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Abstract. We theoretically study the subband structure of single Si §-doped GaAs
inserted in a quantum well and subject to an electric field applied along the growth
direction. We use an efficient self-consistent procedure to solve simultaneously the

Schrédinger and Poisson equations for different values of electric field and
tnmpnrnhvrﬂ We thiig find the rnnf‘nmn nntnphnl the gsubhand nnnrmne and thair

corresponding envelope functions, the subband occupatlons and the oscillator
strength of intersubband transitions. Opposite to what is usually the case when
dealing with the quantum-confined Stark effect in ordinary quanium wells, we
observe an abrupt drop of the energy levels whenever the exiernal field reaches a
certain value. This critical value of the field is seen to depend only slightly on
temparature. The ramd rhanae in the energy levels is agggmnanled by the
appearance of a secondary well in the confmmg potential and a strong decrease of
the oscillator strength between the two lowest subbands. These results open the
possibility to design devices for use as optical filters controlled by an applied

electric field.

1. Introduction

Recent advances in epitaxial growth techniques, such
as molecular beam epitaxy (MBE}. make it possible to
fabricate high quality Si §-doped layers in GaAs. In
these systems, a slab of Si atoms localized within a few
monoiayers supplies electrons and gives rise to quantum
confinement of carriers. By this means, a two-dimensional
electron gas can be realized by planar doping of GaAs at
high donor concentration [1]. Devices based on §-doped
heterostructures are currently under extensive investigation
for high-speed electronic and optoelectronic applications
(see, e.g., [2] for some examples of the practical advantages
of é-doping). Hence there is great interest in a good
understanding of Si d-doped GaAs as a representative
example of those devices.

Theoretical studies of the above systems usually
neglect possible effects of disorder due to the random
distribution of impurities in order to simplify the analysis.
Indeed, currently available techniques allow for an optimal
control of the growing heterostructure, thus justifying
the assumption that the ionized impurity atoms are
homogeneously distributed inside the §-doped layers. This
approximation has recently been shown to be correct in
the high-density limit [3]. A number of researches have
considered this limit within different approaches, like the
Thomas—Fermi [4], local density approximation (LDA) [5]
and Hartree methods [6]. These previous works show

that in the absence of external fields the Thomas—Fermi
semiclassical approach is equivalent to a self-consistent
formutation over a wide range of doping concentrations
[4]. The effects of applied electric field have recently
been considered in the case of single and periodically
St §-doped GaAs [7,8] by using a generalized Thomas—
Fermi formalism. In this framework one first computes
the one-electron potential in the absence of electric field
and then tilts it to account for the electric potential. It
has thus been found that the well-known Stark ladders,
already observed in quantum-well based superlattices [9],
should also be clearly revealed in periodically Si 8-doped
GaAs. Nevertheless, this ad hoc procedure might be
incapable of describing all the phenomenclogy arising in
&-doped heterostructures: a fully self-consistent approach
may reveal interesting issues about the behaviour of actual
siructures under bias voltage not accounted for within
simpler approaches.

As an example of new phenomenology found by self-
consistent procedures, we mention that, in superlattice-like
systems. the Hartree potential from electrons of different
wells partly screens the effect of the electric field, leading
to the formation of electric field domains. The physical
existence of electric field domains is firmly established
in GaAs—Ga;_,Al.As [10] superlattices (see [1i] and
references therein). To our knowledge, however, there
have been no reports in the literature about field domains
in &-doped GaAs superlattices. Note that in this case
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there are a number of free carriers in the structure and,
as a consequence, it is possible for the electric field to
break up into two or more regions with different field
strengths, i.e. electric field domains. Similarly, it would not
be strange to observe other unexpected phenomena when
a more complete theoretical analysis of 5-doped systems
under applied fields is carried out. It is therefore clear that
a carefu) self-consistent analysis of this kind of device is
necessary to make sure what their properties as well as their
possible applications are.

The work we report on in this paper is a first step
in the aforementioned direction. We have concerned
ourselves with the self-consistent study of a single Si §-
doped layer in GaAs under an applied electric field. The
aim of addressing this question is twofold. On the one
hand, we intend to implement and improve an efficient

calfornnaictan F mranadura fa analues thic aimnle otrnqtn
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thus developing the necessary skills to tackle the full
superlattice problem. It is important to realize that a self-
consistent study of a complex heterostructure requires a
well developed technique to prevent expensive calculations.

MNn ﬂ-\n nthar hnnrl wa I-\ehp\ro that nnlw aftor a.r\h'ln\'rlng

a thorough know]edge of the phenomena appearing in a
single layer will it be possible to proceed further, in order
t0 assess the electronic structure of periodically Si 3-doped
GaAs superlattices. In addition, if ocur work showed new
features of the single layer problem, we could foresee the
subsequent, unexpected phenomena which would be likely
to arise in the superlattice, as well as estimate the range of
parameters for which they might take place. Therefore, a
complete understanding of charge distribution and subband
energy dependence on the applied electric field in a single
Si §-doped GaAs layer is necessary. With this double goal
in mind, we undertook the study of the quantum-confined
Stark effect in these structures by considering a §-doping
layer in a quantum well.

The paper is organized as follows. In section 2
we briefly discuss our model, in which we use a scalar
Hamiltonian within the effective-mass approximation to
describe the electron dynamics. The one-electron potential
due to the combined action of the ionized donors in the
single d-doped layer and the applied electric field is found
by simultaneously sofving the Schrbdinger and Peisson
equaiions. Section 3 is devoted to a summary of the
numerical method we apply to obtain (i) the one-electron
potential, {it) the dependence of the subband structure upon
the applied electric field, (iii) the subband occupation as
a function of the fieid, (iv) the spatial charge distribution
and (v) the oscillator strength for intersubband transitions
when the whole structure is confined between two infinitely
high barriers in an applied electric field (quantum-confired
Stark effect). Results and discussions are collected in
section 4, and section 5 ends the paper with a brief
recollection of results and some comments on possible
physical consequences and technological applications of our
results in new devices.

2. Model

The system we study in this work is a semiconductor
structure made of a single Si §-doped GaAs layer. We
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consider a slab of GaAs of thickness L confined between
two infinitely high barriers with a Si -doping layer
embedded in its centre. We assume that the doping layer
consists of a continuous slab of thickness 4 with N;
ionized donors per unit area. In what follows we neglect
the unintentional p-type background doping appearing in
most MBE-grown samples. This is not a serious limitation
since actual techniques can keep this doping level very low
(less than 10'*em=> acceptors). For such a low residual
doping, the well shape below the Fermi level Er is almost
insensitive to the background acceptors [12].

We assume the validity of the effective-mass approxi-
mation and take an isotropic and parabolic conduction band
in the growth direction. This approximation usually works
fine in GaAs, except at very high electric fields, when I'-X
mixing induced by the field occurs {13]. Kane's parameter
(Ep =~ 23meV) and the conduction-band moduiation are
much smaller than the bandgap in GaAs, and the coupling
between host bands is small, so that a scalar Hamiltonian
suffices to properly describe the electronic conduction-band
states in §-doped GaAs [14]. In the envelope function ap-
proach, ihe elecironic wavefunction corresponding io the
jth subband may be factorized as follows:

¥i(r) = exp(ife) - 1) (z) e}

JE
where k¢ and 7, are the in-plane wavevector and spatial
coordinates, respectively. Here § is the area of the layer.
The subband energy follows the parabolic dispersion law
E;+h%k2 f2m*, m* being the electron effective mass at the
bottom of the conductlon band (I" vatley). The quantized
energy levels E; and their corresponding envelope functions
¥;(z) satisfy the following Schrbdinger-like equation:

hE d2
( S V(z)) Vi@ =B, @
The presence of infinite barriers implies that the envelope
functions vanish at z = £L/2.

The -one-electron potential splits into four different
contributions:

V(2) = Vu(2) + eFz + Vio(z) + Vu(2). 3

Here Vp(z) is the built-in potential due to the infinite
barriers. Therefore V(z) = 0 for |z]| < L/2 and becomes
infinite otherwise. F is the strength of the applied electric
field. V,.(z) is the focal exchange—correlation energy
calculated in the LIDA approximation using the Hedin—
Lundqvist parametrization [15],
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where we have defined
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a=@4/9m" and  r=% (dratn))

n{z) is the eieutron density, and Ry* = ¢%/8mepica® and
a* = dmweorh?/m*e® are respectively the effective Rydberg
and the effective Bohr radius. The local dielectric constant
k is assumed not to depend on the spatial coordinate in the



whole structore. The Hartree potential Vg (z) is obtained
by solving the one-dimensional Poisson equation

d2 VH(Z) e 0
el [Ny (z) — n(z)] (5}
along with the boundary conditions Vgy(z = —L/2) =

Vi(z = +L/2) =0, where N3P(z) = N} /d for |z] < d/2
and vanishes in other regions. The electron density can be
written as

n(z) = Tn [ (2} (6)

where the sum runs over the different subbands, The
subband occupation n; is given by

m* I Er—Ej\1 o
lﬂl- +6Xp\kB_T)J (f)

This set of equations must be solved until self-consistency
is reached. Then envelope functions and electron energies
can be found as a function of the applied field. Once
these magnitudes are computed, it is easy to obtain the
charge distribution and subband occupations. In addition,
regarding field-dependent intersubband transitions from a
state k£ into a state j, it becomes most important to
determine the corresponding oscillator strength

n; =

2mo(Er —

ffk - 52

i(%l zly,)? (®)
where myg is the free-electron mass. Device applications
of intersubband transitions require a farge Stark shift with
a high oscillator strength. For example, it is known
that square quantum wells exhibit a weak intersubband
transition [16], but it can be improved by inserting one
narrow well inside a wider one [17,18]. Therefore it is
interesting, from a technological viewpoint, to compare the
oscillator strength in §-doped structures with typical values
obtained in quantum wells.

3. Numerical analysis

3.1. Dimensionless variables

For convenience, we begin by introducing dimensionless
variables in our problem. We can define reduced
well length, I, doping layer thickness, A, and position
coordinate, x, by rescaling L, 4 and z with &”, respectively.
Furthermore, we introduce reduced energies, ¢, and
potentials, », by rescaling £ and V with Ry*. On the
other hand, reduced electric fields, f, charge densities,
v, and temperatures, 7, are defined by rescaling F, n
and T respectively with their corresponding scaling factors
Fo= Ry*/ea* 591 kVem™, np = (@*) 3 ~ 108 cm™3
and Tp = Ry*/kg =~ 67.7 K. With these new variables
equation (3) becomes

[T

ey = 11, fv\ f
via ) — AS

21 (V\J_n..rv\ O\
Vi [ g VXC S A S A

Ly AT

In this equation, u,(x) = O for [x| < I/2 and is infinite
otherwise. The reduced exchange potential, v,., is given
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by

7
u(x) = 7(36x) o) (105)

Vro(X) = —1 (322) [e(x)y+ 07734 1n [1 + u(x}]} (10a)

and vy \JL} 13 uctcuuulcu U_y aulvulg
v () = 8m [P (x) — v(x)]. (11)

Here v3P(x) = (a*)2N[ /A for |x| < A /2 and 0 otherwise,
and v(x) is computed through

vy = > vlx @R (12a)
J

y = %m [1 +exp (GF;@)-‘ (12b)

where x,(x) are the eigenfunctions of the Schrédinger
problem

=%/ (x) + v(x)x(x) = & x;(x) (13)
with boundary conditions y;{£1/2) = 0.

3.2. Discretization

The numerical procedure requires the x variable to be
discretized as x; = ih = I/2, with h = [J(N + 1), fori =
0,1,...,N -+ 1. Equation (13) can then be approximated
by the following difference equation:

1
—7 [% () = 2,06 + 3, (5]

Fu{x ) (x) = € x,(x:) (14)

with boundary conditions x;(x0) = xj(xns1) = 0. The
problem above is nothing but the diagonalization of the
symimeiric, tridiagonal N x N matrix H, defined as

[ v(x ) + 20~ ifi=j
Hij= —p? ifli—jl=1 (15)
0 otherwise
¢; being the jth eigenvalue and x;(x) (i = 1,2,..., N)

the ith component of the jth eigenvector, with j running
Lo 1 2 AF Ly o PRGN o U NS . |-V Uty . SRR U R SR g, |
UL B0 £Y . 1S SUITOUHIEZCL SUUALLVEL 15 UIUSs Hdlls1oImncu
into the much simpler problem of diagonalizing H, and we
can take advantage of its simpler shape.

Once ¢; and y; are available for j = 1,2,..., N, the
Fermi level, €¢, is obtained as the solution of
N
@ PNF ="y (16)

=1

with v; given by (126) for every er. Now the electron
density v(x;) is completely determined via equation {12a)
and, accordingly, the full right-hand side of equation (11).
Again this lafter equation can be approximated by a

difference equation, namely
h? [vH(xz+1) — 2vp(x:) + v (x1)]

= 8w [v P (x;} — v(x,)] a7
with boundary conditions vy (xp} = vy{xy4t) = 0. This
problem can be straighiforwardly mapped onto that of
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finding the solution to the system Dvy = p, where D
is the symmetric, tridiagonal N x N matrix defined as

-2 ifi=j
D=4 1 if|i — jl=1 (18)
0 otherwise

and p is the vector whose components are p =
8mh? [v3P(x) — v(x)) i =1,2,..., N. The solution, vy,
of this linear system can be readily obtained through the
standard Thomas algorithm, which amounts to computing
the solution iteratively, as follows:

v (Xn+1) 0,

vplx;) = ouglxp)+ ¥ (19)

with the index j running backwards (j = N. N —1,...,1},
and where

oy =0 vwo=>0
< P — Y-
P S Rk )/
/ d_,: + apeoy Yi dj + a0 (20)
i=12....N.

d (= 1L2,....N), ¢y (j = 2,3,...,N) and ¢
(j = 1,2,....N — 1) are the diagonal, subdiagona! and
superdiagonal elements of the matrix D respectively (in
our case, d, = —2 and a; = ¢; = I). Here g; is the jth
component of the right-hand side vector p as defined below
equation (18). Note that the undefined elements a; and cy
appearing in equation (20) are in fact irrelevant.

3.3. Algorithm

The self-consistent algorithm consists of the following
steps:

() Set up(xyY=wx)=0"foralli=1,2,...,N.

(2) Set uf}}d = V.

(3} Compute v(x;} as given by equation (9.

{4) Diagonalize H (equation (15)) to obtain the eigenval-
ues, €;, and eigenvectors, x; (f=1.2,...,N).

(5) Compute € by solving equation (16).

(6) Compute v(x;) as given by equations (12a, 12b).

(7) Determine v} (x;) through the recurrence (19) (notice
that the coefficients o;; and y; only have to be computed
once at the beginning of the program).

(8) Check for convergence (by comparing, for instance,
vB¥ with %), if tolerance has been attained then exit
the self-consistency process with vy = vi¥.

(9) Otherwise set vg = AvE™ (1 —k)v?}d and repeat from
step (2) on.

The parameter ) has been introduced to control the
iteration: if L = O we will have vy = 0 forever, while
if A =1, vy will undergo its maximum variation at every

step. This latter case (commonly used throughout the

literature) has proven not to converge for Nj 2 107"
cm™2, Instead, » = 1/2 makes the process convergent for
any set of parameters.

The numerical parameters we have been using are as
follows, Our mesh consisted of 501 points, enough to
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resolve the physical dimensions of the delta layer potential
we will describe below. We have checked our numerical
procedure by using smaller and larger numbers of grid
points, finding a negligible dependence on this paramcter,
as desired. In addition, we verified that the choice of
the convergence acceleration parameter A influences only
the rate at which the algorithm converges and not the
convergence itself, provided it is not too close to 0 or 1.
On the other hand, we usually started the Hartree iteration
from vg(z) = 0; we tested several other choices and we
satisfactorily found that the procedure converged always to
the same result, thus preciuding the possibility of having a
fictitious solution. We chose to stop the iterative procedure
when the relative variation of the Fermi energy was < 1079,
We also used another criterion, namely computing the
integral of the absolute value of the difference between
the new and old potentials and stopping when it was less
than 1073, obtaining again good agreement between the
two conditions. Typical runs attained convergence after
about 20 Hartree iterations, each one of them taking around
30 s of CPU time on a HP 9000/715/75 with the above
integration parameters. This shows that our procedure is
rather efficient, and we are confident that it will allow us to
deal with the superlattice problem without prohibitive use
of CPU time.

4. Results and discussions

The different magnitudes we are interested in have been
obtained taking m* = 0.067mg and ¢ = 12.7 in GaAs.
Since the dependence of the subband structure upon donor
concentration (N}), its distribution width (d) and the
thickness (L) are well understood in the absence of external
fields [19], even if the whole structure is embedded in
a quantum well [20], we have fixed their values and
concerned ourselves with the dependence on temperature
and electric field. In our numerical simulations we have
set Nf = 5% 10%em™2, d = 20A and L = 5004,
This choice, with the above numerical parameters, gives
our calculation a resolution of 1A. The maximum electric
field we have considered is F = 100kVem™!, well
below the value for which I'-X mixing may be observed,
thus remaining within the range of validity of our scalar
Hamiltonian., We have studied three typical temperatures,
namely those of liquid helium, 4.2 K, liquid nitrogen, 77K,
and room temperature, 300K,

In the absence of an applied electric field, the confining
potential presents the characteristic V-shape profile, as
shown in figure 1, where the origin of energies of all curves
is the Fermi level. On increasing the electric field the
potential is tilted so that it becomes slightly asymmetric
(see figure 1 for 50kVcem™!). This behaviour is also
predicted by means of the Thomas-Fermi approach, as
mentioned above {7]. This trend holds until a critical value
of the electric field F, (about 60kVem™', see below) is
reached. For higher strengths of the electric field, the
confining potential changes its shape dramatically and a
second minimum appears at the left barrier. Therefore, a
local potential barrier arises between the centre and the
left barrier of the structure, as shown in figure 1 for
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Figure 1. The self-consistent confining potentiat for an
ionized donor concentration N} =5 x 10'2cm=2 distributed

over d = 20 A for three different slectric fields, at T = 4.2K.
The zero of energy is set at the Fermi level.

F = 100kVem™’. Itis worth mentioning that the transition
between these two different regimes is very sharp. In
other words, V(—L/2) drops ~ 300meV in a very narrow
interval, < 1kVem™!, of electric fields. This phenomenon
can be thought of as arising from competition between
opposite effects: on one side, the electric field pushes
the charge distribution to the left, and on the other side,
electronic repulsion prevents charge accumulation on that
part of the system.

The different shapes of the confining potential for
F smaller or larger than F, must strongly influence
the subband structure and the corresponding subband
occupation, as actually occurs.  Results at different
temperatures are collected in figure 2. In this figure we
have plotted only those subbands whose electron densities
n; are at least 1% of the ground state occupation. As
expected, the occupation of subbands above the ground
state increases with temperature. The subband energies
depend only slightly on the applied electric field up to a
critical field F, ~ 60kVcm™!, at which a sudden drop of
the levels is observed. This value of F, is almost the same
for T =4.2K and T = 77K, whereas at room temperature
it is somewhat smaller. It is ciear that this drop of the levels
is related to the rapid change in the value of V{—~L/2) and
the subsequent appearance of the local maximum around
z = —L/4. This behaviour is very different to the quantum-
confined Stark effect in quantum wells, where subbands
change smoothly with F [21].

The subband occupaticons at three different temperatures
and three different values of the electric field are shown in
table 1. The occupation of the lowest subband is almost
independent of T and F. With increasing temperature,
more and more subbands are populated, as mentioned
above. The most significant feature when increasing
the electric field is that the occupation of the excited
subbands increases rapidly for fields above F,. This fact is
remarkable at low temperature, for which the first excited
state has an occupation of 0.007 (in units of 10'2cm™2)
for F < F; while it increases by two orders of magnitude
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Figure 2. Subband energies as a function of the applied
electric field for (a) T =4.2K, (b) T=77K and

(¢} T =300K. Only those subbands with electron densities
larger than 1% of the electron density in the ground state
are plotted. Energies are reterred to the Fermi level. Note
that the vertical scale is different in plot (c) for the sake of
clarity.

for F > F,. Hence band filling also changes dramatically
when crossing F.

According to our previous results, the spatial charge
distribution should also be strongly influenced by the
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Table 1. The subband occupation for three different

temferatures and electric fields is shown in units of

10'¢

T F

(K) (Vomh) Ground tst  2nd  3rd  4th

42 0 2.50 0.007 QO 0 0
50 242 0007 @ 0 O
100 2.80 1.36 1] a 0

77 0 248 013 0 O O
50 2.40 0.13 0 0 ]
100 278 134 079 005 0

300 0 242 0.50 0.10 0.02 0.005
50 2.35 0.50 0.11 0.03 0.006
100 2.58 1.20 080 029 0.08

applied electric field. To elucidate these effects, we
have calculated the squared envelope functions at low
temperature (figure 3). At zero field the envelope functions
present a well defined parity since V (z) is an even function;
thus the electron density n(z) is symmetric around the 4-
doping layer. On increasing the electric field, the expected
value (;|zly;) shifts to the left, in the same fashion
as in ordinary quantum wells. However, electric fields
larger than F, cause the first excited state to be located
very close to the left barrier due to the presence of the
potential minimum at z = —L/2. Therefore, spatial
charge distributions undergo a large shift to the left for
F > F., which must clearly have profound effects on
intersubband transitions between the first excited subband
and the ground subband. This is shown in figure 4, where
fio is plotted as a function of the electric field at three
different temperatures. Below F, the oscillator strength
is almost constant and presents a high value, close to
15, which is even larger than that obtained for a narrow
GaAs—Ga,_,Al,As quantum well inside a wider one [18].
Thus, for instance, fi1o(50kVem=1}/fio(0kVem™') ~
(.93, But contrary to quantum wells, fjo decays very
fast for electric fields larger than F,, so that, for instance,
fio{100kV em™1)/fi1o(0kVem™) ~ 0.1. This change
is practically the same for the two lowest temperatures,
the magnitude of the jump becoming smaller at room
temperature; nevertheless, the drop of fio is equally abrupt
for all temperatures. In closing this section, we note that
this drop of the oscillator strength arises from the fact that
the secondary well, newly formed, begins to confine charge.
As a result, the overlapping between the ground and the
first excited states is small, and fransitions between the
two subbands become tunnelling-like, leading to a sharp
decrease of fio.

5. Conclusions

In the present work we have studied single Si §-doped
GaAs under an electric field applied parallel to the growth
direction, Electronic structure and intersubband transitions
have been calculated by solving the Schrddinger and
Poisson equations self-consistently. To this end, we have

developed a very efficient numerical code which paves
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Figure 3. Squared envelope fuctions for the three lowest
subbands at different fields: (a) F=0kVem™',
(b) F=50kVem ' and (c) F=100kVem™ at T=4.2K.

the way to self-consistent studies of é-doped superlattices.
As regards the specific system we deal with here, one of
the most significant results is the existence of a critical
value of the electric field F, separating two very different
behaviours of the quantum-confined Stark effect, which is

very different from what happens in quantum wells. This
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Figure 4. Oscillator strength for the intersubband transition
1 = 0 as a function of the applied electric field at different
temperatures.

critical field is related to the fact that the confining potential
develops a second minimum at the left barrier. As a
consequence, we have observed that the subband energies
present a step-like shape as a function of the electric field,
with a sharp decrease at F,. This is accompanied by
a marked increase of the occupation of the first excited
subband and a strong shift of the spatial charge distribution.
Finally, the oscillator strength for intersubband transitions
is very large and almost constant below F, but vanishes
quickly above F,.

Interestingly, this sharp change in the confining
potential shape poses a number of questions about the
behaviour of superlattices. From what we now know, it
is not clear whether the appearance of an intermediate
barrier will help form electric field domains or, on the
contrary, will prevent them due to loss of coherence. It
is conceivable that electric field domains will appear below
F., where the phenomenology is similar to that of quantum-
well-based superlattices. The situation is more intriguing
above F., because the splitting of the quantum well into
two wells might or might not survive in the superlattice.
The consequences of the preservation of this effect are
difficult to predict, because in that case the superlattice
might exhibit 2 double periodicity or become aperiodic. If
double periodicity arises, it could induce unusual electron
trangport properties, like those predicted for the so-called
dimer superlattices [22]. In addition, it is also evident that
the well splitting phenomenon will have consequences in
terms of possible resonant tunnelling effects, not only in
superlattices but also in double 3-doped layer structures.
These and related questions are clearly worth studying, and
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Finally, we want to end the paper with a few comments
on the applications of what we have found. The fact that
the oscillator strength undergoes a sudden drop allows us

Electric field effects on Si 5-doped GaAs

to suggest that structures made out of Si J-doped GaAs
embedded in a quantum well may be of use as optical filters.
Note that dipolar transitions 1 — 0 show a negligible
probability above F,; as these two subbands contain most
of the carriers, this will be the relevant transition governing
the optical response of the device. It is important to recall
that the value of F, is almost independent of temperature,
s0 that such a device could be used over a wide range of
temperatures. In addition, it is clear that the value of F,
could be adjusted by changing N}, L and 4. Therefore,
this kind of structure may open the possibility of fabricating
new optoelectronic devices.
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