic changes, indicating that the existence of an interior point is
less generic. For IMPDs with larger groups we find that, although for
groups of n¼4 players it is still possible to find a Zeeman-like phase
map, one has to choose values for p very close to one (meaning that
cooperators and defectors are nearly pure strategies) and on top of
that the region where this behavior can be obtained is extremely
narrow. It can be clearly observed in Fig. 8, where several of these
maps are shown for different values of p1, that variations of about 1%
noticeably displace the location of the interior point. Importantly, it
can be also observed from Figs. 7 and 8 that the basin of attraction of
the interior point, when it exists, shrinks upon increasing the
number of players, i.e., for n¼4 the fraction of trajectories that
end up in the D attractor is larger than those ending in the interior
point. Finally, for the largest group size we could handle computa-
tionally, n¼5 players, we have not been able to find an interior point
for any choice of parameters. It turns out that the outcome of this
game for nZ5 is well represented by the large group limit n-1,
which unlike the case of arbitrary but finite n, is amenable to
analysis—as we show in the next section.

5. Infinitely large groups

Obtaining the payoffs (21) amounts to finding the stationary
state of (nþ2)(nþ1)/2 Markov chains, each made of ðnCþ1Þ �
ðnDþ1Þ � ðnXþ1Þ states, where nCþnDþnX ¼ n defines the

composition of the n-player group. The size of the corresponding
Markov matrices grows as n3, which makes it feasible to study
groups even larger than n¼5 players. This will not be necessary
though the resulting chain can be studied analytically in the limit
n-1, which characterizes well the behavior of large groups.

To determine how a group with nCþnDþnX ¼ n players of each
type will respond in a given iteration of the Prisoner’s dilemma
we only need to record the vector ðkC,kD,kXÞ whose components
count how many players of each strategy cooperate in a given
round. Then the probability to observe the Markov chain in a
certain state given that in the previous round the state was
ðlC,lD,lXÞ is

PrfkC,kD,kX9lC,lD,lXg ¼
nC

kC

 !
nD

kD

 !
pnD�kDþkC ð1�pÞnC�kCþkD

�
XkX

j ¼ 0

lX

j

 !
nX�lX

kX�j

 !
pCðxÞ

j
½1�pCðxÞ�

lX�j � qkX�jð1�qÞnX�lX�kXþ j,

ð23Þ

with the usual convention that ðabÞ ¼ 0 for b4a and where we
have introduced the short-hand notation

x�
lCþ lDþ lX�1

n�1
:

Extracting analytical information for finite n from this matrix is
not an easy task. However, let us focus on the limit n-1. It is
straightforward to show that

E
kC

n

����lC,lD,lX

� �
¼ p

nC

n
, E

kD

n

����lC,lD,lX

� �
¼ ð1�pÞ

nD

n
,

DX

C

DX

C

DX

C

Fig. 7. Phase portraits of the replicator dynamics for 3-players IMPD games with three strategies (C, D, and X) for different values of p: 0.90 (left), 0.92 (middle), and 0.95

(right). Other parameters: q¼0.10, p0¼0.20, p1¼0.95. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In all three cases

the inner point as well as the xD¼1 point are the only attractors of the system.
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Fig. 8. Phase portraits of the replicator dynamics for 4-players IMPD games with three strategies (C, D, and X) for different values of p1: 0.95 (left), 0.97 (middle), and 0.98

(right). Other parameters: p¼0.95, q¼0.20, p0¼0.30. Rest points marked in the plot can be repellers (white), saddle points (grey) or attractors (black). In all three cases the

inner point as well as the xD¼1 point are the only attractors of the system.
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E
kX

n

����lC,lD,lX

� �
¼ pCðxÞ

lX
n
þq

nX�lX
n

, ð24Þ

and

Var
kC

n

����lC,lD,lX

� �
¼ pð1�pÞ

nC

n2
, Var

kD

n

����lC,lD,lX

� �
¼ pð1�pÞ

nD

n2
,

Var
kX

n

����lC,lD,lX

� �
¼ pCðxÞ½1�pCðxÞ�

lX
n2
þqð1�qÞ

nX�lX
n2

: ð25Þ

Hence, introducing the random variable ri � ki=ni and denoting
xi � ni=n, in the limit n-1 the probability density of ri becomes a
delta function around rC ¼ p, rD ¼ 1�p and rX, this last quantity
arising from the solution to the equation

rX ¼ fp0þðp1�p0Þ½pxCþð1�pÞxDþrX�grXþqð1�rXÞ: ð26Þ

If p0 ¼ p1 this is a linear equation with solution rX ¼ q=ð1�p0þqÞ.
If p0ap1 it is a quadratic equation with two solutions. The one
that reduces to the solution found for p0 ¼ p1 is

rX ¼
2q

Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
�4qðp1�p0ÞxX

q , ð27Þ

D� 1�p0þq�ðp1�p0Þ½pxCþð1�pÞxD�: ð28Þ

Notice that D40 as long as p14p04q, as required.
Factors ri yield the asymptotic, stationary fraction of coopera-

tive actions among players of type i in the group. Hence the
stationary level of cooperation is given by

k� pxCþð1�pÞxDþrXxX, ð29Þ

and the corresponding payoffs of the three type of players are

WCðxÞ ¼ pkRþpð1�kÞSþð1�pÞkTþð1�pÞð1�kÞP, ð30Þ

WDðxÞ ¼ ð1�pÞkRþð1�pÞð1�kÞSþpkTþpð1�kÞP, ð31Þ

WXðxÞ ¼ rXkRþrXð1�kÞSþð1�rXÞkTþð1�rXÞð1�kÞP: ð32Þ

Notice that

WDðxÞ�WCðxÞ ¼ ð2p�1Þ½kðT�RÞþð1�kÞðP�SÞ�, ð33Þ

so as long as p41=2 we have WDðxÞ4WCðxÞ i.e., cooperators are
always dominated by defector irrespective of the composition of
the population (provided xD40). This implies that no interior
point exists in the limit n-1, a property that suggests that the
fact that we have not been able to locate an interior point for n¼5
is generic for larger values of n.

On the other hand,

WCðxÞ�WXðxÞ ¼ ðrX�pÞ½kðT�RÞþð1�kÞðP�SÞ�, ð34Þ

WDðxÞ�WXðxÞ ¼ ðrXþp�1Þ½kðT�RÞþð1�kÞðP�SÞ�, ð35Þ

so any solution to rX ¼ p (rX ¼ 1�p) determines a rest point on the
xD ¼ 0 (xC ¼ 0) edge of the simplex. Taking the first equation and
assuming xD ¼ 0 we obtain

2q

p
�D

� �2

¼D2
�4qðp1�p0ÞxX:

Upon simplification this equation becomes

qþp2ðxCþxXÞ ¼ pð1�p0þqÞ:

Given that xCþxX ¼ 1 on the xD ¼ 0 edge of the simplex, it turns
out that rX ¼ p does not hold for any point of this edge. A similar
argument yields the same result for rX ¼ 1�p on the xC ¼ 0 edge of
the simplex (the equations are the same just replacing p by 1�p

and xC by xD).
We have thus established that, depending on the parameters

p14p04q and p41=2, on the xD ¼ 0 edge of the simplex either
WCðxÞ4WXðxÞ or WCðxÞoWXðxÞ irrespective of the composition,

and on the xC ¼ 0 edge of the simplex either WDðxÞ4WXðxÞ or
WDðxÞoWXðxÞ irrespective of the composition. In order to
decide which one of the inequalities holds on each edge we can
set an arbitrary composition, namely xX ¼ 1. At this corner of the
simplex

rX ¼
2q

1�p0þqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p0þqÞ2�4qðp1�p0Þ

q

¼
1�p0þq�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p0�qÞ2þ4qð1�p1Þ

q
2ðp1�p0Þ

: ð36Þ

Then WCðxÞ4WXðxÞ on xD ¼ 0 if, and only if,

1�p0þq�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p0�qÞ2þ4qð1�p1Þ

q
2ðp1�p0Þ

4p4
1

2
, ð37Þ

and WDðxÞ4WXðxÞ on xC ¼ 0 if, and only if,

1�p0þq�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p0�qÞ2þ4qð1�p1Þ

q
2ðp1�p0Þ

41�p: ð38Þ

Notice that if (37) is true so is (38) (but the converse does
not hold).

For (37) to hold a necessary condition is that the left-hand side
is larger than 1/2, a condition that boils down to

1�p1þq4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p0�qÞ2þ4qð1�p1Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p1þqÞ2þ2ðp1�p0Þ 1�q�

p1þp0

2

� �r
:

As p14p0, the only way that this can hold is if qþðp1þp0Þ=241.
When inequality (37) is satisfied, D is an attractor, X is a repeller,
and C a saddle point. Otherwise C is a repeller (obviously, a
sufficient condition for this to happen is qþðp1þp0Þ=2o1). In this
case D is an attractor and X a saddle point if (38) holds and vice
versa if it does not.

A summary of our results for n-1 is shown in the sketch of
Fig. 9. As we can see from the plot, the main results are that there
never exists an interior point, that homogeneous C populations
are not stable, and that in two out of three cases the final result
of the dynamics is a homogeneous D population. Therefore,
although there is a region of parameters in which a homogeneous
population of moody conditional cooperators is actually stable,
we never observe coexistence even of pairs of strategies.

6. Discussion

Motivated by the recent experimental work by Grujić et al.
(2010), where conditional cooperation depending on the player’s
previous action was observed in a spatial Prisoner’s dilemma

C C C

X DX DX D

Fig. 9. The only three phase portraits of the replicator dynamics for IMPD games

with three strategies (C, D, and X) played in infinitely large groups. Rest points

marked in the plot can be repellers (white), saddle points (grey) or attractors

(black). Map (a) appears if inequality (37) holds (a necessary condition for this is

qþðp1þp0Þ=241); map (b) appears if inequality (37) does not hold but inequality

(38) does; map (c) appears if neither (37) nor (38) hold (a sufficient condition for

maps (b) and (c) to appear is qþðp1þp0Þ=2o1).
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coexisting with cooperation and defection, we have studied the
replicator dynamics of the IMPD with these three strategies. The
fact that the experimental results indicated that all three strate-
gies were getting on average the same payoff suggested that they
were in equilibrium; on the other hand, as the presence of a
lattice had no significant consequences on the level of coopera-
tion, it seemed likely that the spatial game could be understood in
terms of separate multiplayer games.

Assuming a stylized version of the behaviors mentioned above,
we have focused on the problem of their coexistence in well-
mixed populations, when they interact in groups of nZ2 players
through an IMPD. For n¼2, in a region of parameters compatible
with those of the experiment we do find a mixed equilibrium in
which all three types of players coexist, and they do it in a
proportion similar to that found in the experiments. The phase
portrait of the replicator dynamics reproduces that of a three-
strategies game introduced by Zeeman (1980). However, upon
increasing n, the region of parameters of this Zeeman-like
dynamics shrinks, and for n¼5, the maximum size we could
analyze with our analytical approach, we could not find a mixed
equilibrium anymore.

Given that our Markov chain technique becomes computa-
tionally untraceable for larger sizes, we have carried out a
rigorous analysis of the replicator dynamics for this game in the
limit n-1. The analysis reveals that in this limit, all rest points
other than the three corners of the simplex – that can be found for
small n – disappear. The dynamics in this limit is determined by
who beats who, depending on the parameters. Cooperators are
always defeated by defectors, but depending on the parameters,
conditional cooperators are displaced by any other strategy, or
only by defectors, or they can displace the other two strategies.

Putting together our numerical results for small n and our
analytical calculations for large n, we can conclude that an
imitative evolution like the one represented by replicator
dynamics cannot account for the coexistence of strategies
observed in the experiments, at least in groups as large as n¼9
(the case of the experiment). The reasons for this can be many.
The most obvious one is that replicator dynamics might not be
what describes the evolution of strategies in human subjects. In
this regard, we have to make it clear that we are not studying the
evolution of the players during the experiment, as it was shown
by Grujić et al. (2010) that there is no learning. Our evolutionary
approach would apply to much longer time scales, i.e., these
strategies would have arisen from interactions of human groups
through history. It may then well be the case that this slower
evolution of human behavior requires another approach to its
dynamics. By the same token, it might also occur that the typical
number of iterations of the game is not very large, so the
stationary probability density obtained from the Markov chains
is not a good approximation to the observed behavior. All in all, it
is clear that our analytical model might not be the most appro-
priate one to describe human behavior on IMPDs.

Nevertheless, another possible explanation for the discrepancy
between our predictions and the coexistence of moody condi-
tional cooperators with the cooperator and the defector strate-
gists might come from bounded rationality considerations. Thus,
people may behave in a IMPD as though they were playing a
(two-person) IPD with some kind of an ‘‘average’’ opponent,
something that can be reinforced by the computer interface of
the experiment that isolates the subjects from the other ones with
whom they interact. Such a heuristic decision making process
might be the result of cognitive biases or limitations, among
which the inability to deal with large numbers may be of
relevance here (Kahneman et al., 1982), or else it could arise as
an adaptation itself (Gigerenzer and Selten, 2001). Whatever the
underlying reason, the fact that for n¼2 and n¼3 players we can

easily find wide ranges of parameters for which the three
strategies coexist and, furthermore, this coexistence have a large
basin of attraction, suggests that the idea that people may be
extrapolating their behavior to larger groups should at least be
considered, and tested by suitably designed experiments.

On the other hand, it should be borne in mind that the strategies
reported by Grujić et al. (2010) are aggregate behaviors, as they
attempted to classify the actions of the player in a few archetypal
types. Therefore, there may actually be very many different moody
conditional cooperators, defined by different p0, p1 and q para-
meters and different propensities to cooperate (parameter p)
among cooperators and defectors. Alternatively players who were
classified as conditional cooperators might be using a totally
different strategy, different for every player, which aggregated
would look like the conditional cooperation detected in the experi-
ment. This is not included anywhere in our replicator dynamics. It is
certainly possible that considering several different subclasses of
the strategy X in the replicator dynamics might actually provide an
explanation for coexistence in larger groups. However, the corre-
sponding calculations become very much involved, and whether
this variability can sustain mixed equilibria is an interesting
question that remains out of the scope of this work.

As a final remark, we would like to stress that, notwithstand-
ing the issue that the agreement between our results and the
experiments is problematic, this study proves that, under repli-
cator dynamics, even for n-1 our work predicts the dominance
of moody conditional cooperators for certain regions of para-
meters. It is important to realize that this type of strategy had not
been considered prior to the experimental observation, and as we
now see it can successfully take over the entire population even
from defection when playing an IMPD. This suggests that this or
similar strategies may actually be more widespread than this
simple case as they might also be the best ones in related games,
such as the public goods game. It would be worth widening the
scope of this work by analyzing the possible appearance of this
conditional cooperators who are influenced by their own mood in
other contexts, both theoretically and experimentally. In this
regard, an explanation of the evolutionary origin of moody
conditional cooperators would be a particularly important, albeit
rather difficult goal.
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Appendix A. Zeeman’s game

Zeeman (1980) analyzed the evolutionary dynamics of three
strategy games. Apart from the well known rock-paper-scissors
(Hofbauer and Sigmund, 1998) he identified a game with the
canonical payoff matrix for the strategies C, D and X, given by

0 �a2 b1

b2 0 �a3

a1 �b3 0

0
B@

1
CA, ðA:1Þ

where all coefficients are positive. Any 3�3 payoff matrix can be
transformed into a zero diagonal one because the replicator
equation remains invariant if the same constant is subtracted
from every element of one of its columns (Hofbauer and Sigmund,
1998). The coefficients of the payoff matrix (A.1) represent the
payoff an invader gets when it invades a homogeneous
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population. Thus a D or X individual invading a homogeneous C
population will get b2 or a1, respectively. As both are positive a
homogeneous C population is unstable. Similarly a C or X
individual invading a homogeneous D population will get �a2

or �b3, respectively. Therefore a homogeneous D population is
uninvadable (hence stable). As for a C or a D individual invading a
homogeneous X population, it will obtain b1 or �a3, respectively.
It is therefore a saddle point because it cannot be invaded by D
individuals but it can by C individuals.

This simple analysis fixes the flux of the dynamics at the
boundary of the simplex (Fig. A1). It also implies the existence of
two rest points on the boundary of the simplex: one on the D–X
edge and another one on the C–X edge. These points are given by

0,
a3

a3þb3
,

b3

a3þb3

� �
,

b1

a1þb1
,0,

a1

a1þb1

� �
: ðA:2Þ

Besides, an interior rest point ðyC,yD,yXÞ=ðyCþyDþyXÞ, with coor-
dinates

yC ¼ b3ða3þb1Þ�a2a3,

yD ¼ b1b2�a1ðb1þa3Þ,

yX ¼ a1a2þb2b3�a2b2, ðA:3Þ

appears provided all three components have the same sign
(Fig. A1(a)). Component yD is proportional to the difference
between the payoff of the population at the C–X mixed equili-
brium and the payoff of a D invader. When it is negative the C–X
rest point becomes a saddle and the interior point is an attractor
(the situation depicted in Fig. A1(a)). When it is positive a D
individual cannot invade the C–X equilibrium, which then
becomes an attractor and the interior point becomes a repeller
(this is illustrated in Fig. A1(b)). If no interior point exists the
behavior will be as plotted in Fig. A1(c) (Zeeman, 1980).
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