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a b s t r a c t

In the companion paper of this set (Capitán and Cuesta, 2010) we have developed a full analytical

treatment of the model of species assembly introduced in Capitán et al. (2009). This model is based on the

construction of an assembly graph containing all viable configurations of the community, and the

definition of a Markov chain whose transitions are the transformations of communities by new species

invasions. In the present paper we provide an exhaustive numerical analysis of the model, describing the

average time to the recurrent state, the statistics of avalanches, and the dependence of the results on the

amount of available resource. Our results are based on the fact that the Markov chain provides an

asymptotic probability distribution for the recurrent states, which can be used to obtain averages of

observables as well as the time variation of these magnitudes during succession, in an exact manner. Since

the absorption times into the recurrent set are found to be comparable to the size of the system, the end

state is quickly reached (in units of the invasion time). Thus, the final ecosystem can be regarded as a

fluctuating complex system where species are continually replaced by newcomers without ever leaving

the set of recurrent patterns. The assembly graph is dominated by pathways in which most invasions are

accepted, triggering small extinction avalanches. Through the assembly process, communities become

less resilient (e.g., have a higher return time to equilibrium) but become more robust in terms of resistance

against new invasions.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the mechanisms leading to species assembly in
ecological communities is a challenging issue. In particular,
assembly models have been used to understand the observation
that natural communities are both complex and stable (McCann,
2000; Dunne, 2006).

Assembly models try to mimic the sequential arrival of rare
species (invaders) to which natural communities are subject.
Standard assembly models (Drake, 1990; Law and Morton, 1993,
1996) use ‘‘species pools’’ as (finite) sets of potential invaders. Pools
are usually defined by labeling species according to some niche
variable (usually a species trait like body size) and then drawing
randomly their interactions from predetermined probability dis-
tributions (Law and Morton, 1996). Sequential invaders of any
given resident community are selected from the pool at each
invasion attempt, and the resulting community after the invasion
can be determined according to some population dynamics. For
models using Lotka–Volterra equations, the permanence (Hofbauer

and Sigmund, 1998) of the invaded community is a suitable
criterion which determines the same final community as the
numerical integration of the equations (Morton et al., 1996).

The most notable results of previous assembly models are: (i) a
final end state is eventually reached, which can be either a single
community or a cycle involving several communities (Morton and
Law, 1997), (ii) average species richness (complexity) increases
with successional time (Post and Pimm, 1983; Drake, 1990; Law
and Morton, 1996), and (iii) stability, understood as resistance
against invasions, also increases with time (Case, 1990; Law and
Morton, 1996; Morton and Law, 1997). Thus assembly models
conform a well-founded theoretical framework that provides a
positive relationship between stability and complexity in model
communities.

In a previous paper (Capitán et al., 2009) we have provided a
picture of the assembly process of an ecosystem as a Markov chain
evolving in a certain configuration space. This space is made of all
viable communities for a given set of parameters (resource
saturation, interspecific competition, consumption rates, etc.).
The invasion process by a new species induces transitions as a
result of the perturbations created in the community by the
newcomer. The process drives the community to an end state
resistant to invasions. For some parameter values this end state is
just a single uninvadable community. For the remaining values, the
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end state is formed by a set of communities with equal number of
trophic levels and similar number of species per level, which
transform into each other as a result of new invasions. In this set,
communities can always be invaded but they never abandon the
set. These complex end states are a generalization of the end cycles
found in previous assembly models (Morton and Law, 1997), and
the fact that they had not been observed so far is probably due to
limitations in the pool of invaders of these previous models. In the
preceding paper (Capitán and Cuesta, 2010) we have shown that
the existence of these complex end states is a result of a top
predator attempting to invade a community when its establish-
ment is not allowed by the parameters of the model.

Our model recovers the main findings of previous assembly
models (Post and Pimm, 1983; Drake, 1990; Case, 1990; Law and
Morton, 1993, 1996), such as the resistance of end states against
invasions, or the increase of complexity (biodiversity) along the
assembly (Capitán et al., 2009). Its main virtue is therefore being
sufficiently simple so as to allow mapping out all assembly path-
ways, thus providing a global picture of the assembly process.

Despite recovering the above similar results, there are impor-
tant differences between our work and early models. First, the
niche variable in our model is simply the trophic level (Capitán
et al., 2009), which renders our species pool infinite (in contrast to
most previous models; but see Post and Pimm, 1983 for an
exception). However, interactions in the pool are averaged over
each trophic level under a species symmetry assumption (Capitán
and Cuesta, 2010), which decreases substantially the number of
different assembly pathways. Second, in our model the perma-
nence of the final community is guaranteed because we are able to
show that equilibrium communities are globally stable (Hofbauer
and Sigmund, 1998) under the assumption of neutrality within
each trophic level. And third, in standard assembly models
magnitudes are averaged over a set of stochastic realizations of
the process of sequential invasions, where invaders are randomly
chosen from the species in the pool not yet present in the
community. Since we are able to map out all the invasion pathways
for this model, we do not need to resort to average magnitudes over
realizations but we can calculate them exactly (Capitán et al.,
2009). Even for our simple model, the number of possible pathways
is too high to be accounted by through simulation (see details in
Capitán et al., 2009). This is one of the main advantages of our
model with respect to former ones, which in turn allows us to
establish its independence on history. The uniqueness of the end
state for these kind of models was not proven until now, although it
was already found that most of the simulated assembly sequences
led to a single set of final communities (Morton and Law, 1997).

In the first paper of this suite (Capitán and Cuesta, 2010) we
have performed a detailed analysis of the analytical properties of
the Lotka–Volterra population dynamics underlying our assembly
model, as well as the stability properties of the interior equilibria
from the dynamic point of view. Our communities represent a
mean-field version of trophic networks: feeding relations are
assumed to take place only between contiguous trophic levels
and the strength of each interaction is averaged to a uniform value.
This assumption of symmetry allowed us to simplify the differ-
ential equations, showing that in our model the set of species
numbers at each level fs‘g

L
‘ ¼ 1 is enough to determine the equili-

brium densities and the dynamics of a community with L trophic
levels.

The present paper presents new results of the assembly process
ranging from structural properties of the building of stable com-
munities to dynamical properties of the stochastic invasion pro-
cess. The transition matrix associated to the chain allows us to
define a stationary distribution of probabilities over the assembly
graph. We will use that distribution to calculate averages of
biologically relevant observables in the ecosystem, like the average

number of species, the total population density, etc., and even to
obtain distributions of certain magnitudes like the fraction of
extinct species after a destructive invasion. But this is not the only
advantage of our approach. The transition matrix also provides the
time evolution of the probability, so the dependence in time of any
magnitude can be obtained exactly. Due to its simplifications, the
model reduces the number of possible communities to a finite
graph. Once we have that graph, the theory of finite Markov chains
can be exploited to obtain the dynamical properties of the assembly
process.

The paper has been organized as follows. In Section 2 we revisit
the definition of the Markov chain associated to the assembly
process and show that all communities can be classified into
transient or recurrent. Section 3 is devoted to discuss the main
statistical results that can be obtained for our model, for instance,
the asymptotic distribution within the complex end states (Section
3.1), the dependence of averages upon variation of the resource
saturation (Section 3.2), the dependence of the results upon
variation of the parameters of the model (Section 3.3), the average
time to reach the end state (Section 3.4), the statistics of avalanches
of extinctions caused by invasions (Section 3.5) or the dependence
of biologically relevant averages with successional time (Section
3.6). We finally discuss our findings and their implications in
Section 4.

2. The assembly process as a Markov chain

Let us start with a detailed description of the Markov chain
associated to our assembly model. In the first paper of this suite
(Capitán and Cuesta, 2010) we showed that, solving the linear
system that defines the interior equilibrium point of the Lotka–
Volterra equations (i.e., the system obtained by equating to zero the
per-capita population growth rates _ni=ni, with i running over the
set of all species) we can determine all viable communities
(i.e., those whose population densities are above a certain extinc-
tion threshold nc 40) that are compatible with a given set of
parameters. Although in principle the population model allows for
infinitely many species at each level, it turns out that the set of
viable communities is finite. This is a consequence of the existence
of the extinction threshold, that precludes the appearance of
arbitrarily small populations (an unrealistic feature of determinis-
tic population dynamics models). There is another limitation due to
the finite amount of abiotic resource that maintains our model
communities. In our previous work we modeled this resource with
a linear functional response with a saturation value R (Capitán et al.,
2009; Capitán and Cuesta, 2010). R accounts for the amount of
resource that would be reached in the absence of consumers. On
the one hand there is a maximum number of levels allowed for a
given resource saturation R (Capitán and Cuesta, 2010); on the
other hand population densities at each level approximately
decrease as 1=s‘ , with s‘ the number of species in that level
(Capitán and Cuesta, 2010), so we can have populations
infinitely close to zero. Therefore, the existence of the extinction
threshold renders the set of communities under consideration
finite, and then the associated Markov chain has a finite number of
states. Besides this being a more realistic description of an
ecosystem, it also drastically simplifies the analysis of the assembly
process.

Thus for any choices of parameters there is a finite set of viable
communities—that we denote by F . There will be a link from
community i to community j of the set F provided the former is
transformed into the latter as a result of an invasion. Invasions are
assumed to occur at a uniform rate x. We assume that the typical
dynamical time is much smaller than x�1, the mean time between
invasions, so that communities are always at equilibrium when an
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invasion occurs (for the validity of this assumption see the
discussion in Capitán and Cuesta, 2010). The population of the
invader is assumed as small as possible, i.e. equal to nc

(Roughgarden, 1974; Turelli, 1981).
Consider a community iAF , with L trophic levels, at its equili-

brium point. Potential invaders are species of level ‘¼ 1, . . . ,Lþ1
(species of higher levels would not be able to feed from the existing
levels). We randomly choose ‘ and introduce a new species at level ‘
of the community i. The extended community will evolve to the
interior equilibrium corresponding to the new number of species
s‘þ1 at level ‘ (Capitán and Cuesta, 2010). If this equilibrium is
viable, then the invader is accepted in the resident community. The
new community j will also be inF and a directed link will go from i to
j. If the new equilibrium is not viable then we apply the procedure
discussed in Capitán and Cuesta (2010) to determine what is the
sequence of extinctions until the community becomes viable. Two
things can happen: either the first level to fall below the extinction
threshold is the invaded one, or it is another one. In the former case
the invader is simply rejected and the community remains unaltered;
in the latter, the extinction sequence will lead to a new community
kAF , and a link will go from i to k.

The assembly graph, G, is defined as the connected component
containing the empty community, +, of the directed graph whose
nodes are the elements of F and whose links are the transitions
obtained by the invasion process just described. Obviously, the way
to construct G is to start off from +, and proceed by attempting all
possible invasions for every community reached along the assem-
bly process (see Figs. 1 and 2 for a graphic representation of simple
assembly graphs, for a larger value of R see Fig. 1 in Capitán et al.,
2009). The exhaustive characterization of the set of nodes in G is a
bit demanding. For example, the storage of all the communities
appearing along the process has been carried out by using a binary
tree (Knuth, 1997), by exploiting the mapping between any
configuration fs‘g

L
‘ ¼ 1 and a binary number (we simply concatenate

the binary representations of each species number s‘ to form a
branch of the binary tree). Despite this, we have been able to
analyze graphs with around 106 communities within.

The connection of the species assembly process with a Markov
chain on the graph G amounts to assigning certain transition
probabilities to each link of the assembly graph. We define these
probabilities in a simple way. Invaders arrive at each community at
a constant rate x, independent of the level of invasion, and the
stochastic process is updated in discrete time (each time unit is the
average time elapsed between consecutive invasions). Thus, if i and
j are two nodes of G connected by a link, we assign it the transition
probability

Pij ¼ dijþxQij, ð1Þ

where dij ¼ 1 if i¼ j and 0 otherwise. The matrix elements Qij are
given by

Qij ¼
nij

Lþ1
, ia j, Qii ¼�

X
ja i

Qij, ð2Þ

where nij is the number of different invasions of i that lead to j and
L+1 is the number of different invasions of i, provided it has L

trophic levels. Therefore, the probability of the transition i-j

between different communities is proportional to the relative
frequency of the transition among all the possible transitions
starting from i, the invasion rate being the proportionality constant.
The diagonal of Q is chosen such that P¼(Pij) is a stochastic
matrix.

Since the diagonal elements of the transition matrix P are non-
zero, the Markov chain cannot be periodic (Karlin and Taylor,
1975). As the set of viable ecosystems F is finite, P defines the
transition matrix of a finite, aperiodic, Markov chain. The states of
one such chain are either transient or recurrent (Karlin and Taylor,

1975). There can be one or several subsets of recurrent states, the
chain being ergodic in each of them. Every recurrent subset is a
different end state of the assembly process. The end state of an
ecosystem will be history-dependent only if there are at least
two such recurrent subsets. Ergodicity implies that there is a
stationary probability distribution on the states of these
subsets which determines the frequency with which the process
visits each of them (for a full account on Markov chains see e.g.
Karlin and Taylor, 1975). Our model only exhibits a unique
recurrent set for any given set of parameter values (Capitán
et al., 2009).

This concludes the definition of the Markov model for the
assembly process. As we are able to compute the whole transition
matrix P, we have a complete and exact characterization of the
assembly process. In particular, by selecting an initial state for
the Markov chain (in our case the process always starts off from
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Fig. 1. Assembly graph obtained for a value of the resource saturation R¼80. It is

made of 39 communities (nodes), each of them with either one or two trophic levels.

Transitions shown with a black arrow indicate that the invasion is accepted, and

those with a red arrow refer to a rearrangement in the resulting community after the

invasion. Transient nodes are filled in red, and recurrent nodes are filled in dark blue.

In this case, the final end state of recurrent communities comprises three

communities forming an end cycle like those found by Morton and Law (1997).

Labels of each node show the species numbers {s1,s2} of each trophic level in the

community. Remaining parameter values are: gþ ¼ 0:5, g� ¼ 5, r¼ 0:3, a¼ 1 and

nc¼1. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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+), we can obtain the evolution of any magnitude—numerically
but exactly—without resorting to taking averages over realizations
of the process. In the following section we will discuss in
detail the results that can be obtained from the analysis of
the Markov chain (a brief account of which were reported in
Capitán et al., 2009).

3. Results

3.1. Asymptotic distribution

To separate transient and recurrent states, we have applied an
algorithm provided by Xie and Beerel (1998). Notice that the
characterization of transient and recurrent states in a finite chain
depends only on the graph, not on the transition probabilities. Only
one subset of recurrent states was found for each set of parameters.
Let R denote the subgraph of G formed by this ergodic set. Fig. 3
shows two examples of these subgraphs. The particular transition

probabilities assigned to each link would determine the asymptotic
probability distribution within the recurrent set, but not the subset
of nodes contained in it.

In order to calculate the asymptotic probability pi for a
community iAG, we need to solve the linear system p¼ pP

(Karlin and Taylor, 1975), in other words, the vector p of prob-
abilities is the left eigenvector of the matrix P with eigenvalue 1.
Since our graphs are very sparse, standard numerical techniques for
solving sparse systems have been applied. The eigenvector is
normalized to satisfy the condition

P
iARpi ¼ 1. Obviously, we

only need to solve this system for the subgraph corresponding to
the recurrent set, since by definition the asymptotic probability
pi ¼ 0 for any transient state i. Note that our matrix of transition
probabilities (1) reduces the condition to be satisfied by p to
pQ ¼ 0, i.e., p is a left eigenvector of Q with eigenvalue 0. It is worth
noticing that neither the asymptotic distribution, nor the recurrent
subset depends on the invasion rate.

We can thus obtain a probability distribution for each recurrent
set. Having this probability distribution is therefore equivalent to
defining a statistical mechanics over the set of viable communities,
if we regard G as the phase space of our system. In Fig. 4 we have
plotted the histogram of probabilities for several values of the
resource saturation R (for these values the number of communities
in each set is larger than 103). Communities are labelled in
decreasing order of probability. These distributions are found to
be roughly exponential over several orders of magnitude, this
meaning that only a small number of communities (in general very
similar to each other) occur with high probability. These are the
communities in which it is more likely to find the ecosystem.
Nonetheless ergodicity implies that all communities in the end
state are visited with non-zero probability. The ecosystem is thus in
a complex state, with fluctuating species numbers in each level due
to some invasions being accepted and some others causing
avalanches of extinctions.
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Fig. 2. (Color online) Same as Fig. 1 for R¼50. The total number of communities in

this graph is 16, and they have up to 2 trophic levels. An end state with a single

community (with occupancies {4,2}) is reached in this case. Remaining parameter

values are the same as in Fig. 1.
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communities with four trophic levels, whereas the second has 30 communities with three levels. For a graphical representation of a recurrent subset more complex than these

see Capitán et al. (2009). The diameter of the nodes is proportional to its asymptotic probability. Black arrows show accepted invasions and green ones those causing a

reconfiguration (the thickness of each line is proportional to the relative number of extinct species). Labels indicate the number of species in each trophic level. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This distribution can be used to calculate the asymptotic
average over R of any quantity of interest Mi defined for every
community, like for instance the average number of species, the
total population, etc. We just need to evaluate /MSR ¼

P
iARpiMi.

3.2. Dependence with the resource saturation

All results presented here have been obtained with a death rate
a¼ 1, an extinction threshold nc¼1, an average rate of increase in
predators population per predation event gþ ¼ 0:5, and an average
decrease in reproduction rate of prey per predation event g� ¼ 5
(see Capitán and Cuesta (2010) for details on the way these
parameters enter the population equations of the model and
Table 1 for a brief summary of them). The assumption of
gþ5g� is ecologically sound, because many prey must be con-
sumed to produce a new predator, while loosing one prey requires a
single predation event. A common choice for the energy transfer
between trophic levels is about 10% (Pimm, 1991). We have
checked that the model is robust against variations of these
parameters within reasonable bounds.

In most cases we have taken the ratio of direct inter- to
intraspecific competition r¼ 0:3. However, we have explored
the effect of this parameter in detail in Section 3.3.

We have obtained all assembly graphs in a range of resource
saturations that goes from R¼10 up to R¼1700 with increments
DR¼ 5. No viable community is found below R¼10. The number of
communities NG in these graphs goes from just one (for R¼10) up to

about 106. We have found empirically that both this number and
the total number of transitions in each graph grow roughly as ek

ffiffi
R
p

,
see Fig. 5. The maximum number of trophic levels that are allowed
up to R¼1700 is 5.

We have checked whether the set of communities in the
assembly graph is the whole set F . Given the estimation of the
resource values that allow a maximum number of levels Lmax

(see Capitán and Cuesta, 2010), we have checked the viability of all
possible combinations of species numbers fs‘g

Lmax

‘ ¼ 1 with Lmax+1
levels up to a total number of species Smax equal to twice the
maximum number of species allowed for that R value. Since there is
a huge number of these combinations when R increases, we have
checked this up to R¼700. Fig. 6 shows the differenceDN¼NF�NG.
In nearly all cases the set of communities in the assembly graph
is F , but we have found several instances—all of them near the
values of R at which new levels arise—in which F contains
communities not reachable through the assembly process, just
like in the experiment of Warren et al. (2003). The largest difference
is found at R¼470, where NG ¼ 4800 and DN¼ 375, so the highest
relative difference reaches 8%.

For each R we determined the number of recurrent states of the
chain (see Fig. 3 in Capitán et al., 2009 for a plot of this number as a
function of R). We always found a single connected graph, which
implies that the end state of the assembly process does not depend
on history for this model (Drake, 1990). This is consistent with the
results of Morton and Law (1997) as well as the experiments of
Warren et al. (2003). There are values of R for which this set consists
of a unique absorbing state (or just a few, sometimes forming a
cycle), but when R is reaching the values at which a new trophic
level appears, the size of this set increases considerably (the largest
set found contains around 1800 communities; a tiny fraction of the
whole assembly graph, anyway). After crossing these values the
size of the recurrent set drops again down to just one absorbing
state. Morton and Law (1997) also obtained complex end states in
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Fig. 4. Distribution of asymptotic probabilities p within each recurrent set, for
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Table 1
Summary of parameters of the model and ecological meaning of each one of them.

Parameter Value Interpretation

R 10rRr1700 Saturation value, in the absence of predation, of the abiotic resource abundance

a 1 Average mortality rate of consumers

g� 5 Average rate of decrease in prey population caused by their being predated

gþ 0.5 Average rate of increase in predators population due to feeding

r 0rrr1 Relative magnitude between intra- and interspecific competition

nc 1 Extinction threshold

0 500 1000 1500
R

100
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N
G

communities
transitions

L=2 L=3 L=4

Fig. 5. Total number of communities (black circles, below) and transitions (red

crosses, above) in the Markov chain as a function of the resource saturation R. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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six out of the 80 pools they explored, with a number of commu-
nities ranging from 6 to 138.

In Fig. 7 we show the fractions of links in the assembly graph
corresponding to invasions that are accepted, rejected, or cause a
reconfiguration in the system through a sequence of extinctions.
The most frequent case is the acceptance of the invader, although
there are around 20% of rejections and reconfigurations. We can see
an increasing trend to reconfigurations when R corresponds to a
complex end state (see Fig. 3 in Capitán et al., 2009). The invasibility
criterion discussed in Capitán and Cuesta (2010) explains why we
observe an increasing number of rearranged communities in these
regions.

As for dynamic stability (resilience), we can measure the return
time, i.e., the mean time that a perturbed ecosystem needs to
restore equilibrium (Pimm and Lawton, 1977), averaged over the
probability distribution of the stationary state. It can be obtained as
Tr ¼�l

�1
max, where lmax is the largest real part of the eigenvalues of

the linear stability matrix—which is always negative in our
communities since they are globally stable. We observe that this
time is roughly independent on the end state, being approximately
constant as a function of the resource saturation R (see Fig. 8a).

For each end state, regardless on whether it is an absorbing
community or a recurrent set, we have calculated another average.
In Fig. 8b we show the dependence of the total population of a

community, B¼
PL

‘ ¼ 1 s‘p‘ , averaged over the recurrent setR, as a
function of the resource saturation R (p‘ denotes the equilibrium
density of the species at level ‘). The dependence is practically
linear, except for some dips near the onset of emergence of a
new level.

3.3. Dependence on the parameters

We have already mentioned that the model results are not
qualitatively influenced by variations of its parameters. For exam-
ple, we have studied the model dependence with respect to direct
competition (Fig. 9). In the absence of interspecific competition
ðr¼ 0Þ levels are filled up more easily, so the number of commu-
nities in the recurrent set increases with respect to the results
reported so far. The effect of increasing direct competition is to
reduce the number of ecosystems in these sets, and to increase the
resistance to the appearance of a new level in the end state for
the same values of resource saturation. Thus, the global behavior of
the number of communities as a function of R turns out to be
similar, up to scale factors, to that obtained in Capitán et al. (2009,
Fig. 3).

The particular case r¼ 1 (interspecific competition equal to
intraspecific competition) is qualitatively different. Fixing r¼ 1
transforms the community into a trophic chain. All species can be
grouped into a single one with population N‘ ¼ s‘n‘ (i.e. the Lotka–
Volterra equations of this system, Capitán and Cuesta, 2010, are
closed in the variables N‘). But the implications of this assumption
are stronger. Even if the distinction between species becomes
meaningless, one can formally keep the identities and treat them as
different. But then it is easy to show that any invasion attempted at
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a level already occupied by at least one species will be unsuccessful
because the population of the invader ends up below nc. In fact,
according to Eq. (12) of Capitán and Cuesta (2010), the initial per
capita growth rate of an invader at level ‘ is �nc and the equations
for level ‘ and for the invader coincide. Hence _N‘ =N‘ ¼ _n=n, n being
the abundance of the invader. This asymptotically yields

p¼
nc

N‘ð0Þ
P‘ ð3Þ

since n(0)¼nc (p and P‘ are the invader and the total ‘-level
densities at equilibrium after the invasion, respectively). Now, the
linear system (13) in Capitán and Cuesta (2010) for the interior
equilibrium point fN‘ð0ÞgL‘ ¼ 0 before the invasion is

a¼ gþN‘�1ð0Þ�N‘ð0Þ�g�N‘þ1ð0Þ,

R¼N0ð0Þþg�N1ð0Þ: ð4Þ

For the same reason, the equilibrium densities P‘ and p after the
invasion satisfy

a¼ gþP‘�1�P‘�p�g�P‘þ1,

R¼ P0þg�P1: ð5Þ

Comparing these systems we deduce that P‘þp¼N‘ð0Þ. This fact,
together with (3), yields p¼ ncN‘ð0Þ=½ncþN‘ð0Þ�onc. Since the
population of the invader initially decreases, according to our
extinction procedure (Capitán and Cuesta, 2010) the invader goes
extinct.

Thus the assembly graph G becomes trivial. Using the notation
fs‘g

L
‘ ¼ 1 for each community, G is simply

+-f1,0, . . . ,0g-f1,1, . . . ,0g- � � �-f1,1, . . . ,1g: ð6Þ

This never happens if ra1. Things are thus very different when
this fully symmetric scenario is assumed.

It can be shown that in this fully symmetric scenario the
competitive exclusion principle applies. This principle states that
there cannot coexist more populations than different resources
(or ecological niches) in the long term if these populations depend
linearly on the resources (Hofbauer and Sigmund, 1998). We can
put this statement in mathematical terms. For the sake of simpli-
city, let us assume that there is a single trophic level with S species
predating on the resource (at rates gþ i, i¼ 1, . . . ,S) and let us set a
non-uniform direct competitionrij between pairs of species in that
level. Let ni be the population density of species i, ai its death rate in
the absence of consumption and n0 the amount of resource. The
Lotka–Volterra equations for this system are

_ni

ni
¼�aiþgþ in0�

XS

j ¼ 1

rijnj: ð7Þ

If the competition matrix is singular, we can find a non-trivial
solution (c1,y,cS) for the linear system

P
icirij ¼ 0, j¼1,y,S (note

that, in particular, the fully symmetric scenario r¼ 1 renders the
competition matrix singular). Multiplying both sides of Eq. (7) by
ci and summing over all species, we obtain

XS

i ¼ 1

ciðlogniÞ
:
¼
XS

i ¼ 1

ciðgþ in0�aiÞ � �a, ð8Þ

where we can assume that a is positive (otherwise change the sign
of the ci). Integrating from 0 to t we obtain

YS

i ¼ 1

niðtÞ
ci ¼ Ce�at : ð9Þ

This means that one of the densities must vanish in the limit t-1,
which proves competitive exclusion.

There is a peculiarity of our model, though. If r¼ 1 the
population of the invader at equilibrium will not be zero because
in our model all constants are uniform, so the equation to solve for
ci is

P
ici ¼ 0. This yields a¼0 and spoils the argument. However, we

have shown that, with our procedure of species extinction, the
invader’s population ends up below nc hence not being viable. This
restores competitive exclusion, albeit in a weaker sense. The result
(6) is just a manifestation of this fact.

It is important to notice that, for a non-singular competition
matrix, the competitive exclusion principle is not guaranteed to
hold. In particular, if ro1 the intra- and interspecific competition
will have different magnitude, and the matrix of elements rii ¼ 1
andrij ¼ r ðia jÞwill be non-singular. The argument above does not
apply anymore and, as a matter of fact, by integrating the equations
for population dynamics we actually obtain more than one species
coexisting with a single resource in the system.

The interesting point brought about by the above discussion is
that interspecific competition induces de facto a niche separation
for the species of the same level—which are therefore competing
for the same resources—that allows them to circumvent the
competitive exclusion principle (for a more thorough discussion
of this point see Bastolla et al. (2005a, b)).

3.4. Absorption times

So far we have discussed properties of the recurrent set of the
Markov chain associated to the assembly process, but we have not
considered the possibility that the process may keep trapped for a
long time in transient states. In order to check this point we have
calculated the mean absorption time from the empty community
+ to the end state. This can be done given the structure that the
transition matrix P acquires after a permutation that reorders
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recurrent and transient states. We can thus write the matrix in a
block form (Karlin and Taylor, 1975)

P¼
U 0

W V

� �
, ð10Þ

where matrix U contains the transition probabilities within the
recurrent set, and V contains transition probabilities between
transient states. The average time that it takes to go from the
transient state i, to state j of the recurrent set is the element tij of
matrix T, where

T ¼
X1
n ¼ 1

nVn�1W ¼ ðI�VÞ�2W , ð11Þ

I being the identity matrix. This expression counts as n the
absorption time when the process remains n�1 time steps within
the transient subset and jumps to a recurrent state in the n-th step.
The mean absorption time for a process starting from the transient
state i will thus be ti ¼

P
jARtij ¼ ðTuÞi, where u¼ ð1, . . . ,1ÞT . Since P

is stochastic,
P

jðVijþWijÞ ¼ ðVuÞiþðWuÞi ¼ 1 for all iAG�R, so
Wu¼ ðI�VÞu or, equivalently, ðI�VÞ�1Wu¼ u. Together with (11)
this implies ðI�VÞt¼ u, so solving this sparse linear system yields
the absorption times for any transient state. Note that these times
are proportional to x�1, because of the form (1) of our transition
matrix.

In Fig. 10a we plot the mean absorption time t+ to reach the
recurrent set starting from the empty community, along with the
mean number of species S, which measures the size of the system.
Both of them grow almost linearly with R, hence t+ is roughly
linear with S as well (see Fig. 10b). Since the number of states in
each chain grows as ek

ffiffi
R
p

, the number of states of the Markov chain
is very large compared to xt+. Therefore the mean time to the end
state is small compared to the system size.

This result should be taken with a grain of salt, because it
strongly relies on our assignment of probabilities to transitions.
This, in turn, assumes that there is always availability of invaders,
which may not be true if invaders come from a finite pool. The lack
of potential invaders when the community is almost ‘‘full’’ would
decrease the probability of a new invasion and accordingly would

increase the time that the process needs to reach the end state.
What the result of Fig. 10a is actually telling us is that the assembly
graph is dominated by pathways in which most invasions are
accepted.

3.5. Extinctions distribution

As we have previously described, the assembly process can be
regarded as if the ecosystem self-organizes into a state resistant to
invasions. Either for transient or recurrent states, the community is
continuously undergoing avalanches of extinctions caused by new
colonizations. Fig. 11a shows a statistics of such avalanches in some
recurrent sets. It represents the probability PðmÞ that an invasion
causes an avalanche of magnitude greater than m (understood as
the fraction of species that go extinct), averaged over the stationary
state. We can see in the figure that this probability shows an
exponential decay, with a typical avalanche size b�1 of about 1% of
the community, b being the slope of the distributions in log-linear
scale. Invasions never cause big perturbations in the community.
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We can calculate a similar distribution for the avalanches of
extinctions in the transient states. Now we have to weight the
magnitudes with the average fraction of visits to each transient
state. Let us denote as zij the average number of visits to state j

starting from state i. Matrix Z¼(zij) is then given by

Z ¼
X1
n ¼ 0

Vn ¼ ðI�VÞ�1: ð12Þ

Thus the number of visits to the transient j starting from + is
zj ¼ ðu+ZÞj, u+ being the row vector di+ (with as many compo-
nents as there are transient states). We can calculate z by solving
the linear system

zðI�VÞ ¼ u+: ð13Þ

The resulting probability PtðmÞ that an invasion causes the
extinction of at least a fraction m of the species of the invaded
transient community is shown in Fig. 11b. We also find an
exponential behavior for the cumulative distribution, in this case
with a mean characteristic fraction of species loss of 2% for
transient avalanches. The species loss caused by invasions in the
transient part of the graph is always small.

3.6. Time averages

Computing the time evolution of averages is very simple, given
the transition matrix P and some initial probability distribution
(Karlin and Taylor, 1975)—which in our case is simply the vector
u+, since the assembly process starts from the empty community.
We just need to calculate the power Pt to obtain the transition
probability matrix after t time steps. Thus we can obtain the
probability of rejecting the invader at discrete time t as

PrðtÞ ¼
X

j

PjjðP
tÞj+, ð14Þ

and that of accepting the invader as

PiðtÞ ¼
X

j

X
jk�jj ¼ 1

Pjk

0
@

1
AðPtÞj+, ð15Þ

where the inner sum runs over transitions starting from j in which
the invader is accepted. Obviously, the probability that the com-
munity undergoes a reconfiguration because of the invasion is
obtained as PaðtÞ ¼ 1�PrðtÞ�PiðtÞ. Figs. 12a and b represent the
dependence in time of the probabilities Pi and Pa in two cases: one
with a complex end state (a), and another with a single community
as end state (b). Notice that all curves collapse, for small x, when
divided by x and plotted against xt (mean number of invasions).

In Fig. 12c we show the probability of invasion Pi(t) and the
average species loss defined as

EðtÞ ¼
X

j

X
k

uðDSÞjkPjk

 !
ðPtÞj+, ð16Þ

where ðDSÞjk is the species loss in the transition from j to k and the
prime denotes that we ignore in the sum transitions in which the
invader is accepted. When these two magnitudes are equal there is
an equilibrium between the average frequency of invasions and the
average number of species loss. This is a fingerprint of the reaching
of the stationary state. As expected, this time is comparable to the
absorption time shown in Fig. 10a.

Another important quantity is biodiversity. Fig. 13a represents the
evolution of the average number of species for several values of R.
In all cases, this average number grows monotonically until reaching
the stationary state, so biodiversity and resistance to invasion are
positively correlated, in agreement with previous assembly models
(Law and Morton, 1996; Morton and Law, 1997).

Fig. 13b represents the evolution of the total population density
B of each community. If we assume, for the sake of simplicity, the
same weight per individual for all species in our model commu-
nities, then B can be regarded as the total biomass in the commu-
nity. Although there is a clear trend for biomass to increase, it is not
always at its optimum in the stationary state. This is very clear in
the figure for R¼ 470, a value at the onset of the appearance of the
fourth trophic level. This agrees with the analysis performed by
Virgo et al. (2006) on their assembly model.

We have also studied the time dependence of the average
number of trophic levels during the assembly, which is shown in
Fig. 13c. At R¼ 470 the process stays a certain time trapped in
three-level communities until the fourth level is finally accepted.
This effect becomes smaller upon increasing R, until there is no
trapping and the fourth level is reached straight away.

Fig. 13d shows a typical time evolution of the average return
time along the assembly until reaching the stationary state.
Communities are less resilient (have larger return time to equili-
brium) as time increases. Thus, there is a trade-off between
robustness (resistance against invasions) of the ecosystem and
dynamic stability which is resolved by sacrificing the latter in favor
of the former.
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4. Discussion

In this work we have provided a full account of results of the model
introduced in Capitán et al. (2009). The results presented here have
been obtained from a direct analysis of the Markov chain describing
the assembly process. Among the novel results here presented are the
dependence of many biological observables on the amount of
available resource (implemented through parameter R), the average
times that the process needs to reach the recurrent set, the statistics of
avalanches in both transient and recurrent states, and the time
evolution of any observable.

Our model might be considered as a benchmark of the assembly
process that builds up ecological communities. As such, we do not
aim at providing a realistic description of an ecosystem but at
capturing, in a very simplified model, the essential mechanisms
that do occur in the construction of real ecosystems. The model
rests on some oversimplistic features: communities are strictly
organized in levels, predation occurs only between contiguous
levels, species of a given level are trophically equivalent, model
parameters are chosen uniformly and the population dynamics is
ruled by simple Lotka–Volterra equations. In spite of this, our
model exhibits the same behavior as all other assembly models
reported in the literature. This indicates that this behavior is very
robust, and probably shared by real systems and simple
models alike.

Thanks to these oversimplifications the model provides impor-
tant advantages on previous assembly models. The main one is that
we can trace all pathways of the assembly process. This allows us to
compute exactly all the observables of a community and to
characterize in a very precise manner the stationary state of the
ecosystem. Our model also has a species pool, as standard assembly
models, but because we allow for an arbitrary number of trophi-
cally equivalent species, the pool is infinite and the model does not
suffer from the problem of exhaustion of good invaders that may
trap the community in a transient state (Case, 1991; Levine and
D’Antonio, 1999). This has permitted us to build communities with
hundreds of species and explore the influence of different elements
on the behavior of the assembly process.

Therefore, we are not limited, as in standard assembly models,
to compute averages over a set of realizations of the process. As we
pointed out in Capitán et al. (2009), the number of shortest
pathways leading from + to the recurrent set can be enormous.
For instance, for R¼300 (a case with an absorbing community of
three trophic levels and 50 species), there are � 1010 different
minimum-length pathways. This number is far from anything a
simulation can come close to.

There is, of course, a concern about having trophically
equivalent—hence indistinguishable—species. The grouping of
trophically equivalent species is a common practice in studying
food webs, so it is tempting to do so in this model. If we do it, the
model becomes equivalent to a chain, for which Lotka–Volterra
dynamics is well characterized (Hofbauer and Sigmund, 1998), and
the invasion process seems to become trivial. This is not true,
though: if ra1, i.e. if intra- and interspecific competition are
different in magnitude, intraspecific competition in the equivalent
chain explicitly depends on s‘ , so invasions modify the parameters
of the chain and the invasion process becomes non-trivial. Thus, it
is because of the (direct) interspecific competition ro1 that this
equivalence breaks down and the model departs from triviality. We
have explicitly shown that choosing r¼ 1 brings about the
competitive exclusion principle, and indeed the model turns into
a chain. But for any ro1 this does not longer hold. Interspecific
competition is thus an effective way of creating new niches.

Let us now summarize the main conclusions we can extract
from the present analysis of the model.

As our model ecosystems evolve we observe three trends:
biodiversity increases, resistance to invasion increases and all
species decrease their populations. In the steady state biodiversity
is at its maximum, all populations are close to the extinction level
and either invasions are rejected or they produce transitions
between a set of communities with a very similar structure. All
three features are related. The increase in biodiversity is unavoid-
able because of the constant flux of colonizers; however, as the
number of species increases, their populations necessarily decrease
because all share the same resource. The invasion process guar-
antees that this is done in the most efficient way, because
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inefficient invasions cause extinctions in the community and force
a more equilibrated rearrangement of the populations. This, in turn,
justifies the increasing resistance to new invasions. At the end, all
populations are so close to extinction that either no new invasions
are possible, or they just cause small rearrangements that leave the
community in a similar state.

Final communities have typically three or four trophic
levels—only ecosystems with more than 200 species generate five
trophic levels. On the other hand, the number of species in each
level has a pyramidal structure. Both features are in qualitative
agreement with what is observed in real ecosystems (Cohen et al.,
1990) and we have discussed at length the properties of the
population dynamics equations that explain these features in
Capitán and Cuesta (2010).

As already advanced in Capitán et al. (2009) the end state is
always unique, and this is consistent with previous assembly
models (Morton and Law, 1997). However, there is a caveat that
should be made on this point related to the indistinguishability of
species within the same trophic level: the end state is unique as
long as we consider only the number of species at each level.
Whether two communities with the same numbers have the same
or different species is meaningless for this model, so the conclusion
is not definitive. In fact, some relatively recent experiments on
aquatic microbial communities establish that productivity–biodi-
versity relationships depend on the history of assembly (Fukami
and Morin, 2003), and it is our guess that the independence on
history resulting from this model might be an artifact of the
indistinguishability of species. Refined versions of this model
may clarify this issue.

As for the robustness of the above results, we have tried other
values of the direct competition parameter, namely r¼ 0 and 0:7,
to test its influence. No qualitative difference with the behavior
reported here is found. Nonetheless, there are three quantitative
effects that we have observed as r increases: resistance to invasion
increases, appearance of new trophic levels is hindered and the
number of communities in complex end states decreases. Varying
g� has similar effects; in fact, the product gþ g� ¼ 0:1g2

� provides a
quantitative estimate of indirect competition.

It can be argued that parameters should depend on the trophic
level rather than being uniform for all species. It is very easy to
show that this does not change the dynamic stability patterns
because in that case one can also construct a Lyapunov function
(see Capitán and Cuesta, 2010). We have not attempted any test in
this respect, but it is hard to believe that such a variant of the model
will produce any qualitative difference. The assembly graphs will
be similar to the ones found for the present model. Something more
can be said about the invasion rate. We have presently assumed
that the invasion probability is the same for all trophic levels, but
notice that the assembly graph is utterly independent on this
choice, so certainly choosing a different invasion probability will
change the numerical value of the nonzero entries of the transition
matrix P, but only them. The graph, as well as the structure of
transient and recurrent states of a finite Markov chain, only
depends on which elements of P are zero (Karlin and Taylor,
1975), so not just the graph but the set of communities in the end
state will be exactly the same as those reported here (the prob-
ability distribution in the steady state will, of course, be different).

Perhaps the most important limitation of this model is the
choice of the Lotka–Volterra equations. The choice of population
dynamics has been reported to have a strong influence in the final
shape of ecological communities (Drossel et al., 2004; Lewis and
Law, 2007). Introducing non-linear equations leads to more com-
plex stability patterns than simply rest points. How to account for
them is not yet clear to us, but neither is whether this will really
affect the qualitative behavior of the assembly process. Thus, this
remains an important open question that deserves further analysis.

There are further open questions such as the application of this
model to metacommunities. The resulting ecosystems can be
readily altered when migration takes place among spatially dis-
tributed patches. With a simple model like ours, it might be
possible to build up an assembly graph between different com-
munities in different patches. The interplay between communities
in different patches could lead to an outcome different from the one
we obtain with a single patch. On the other hand, a simple model
like this can provide us with basic understanding of complex
processes such as, for instance, the rebuilding of a natural com-
munity after its degradation. Very little is known about the
processes that helps to reconstruct damaged communities, and a
simple framework like ours could provide some hints about how to
tackle this problem from a theoretical point of view.

The final take-home message from this work is this: we should
not be afraid of oversimplifications in complex systems. Complex-
ity normally arises as a consequence of a collective behavior of
many entities, not as a result of the complexity of interactions. The
key point is whether we are retaining the basic ingredients yielding
the desired output. We have shown that there is no qualitative
difference between the results of this oversimplified model and
previous, more sophisticated assembly models. And there is a lot to
gain from the wider view that this model provides of the process
and the much higher control we have on the parameters. Many
questions that are hard (or even impossible) to answer in previous
model have a clear-cut answer here. And even if they may be too
simplistic, they can still guide our intuition when dealing with real
ecosystems.
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