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Ensemble models of graphs are one of the most important theoretical tools to study complex networks. Among
them, exponential random graphs (ERGs) have proven to be very useful in the analysis of social networks. In
this paper we develop a technique, borrowed from the statistical mechanics of lattice gases, to solve Strauss’s
model of transitive networks. This model was introduced long ago as an ERG ensemble for networks with high
clustering and exhibits a first-order phase transition above a critical value of the triangle interaction parameter
where two different kinds of networks with different densities of links (or, alternatively, different clustering)
coexist. Compared to previous mean-field approaches, our method describes accurately even small networks and
can be extended beyond Strauss’s classical model—e.g., to networks with different types of nodes. This allows
us to tackle, for instance, models with node homophily. We provide results for the latter and show that they
accurately reproduce the outcome of Monte Carlo simulations.
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I. INTRODUCTION

Networks are currently one of the most useful theoretical
tools of analysis [1], one that finds applications in many dif-
ferent fields, such as biology [2–5], sociology [6], economics
[7,8], or technology [9,10]. Modeling using networks is a two-
step process. First of all, we need to identify which elements
of a system can play the role of nodes, and which connections,
interactions, or relations between pairs of them can play the
role of links. In the World Wide Web (WWW), these two
elements could be the web pages and the hyperlinks; in a
social environment, the individuals and their relationships;
in the cell, the proteins and their interactions. The result of
this first modeling step is a snapshot of the system cast as a
network.

But in most cases this network is just an instance, a single
realization of a more general set of networks that we could
have obtained if we had modeled other similar systems (an-
other portion of the WWW, another group of people, another
cell). Often, the network is literally a snapshot because the
system evolves in time, so at different instants we observe dif-
ferent realizations of the network. In general, when it comes
to modeling through networks, what we look for is a model
whose generic features—whichever they may be—reproduce
those of the particular instances that we observe. In other
words, we look for an ensemble of networks from which
our particular network is a typical element—and this is the
second, and most important, modeling step.

A network ensemble (or random graph model) is specified
by two elements: the set G of possible realizations of the net-
work, and a probability distribution P(G) on this set (G ∈ G).

*cuesta@math.uc3m.es

It is only natural to write P(G) as

P(G) = �−1e−H (G), � =
∑
G∈G

e−H (G), (1)

where the analogy to the Gibbs distribution in statistical
mechanics justifies referring to H (G) as the Hamiltonian
of the ensemble. This sort of Gibbs’s ensembles for net-
works appeared in the early 1980s under the name of
exponential random graphs (ERGs) in the context of social
network modeling [11,12] and were inspired by previous work
on Markov random fields [13,14]. Hammersley-Clifford’s
theorem [14,15] provides the conditions under which the
probability distribution of a Markov random field has the form
(1) of a Gibbs’s ensemble.

The Hamiltonian H (G) of an ERG is specified as [16]

H (G) = −
r∑

μ=1

λμωμ(G), (2)

where {ω1(G), . . . , ωr (G)} is a set of observables on the net-
work (or graph) G. For instance, H (G) = λL(G) with L(G)
defined as the number of links (edges) of the graph is the well-
known Erdős-Rényi model [1,16]. The so-called “conjugate”
parameters λμ are determined by fixing the averages of the
observables,

〈ωμ〉 =
∑
G∈G

ωμ(G)P(G) = ∂

∂λμ

ln �. (3)

The obvious connection between ERGs and statistical me-
chanics allows us to obtain these ensembles in a different
way—one that sheds light on their meaning. The distribution
(1) can be obtained by maximizing the entropy functional
S = −∑

G P(G) ln P(G) subject to the constraint that P(G)
must have specific values of the averages of a certain set of
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observables [17]. According to the Bayesian interpretation
[18], the probability distribution obtained this way is the most
agnostic one, given the information we have—namely, the
values of the specified averages. In other words, any other
distribution having the same averages would incorporate spu-
rious information that we do not know to be true or false for
our system. In this sense, it is optimal in that it maximizes our
ignorance beyond the data we have.

Simple models involving single-link observables, such as
the (directed or undirected) Erdős-Rényi model or the reci-
procity model, have a simple closed-form solution [16,17].
However, as soon as the observables involve two or more
links, the models become more difficult to analyze—but also
more interesting. The simplest model in which links interact
is the two-star model [17,19]. This model exhibits a first-order
phase transition when the interaction is strong enough from a
low-density to a high-density phase, which can be accurately
obtained, in the thermodynamic limit of very large number of
nodes using a mean-field approximation.

But perhaps the equivalent to the Ising model for ERGs
is Strauss’s model of transitive networks [12,20]. This model
enhances the clustering of the networks by introducing an
interaction associated with triangles. As the two-star model,
Strauss’s can be studied in mean-field approximation, and it
exhibits a similar phase transition.

Ever since it was discovered, researchers have been in-
trigued by the nature of the phase transition in Strauss’s model
[17,19–26] and have explored extensions of it in pursuit of
ensembles either with more realistic features [25,27–31] or
more amenable to analytic calculations [32,33]. What most
of these studies seem to imply is that, for certain sets of
parameters, there are values of some observables (e.g., the
mean number of links or the clustering) that no graph in the
ensemble can attain. Furthermore, in this regime the typical
graphs of the ensemble abruptly change from sparse to dense
upon a slight variation of the control parameter. These facts
cast serious doubts on the usefulness of Strauss’s model [20],
or even of ERGs, in general [16], to reproduce the features
of real-life networks. For this reason, alternative models have
been proposed exhibiting topological and dynamical features
more akin to those of real networks [27–30,34]—even though
they still produce graphs that are hard to tune. More recent
models choose to impose a given degree distribution as a con-
trol mechanism [5,24,31–33], but the phase transition remains
and clustered networks are still produced.

The aim of this paper is twofold. First of all, by introducing
the language of lattice gases [35] we will show that there is no
qualitative difference between the phase transition exhibited
by Strauss’s model and the condensation transition of an Ising
lattice gas [36]. Thermodynamics teaches us how to interpret
states that have intermediate densities between a liquid and a
gas. Likewise, thermodynamics will provide a description of
the sort of networks that we must expect for those “forbidden”
values of the observables in Strauss’s model.

Second, we will address this problem using a density-
functional formalism especially tailored for lattice gases
[37,38]. This formalism provides a method to construct a
mean-field-like free energy of the system from which ev-
erything else can be derived. It also has the advantage that
the nonhomogeneous counterpart of Strauss’s model can be

solved with no extra effort. Networks in which nodes of differ-
ent types interact in different ways are of this kind, and using
them we can study, e.g., the effect of homophily in social
networks.

The paper is organized as follows. Section II introduces
Strauss’s model and its interpretation as a lattice gas of links.
The version of the model we will be dealing with is intrinsi-
cally inhomogeneous insofar as the interaction parameters are
all link dependent. In Sec. III we use a density-functional for-
malism to obtain the free energy of the system. In Sec. IV we
calculate the free energy assuming that every link has equal
probability of occurring. We discuss the thermodynamic limit
as well as the well-known phase transition that Strauss’s ho-
mogeneous model exhibits. The lattice-gas viewpoint we are
adopting reveals that this transition is akin to a condensation
in fluids, and this analogy allows us to discuss the nature of the
system in the region of coexistence. It is one of the main points
of this paper because it stands for the validity of the model
even in the coexistence region—which has been questioned
so far. We end the section by comparing our results to those of
Park and Newman [20] for finite networks where the present
approach proves to be more accurate (they both coincide in the
thermodynamic limit). Finally, Sec. V discusses some of the
differences that inhomogeneities (e.g., homophily when there
are different kinds of nodes) introduced in the system as a way
of illustrating the ability of the functional developed here to
deal with this sort of situations. We conclude in Sec. VI with
a summary and a brief discussion.

II. STRAUSS’S MODEL AND ITS LATTICE-GAS
INTERPRETATION

Strauss’s model is an ERG ensemble of undirected graphs
with N nodes defined by the Hamiltonian,

−H (G) = φL(G) + γ

N
T (G), (4)

where L(G) is the number of links (edges) in the graphs and
T (G) the number of triangles (clustering). In this model, a
positive φ enhances the creation of links and a positive γ

enhances the formation of triangles. (Note that we are us-
ing different sign conventions than those used in previous
works [12,16,17,19,20] in order to agree with those com-
monly adopted in the statistical mechanics of lattice gases).
The factor N−1 in front of T (G) accounts for the fact that
there are O(N3) triangles in the network compared to O(N2)
links. With this factor both terms are comparable for large N if
the constants are O(1). The model was introduced by Strauss
[12] to describe graphs with a clustering higher than that of a
typical Erdős-Rényi graph.

Here we will deal with a nonhomogeneous version of this
model. In order to write down its Hamiltonian we need to
introduce some notation. Let N denote the set of all nodes
of an undirected graph G, N2 the set of all subsets of two
elements of N (hence, the potential links, which will be de-
noted by their indices {i1, i2}), and N3 the set of all subsets of
three elements of N (hence, the potential triangles, which will
be denoted {i1, i2, i3}). If |N | = N , then |N2| = (N

2

)
, |N3| =(N

3

)
. We also denote {τi j} the adjacency matrix of the graph

G, where τi j = 1 if the link {i, j} exists in G and τi j = 0
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FIG. 1. Dual networks for the complete graphs of four (up) and
five nodes (down). In the dual networks, links are represented as
nodes, and two of these nodes are neighbors if they share a node
of the original one. (For an alternative representation see Fig. 1 of
Ref. [35].)

otherwise. Then, in terms of these variables a triangle {i, j, k}
exists if and only if τi jτ jkτki = 1. Thus, the Hamiltonian of the
nonhomogeneous version of Strauss’s model can be written as

−H (G) =
∑

{i j}∈N2

φi jτi j +
∑

{i jk}∈N3

γi jk

N
τi jτ jkτki. (5)

The parameters φi j and γi jk are local versions of those of
Hamiltonian (4)—hence, a positive φi j enhances the creation
of the link {i, j} and similarly a positive γi jk enhances the
formation of the triangle {i, j, k}.

The variables τi j play the role of “particles” sitting on
the links of the complete graph over the set of nodes N . If
τi j = 1, it means that the link {i j} is occupied by a particle,
whereas if τi j = 0, the link is empty. Thus, G can also be
interpreted as the configuration of up to

(N
2

)
such particles

in the complete graph. Under this interpretation φi j can be
regarded as a (local) chemical potential and, therefore, � in
(1) would play the role of the grand partition function of this
system [36–38].

As particles occupy the links, rather than the nodes, of a
complete graph, the “space” where these particles live in is
weird. As a matter of fact, in this dual network every two
particles are either neighbors or second neighbors to each
other. The reason is that if links {i j} and {kl} are not neighbors
(i.e., have no common nodes) then they are both neighbors
to a common link (e.g., {ik}). Figure 1 illustrates these dual
networks for the complete graphs of four and five nodes. Each
link is neighbor to 2(N − 2) other links, and second neighbor
to the remaining

(N−2
2

)
.

The grand potential of this system 	 = − ln � is a func-
tion of all conjugate fields φ = {φi j} and γ = {γi jk} from
which the probability that link {i j} is occupied (henceforth,

density) can be obtained as

− ∂	

∂φi j
= 〈τi j〉 = ρi j . (6)

A Legendre transform on the grand potential yields the free
energy,

F (ρ, γ ) =
∑
{i j}

φi j (ρ)ρi j + 	(φ, γ ), (7)

where φi j (ρ) is obtained by solving (6) for fixed ρ. Differen-
tiating F with respect to the densities,

∂F

∂ρi j
= φi j +

∑
{kl}

∂φkl

∂ρi j
ρkl +

∑
{kl}

∂	

∂φkl

∂φkl

∂ρi j
,

so if we take (6) into account we finally find

∂F

∂ρi j
= φi j, (8)

which is the usual equation for the chemical potential.
It can be proven that, given the free-energy density func-

tional F (ρ) of a system, its equilibrium density is the unique
density profile that minimizes the functional 	(ρ) ≡ F (ρ) −
φ · ρ [39, Appendix B] (alternatively, it minimizes F (ρ) at
constant mean density). Thus, Eq. (8), which is dual to (6), is
the expression of this variational principle. Hence, its solution
provides the values of the densities for a given set of chemical
potentials φ.

III. FUNDAMENTAL-MEASURE APPROXIMATION

The technique we will use to find an approximation to the
free energy of Strauss’s model is know in the field of lattice
gases as fundamental-measure theory [37,38]. It is a reformu-
lation of the well-known cluster variation method [36]. The
idea is to decompose the system in overlapping clusters and
express the free energy as a sum of the free energies of those
clusters, controlling for overcounting.

In the case of Strauss’s model, the geometry of the
Hamiltonian suggests that the simplest possible clusters are
triangles. Thus, as a first approximation the free energy is
obtained as the sum of the contributions to the free energy of
all the triangles within the complete graph. However, in doing
so every link participates in N − 2 triangles, so we need to
subtract N − 3 times the contribution to the free energy of all
links. In other words, the fundamental-measure approxima-
tion to the free energy of this model will be

F (ρ, γ ) =
∑
{i jk}

�3(ρi j, ρ jk, ρki, γi jk )

−(N − 3)
∑
{i j}

�2(ρi j ), (9)

where �2 and �3 are the free energies of a single link and a
single triangle, respectively.

The expression for �2 is easy to obtain. Denoting zi j ≡
eφi j , the grand partition function for a single link {i j} is simply
�2 = 1 + zi j . Thus,

ρi j = zi j
∂

∂zi j
ln �2 = zi j

1 + zi j
,
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from which,

zi j = ρi j

1 − ρi j
, �2 = 1

1 − ρi j
.

Substituting these expressions in the Legendre transform
�2 = ρi j ln zi j − ln �2, we end up with

�2(ρi j ) = ρi j ln ρi j + (1 − ρi j ) ln(1 − ρi j ), (10)

which is simply the free energy of an ideal lattice gas.
The calculation of �3 is rather more involved, and is

deferred to Appendix A. Introducing the shorthand,

ζi jk ≡ exp(γi jk/N ) − 1 = γi jk

N
+ O

(
1

N2

)
, (11)

its expression turns out to be

�3 = �2(ρi j ) + �2(ρ jk ) + �2(ρki ) + ρi j ln

(
1 − ρi jk

ρi j

)

+ρ jk ln

(
1 − ρi jk

ρ jk

)
+ ρki ln

(
1 − ρi jk

ρki

)
−2 ln(1 − ρi jk ), (12)

where ρi jk is one of the real solutions of the cubic equation

ζi jk (ρi j − ρi jk )(ρ jk − ρi jk )(ρki − ρi jk ) = ρi jk (1 − ρi jk )2.

(13)
This “triangle” density is related to Ti jk = 〈τi jτ jkτki〉, the
probability that nodes i, j, k form a triangle, as (see Ap-
pendix B)

Ti jk = 1 + ζi jk

ζi jk
ρi jk = 1

1 − e−γi jk/N
ρi jk . (14)

If we now substitute (10) and (12) into (9) and take into
account that∑

{i jk}
(Ai j + Ajk + Aki ) = (N − 2)

∑
{i j}

Ai j (15)

for any link-dependent magnitude Ai j , we finally get

F =
∑
{i j}

[ρi j ln ρi j + (1 − ρi j ) ln(1 − ρi j )]

+
∑
{i jk}

[
ρi j ln

(
1 − ρi jk

ρi j

)
+ ρ jk ln

(
1 − ρi jk

ρ jk

)

+ρki ln

(
1 − ρi jk

ρki

)
− 2 ln(1 − ρi jk )

]
. (16)

IV. HOMOGENEOUS NETWORKS

A. Free energy

We can recover Strauss’s original model by assuming
ρi j = ρ for every link {i j} and γi jk = γ for every triangle

{i jk}. Then the free energy per link f (ρ, γ ) = (N
2

)−1
F (ρ, γ )

will be

f = ρ ln ρ + (1 − ρ) ln(1 − ρ)

+ (N − 2)

[
ρ ln

(
1 − ρT

ρ

)
− 2

3
ln(1 − ρT)

]
, (17)
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FIG. 2. Thermodynamic free energy of the model for different
values of γ below and above the critical value γc (γ increases from
top to bottom). The curves illustrate the onset of the concavity as
γ grows past γc = 27/8, which is represented by the purple dashed
line.

where ρT is the only real root of

ζ (ρ − ρT)3 = ρT(1 − ρT)2. (18)

With the change of variable,

t = ρ − ρT

1 − ρT
, ρT = ρ − t

1 − t
, (19)

the cubic equation (18) can be rewritten as

t3 + t

ζ (1 − ρ)
− ρ

ζ (1 − ρ)
= 0. (20)

This equation has only one real root, which is given by the
formula [40, pp. 102–103]

t = 2√
3ζ (1 − ρ)

sinh

[
1

3
sinh−1

(
3

2
ρ
√

3ζ (1 − ρ)

)]
. (21)

B. Thermodynamic limit

In the thermodynamic limit N → ∞ one can see, either
from (18) or directly from (21), that the (thermodynamic) free
energy becomes simply

fth = ρ ln ρ + (1 − ρ) ln(1 − ρ) − γ ρ3

3
. (22)

This free energy is convex as long as

∂2 fth

∂ρ2
= 1

ρ(1 − ρ)
− 2γ ρ > 0, (23)

which is equivalent to 2γ ρ2(1 − ρ) < 1. As the maximum
value of ρ2(1 − ρ) is 4/27 (reached at ρc = 2/3), the condi-
tion above implies γ < 27/8. So, the values γc = 27/8, ρc =
2/3, mark a critical point, above which the system exhibits a
first-order phase transition.

Figure 2 illustrates the concavity that fth develops as γ in-
creases past γc. It is the fingerprint of a condensation transition
in lattice gases [36] because a concave free energy implies
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FIG. 3. In the upper region delimited by the solid curve the
system is not homogeneous but separated in two coexisting phases
whose respective densities are given by the values of curve at the
corresponding γ . The dashed line represents the spinodal (25), i.e.,
the curve at which the compressibility vanishes—hence, the thermo-
dynamic free energy changes from convex to concave. The circle
where both curves meet marks the critical point. Within the shaded
region the system may be trapped in a metastable homogeneous state.

thermodynamic instability (the compressibility is negative).
The homogeneous “fluid” separates in two phases, each of a
different density, in thermodynamic equilibrium. The fraction
occupied by each phase must be such that the overall density
matches the prescribed one.

Thermodynamic equilibrium means “chemical” equilib-
rium (equality of chemical potentials) and “mechanical”
equilibrium (equality of pressures). The first condition im-
plies fρ (ρ1, γ ) = fρ (ρ2, γ ); the second condition implies
ρ1 fρ (ρ1, γ ) − f (ρ1, γ ) = ρ2 fρ (ρ2, γ ) − f (ρ2, γ ). Both con-
ditions are summarized in the equation,

fρ (ρ1, γ ) = fρ (ρ2, γ ) = f (ρ2, γ ) − f (ρ1, γ )

ρ2 − ρ1
, (24)

which represent Maxwell’s double tangent construction [41].
For fth, the solution of these equations is represented in Fig. 3.
Given any ρ1 < ρ < ρ2, there will be a fraction x of the graph
of density ρ1 and a fraction 1 − x of density ρ2 such that
ρ = xρ1 + (1 − x)ρ2.

On the other hand, the condition fρρ (ρ, γ ) = 0 marks the
points where the compressibility vanishes—i.e., where the
system is no longer mechanically stable. This curve is known
as the spinodal (see Fig. 3). According to (23), this curve is

γ = 1

2ρ2(1 − ρ)
. (25)

Within the region between the coexistence curve and the spin-
odal (the shaded area of Fig. 3) the system can still be prepared
in a homogeneous—but metastable—state. This explains the
origin of the hysteresis usually observed in first-order phase
transitions—this one in particular [20].

It is difficult to guess the nature of the phase transition
that this system undergoes above the critical point. Recall that
any two links are separated by no more than one intermediate
neighbor. The very notion of space breaks down in such a sys-
tem, so the picture of the usual condensation transition where
gas and liquid occupy different portions of the volume, has no
reasonable counterpart in a complete graph. Nonetheless, the
transition may be illustrated by computing a histogram of the
number of links belonging to a given number of triangles [24].
As a way of illustration we have obtained such histograms by
performing Monte Carlo simulations using the dynamics of
Kawasaki [42], which preserves the number of links—hence,
the density ρ. In this dynamics, a Monte Carlo step amounts to
first removing a link at random and then creating a link also at
random. The results, obtained for three different values of the
interaction γ (below, just above, and well above the critical
point) and three different densities, are depicted in Fig. 4 . In
each of these simulations we perform 5 × 105 Monte Carlo
steps. When γ < γc the histograms show a single peak that
shifts to the right and shrinks as the density increases, whereas
if γ > γc the distribution exhibits two very neat peaks, one at
high values and the other one at lower values of the number of
triangles. Obviously, the links forming each of the two peaks
belong to each of the two—low- and high-density—phases.
Figure 4 reveals that networks within the coexisting region do
exist, but they have different structural properties than those
outside this region. We will return to this point in Sec. VI.

C. Finite networks

We can use an asymptotic expansion in N to obtain ρT from
(21). The first two terms are

ρT = γ ρ3

N

[
1 + γ (1 − 6ρ2 + 4ρ3)

2N
+ O

(
1

N2

)]
, (26)

and, consequently, the free energy can be expanded as

f = ρ ln ρ + (1 − ρ) ln(1 − ρ) − γ ρ3

3

[
1 − 2

N

+ γ (1 − 3ρ2 + 2ρ3)

2N
+ O

(
1

N2

)]
. (27)

The critical point will then be a solution of the equa-
tions fρρ = fρρρ = 0, which yields

γc(N ) = 27

8

[
1 + 45

16N
+ O

(
1

N2

)]
,

ρc(N ) = 2

3
+ O

(
1

N2

)
. (28)

The numerical solution for γc(N ) is depicted in Fig. 5 along
with the asymptotic expansion above. As for ρc(N ), within
numerical resolution we find that its value is always 2/3. It
is noteworthy that the curve of γc(N ) diverges somewhere
between N = 4 and N = 3.

Despite that the uniform free energy (27) predicts a critical
point and a first-order phase transition for arbitrary N (as
low as N = 4, see Fig. 5), we know that this is not possible;
in other words, this phase transition is not real. The reason
why the free energy exhibits a concavity for some values
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FIG. 4. Each of these nine panels depicts the average fraction of links belonging to a given number of triangles as obtained from Monte
Carlo simulations—using Kawasaki dynamics—of a Strauss network with N = 50 nodes for three values of the interaction parameter γ (below,
just above, and well above the critical point) and three different densities.

FIG. 5. Difference between the critical value γc(N ) for a network
with N nodes and its limit for N → ∞ as a function of N . The solid
line is obtained by numerically solving the equations for the critical
point; the dashed line arises from the asymptotic expression (28).

of ρ when γ > γc(N ) is that the equilibrium solution is not
truly uniform for any value of the density—even though for
some densities it is indistinguishable from a uniform one.
The transition from the regions where the solution is almost
uniform to those in which the structure is like those shown
in Fig. 4 (third row) is continuous—albeit probably abrupt.
Thus, in the approximation we are using here, it shows up as
a phase transition (i.e., the convex envelope of the free energy
as a function of ρ represents a good approximation of the true
free energy of the system). In order to illustrate this point we
compare our approximate free energy for N = 4 with the exact
one (obtained in Appendix C) in Fig. 6.

D. Comparison with Park and Newman’s
mean-field calculations

A fair question to ask is how does the present theory com-
pares with the mean-field calculations of Park and Newman
[20]. In spirit, this theory is also mean-fieldlike, but clearly its
construction follows a very different approach. On the other
hand because of the high dimensionality of this system one
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FIG. 6. Dashed lines represent the difference between the ap-
proximate free energy ( fapp), given by Eq. (27), and the exact free
energy ( fex), given by Eq. (C4) for the complete graph with N = 4
nodes and for three values of the interaction parameter γ (below, just
above, and well above the pseudocritical point). As the free energy
has an unphysical concave region above the critical point, we also
represent in solid lines the difference between the convex envelope
of the approximate free energy and the exact one since this convex
envelope is a better approximation to the real free energy.

expects that in the thermodynamic limit it becomes exact [20],
so it would be desirable that, if not for all N , at least, in this
limit both theories coincide. Figure 3(b) of Ref. [20] shows
the expected number of triangles T (among other things) as
a function of the interaction parameter γ /N , for φ = −0.53
and N = 500. We can obtain T and φ as a function of ρ and
γ through Eqs. (8) and (14), respectively. From these two
calculations, we can obtain parametrically the curve T (γ ) for
fixed φ and for different values of N . The discrepancy between
our results and those of Park and Newman is shown in Fig. 7
[20]. Figure 7(a) illustrates that the difference between the
predictions of both theories decreases with system size—so
that they both coincide in the thermodynamic limit. However,
for very small networks their predictions differ significantly
(e.g., for N = 10, the discrepancy may be as high as ∼20%).
Figure 7(b) compares the predictions of both theories for
N = 10 along with Monte Carlo simulations performed using
a Metropolis-Hastings algorithm [43]. Observable magnitudes
are averaged over 106 configurations of the Markov chain,
taken one every 5 × 104 steps. This figure highlights the
higher accuracy of the current theory in calculating results for
small networks.

Given that most real networks are large, the discussion of
this section may seem as an academic issue of little practical
relevance. Nevertheless, small networks of about 20–30 nodes
are common, e.g., in social science, anthropology, or biology.
Thus, one can find instances of these small networks in studies
of different social organizations [44–47], in bands of hunter
gatherers [48,49], or in groups of social animals [50–52]. For
these studies, the improved accuracy provided by the present
approach might not be negligible.

FIG. 7. (a) Difference between the expected number of triangles
T as obtained from Park and Newman’s mean-field calculations and
from the current theory [20]. (b) Expected number of triangles for
N = 10 according to both theories along with Monte Carlo simula-
tions. Error bars represent the standard deviation of the number of
triangles along the simulations. In both panels φ = −0.53.

V. NONHOMOGENEOUS NETWORKS: HOMOPHILY

Having an expression for the free energy of the nonhomo-
geneous Strauss’s model allows us to tackle other interesting
cases. Particularly important is the case where there are dif-
ferent types of nodes in the network with different interaction
parameters. This case can model, e.g., homophily in a social
network where like nodes are more prone to form links or
triangles than different nodes are [53]. A particular version
of this model has already been used to study segregation on
Strauss networks where triangles are both favored or disfa-
vored [54].

Suppose we have two types of nodes in the network, A
and B. Since the underlying graph is a complete graph, the
actual location of these nodes is irrelevant, only how many
of each type there are matters. So let us assume that there
are NA of type A and NB = N − NA of type B. Accordingly,
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(NA

2

)
links are homophilic of type AA,

(NB

2

)
of type BB, and

NANB are of mixed type. Likewise, there will be
(NA

3

)
ho-

mophilic triangles of type AAA,
(NB

3

)
of type BBB,

(NA

2

)
NB

mixed triangles of type AAB, and
(NB

2

)
NA of type ABB.

Hence, the free energy of the system can be obtained
as

F =
∑

X=A,B

(
NX

2

)
[ρXX ln ρXX + (1 − ρXX) ln(1 − ρXX)]

+ NANB[ρAB ln ρAB + (1 − ρAB) ln(1 − ρAB)]

+
∑

X=A,B

(
NX

3

)[
3ρXX ln

(
1 − ρXXX

ρXX

)
− 2 ln(1 − ρXXX)

]
+

∑
X=A,B

∑
Y 
=X

(
NX

2

)

× NY

[
ρXX ln

(
1 − ρXXY

ρXX

)
+ 2ρXY ln

(
1 − ρXXY

ρXY

)
− 2 ln(1 − ρXXY)

]
, (29)

where ρXY = ρYX is the density of links of type XY, and the densities associated with the triangles are the solutions of

ζXXY(ρXX − ρXXY)(ρXY − ρXXY)2 = ρXXY(1 − ρXXY)2. (30)

In order to reduce the number of parameters of the model we will, henceforth, assume that it is only homophily, and not the
nature of the nodes, what determines interactions. This means that there are only two values of the interaction parameter instead
of four, namely, γAAA = γBBB ≡ γ+, γAAB = γBBA ≡ γ−. Furthermore, in the thermodynamic limit, the solution to (30) is

ρXXY = ρXXρ2
XY

γ±
N

+ O

(
1

N2

)
, (31)

where the subindex of γ± depends on whether X = Y (+) or X 
= Y (−). In this same limit, and setting NA = uN , NB = (1 − u)N ,

the free energy per link f ≡ (N
2

)−1
F turns out to be

f = u2[ρAA ln ρAA + (1 − ρAA) ln(1 − ρAA)]

+ (1 − u)2[ρBB ln ρBB + (1 − ρBB) ln(1 − ρBB)]

+ 2u(1 − u)[ρAB ln ρAB + (1 − ρAB) ln(1 − ρAB)] − γ+
3

[
u3ρ3

AA + (1 − u)3ρ3
BB

]
− γ−u(1 − u)ρ2

AB[uρAA + (1 − u)ρBB]. (32)

The convexity of this function is linked to the positive definiteness of its Hessian matrix (entries are ordered as AA, BB,
and AB)

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

u2

ρAA(1 − ρAA)
− 2γ+u3ρAA 0 −2γ−u2(1 − u)ρAB

0
(1 − u)2

ρBB(1 − ρBB)
− 2γ+(1 − u)3ρBB −2γ−u(1 − u)2ρAB

−2γ−u2(1 − u)ρAB −2γ−u(1 − u)2ρAB
2u(1 − u)

ρAB(1 − ρAB)
− 2γ−u(1 − u)ρ̄(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (33)

where we have introduced the shorthand notation ρ̄(u) ≡
uρAA + (1 − u)ρBB. This translates into the positiveness of
the first two diagonal elements plus det H > 0, in other
words,

χAA ≡ 1

ρAA(1 − ρAA)
− 2γ+uρAA > 0, (34)

χBB ≡ 1

ρBB(1 − ρBB)
− 2γ+(1 − u)ρBB > 0, (35)

and, removing trivial positive factors,

χAAχBBχAB − 2u(1 − u)γ 2
−ρ2

AB(χAA + χBB) > 0, (36)

with

χAB ≡ 1

ρAB(1 − ρAB)
− γ−ρ̄(u). (37)

Without loss of generality we may assume 0 � u � 1/2. With
this assumption, inequalities (34) and (35) hold for any set of
densities provided

γ+ <
27

8(1 − u)
. (38)

For any γ+ satisfying this constraint, the critical value of γ− is
obtained as the smallest value for which inequality (36) breaks
down for some set of densities. This curve is represented in
Fig. 8 for several values of u.

Within the region enclosed by these curves, the function
(32) correctly describes the system for given values of the
two interaction parameters and the three densities. Outside
this region, there are values of the densities for which the
network is no longer stable as a uniform system; instead, it
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FIG. 8. Critical curves γ− vs γ+ for different values of 0 � u �
1/2. The free energy of the nonhomogeneous model is convex only
for the points on the left of the curve. The curves reach their right-
most values of γ+ (marked with circles and vertical dashed lines)
for γ+ = 27/8(1 − u), γ− = 0. The oblique dashed line is γ+ = γ−.
It meets all critical curves at one point (marked with a circle):
γ+ = γ− = 27/8, the critical point of the homogeneous system.

fractionates into coexisting subnetworks with different values
of those densities.

A detailed analysis of the phase coexistence in the ternary
mixture of links that describes this system goes beyond the
scope of this paper and will be dealt with in a subsequent
study. The real purpose of this section is to illustrate how
the functional we have derived can handle variations of the
original system, such as this one.

In order to validate the expression of the free energy (32)
we have performed Monte Carlo simulations (same method as
before) to calculate the fractions of the different kinds of tri-
angles as functions of γ+ for a system with N = 50 nodes, for
two values of u = NA/N (1/2 and 2/5), and for fixed values of
the other parameters (γ−/N = 0.04 and φAA = φBB = φAB =
−0.25). Analytic expressions for those fractions of triangles
are obtained from (14). As in the case of uniform nodes, the
agreement between theory and simulations (Fig. 9) suggests
that the expression of the free energy (32) might be exact in
the thermodynamic limit.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have solved approximately Strauss’s
model of transitive networks using a technique specific of
the statistical physics of lattice gases—density-functional the-
ory. The solution we have found is more accurate than a
standard mean-field approximation for small systems but co-
incides with it (and probably with the exact solution) in the
thermodynamic limit of infinitely many nodes. The model
exhibits a first-order phase transition for triangle interactions
above a critical threshold γc. For γ > γc, upon increasing the
probability that links are created the system crosses a region
where two solutions are possible—one with a low and one
with a high fraction of links (density). Because of this fact,

FIG. 9. Fractions of the different kinds of triangles vs γ+/N for
a system with N = 50 nodes of two different types A and B. The
fraction of A nodes is (a) u = 1/2 or (b) u = 2/5. Solid lines are
the curves obtained from (14), and bullet points are the Monte Carlo
results. Error bars represent the standard deviation of the number
of triangles along the simulations. In both panels γ−/N = 0.04 and
φAA = φBB = φAB = −0.25.

this model has been deemed unsuitable to produce networks
with intermediate fractions of links.

The density-functional formalism that we have employed
reveals that the canonical ensemble (constant density and
“temperature,” i.e., triangle interaction) is the natural de-
scription for this system if we want to access this forbidden
intermediate states. In this ensemble, the system behaves as
a fluid undergoing a condensation transition. The two (low-
and high-density) phases are akin to a gas and a liquid, and at
those intermediate densities both phases coexist in chemical
and mechanical equilibrium. A histogram of links belonging
to a given number of triangles shows that links in the graph
form two separated groups, each associated with one of these
two phases. Hence, graphs within this coexisting region have
a different structure to those out of it.
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Under this interpretation, the problem of generating
graphs with this model in the “inaccessible” coexisting re-
gion amounts to performing Monte Carlo simulations using
Kawasaki dynamics, which keeps the number of links con-
stant. The idea of accessing these intermediate states by
controlling for an extensive parameter has already been sug-
gested [28,34]—although the preferred control variable has
always been the number of triangles.

Whether the graphs produced by Strauss’s model are a suit-
able model for some real networks is still an open question. It
is true that the peculiar structure of these graphs has never
been observed so far, but it is also true that the existence of
the phase transition in Strauss’s model (and its extensions) is
an unavoidable consequence of the specific interaction among
its links. We still do not know whether a real system with
that particular kind of interactions can be observed or even
devised.

The density-functional formalism that we have developed
here can further be applied to systems in which the interaction
constants are link or triangle dependent. This way we can
study systems in which nodes have different types and interac-
tions depending on the type of the nodes involved. Homophily
is one of the situations that can be so described. The analysis
of the simplest example of homophilic interactions shows that
homophily favors the stability of uniform networks (networks
with uniform density) by increasing the value of the critical
point. The predictions for this case have been validated with
Monte Carlo simulations, which—as in the case of uniform
networks—seem to suggest that the free energy here obtained
might be exact in the thermodynamic limit. Further studies are
needed to achieve a full characterization of the complex phase
behavior of a system like this.

Finally, we would like to emphasize that the main con-
tribution of this paper is to provide a formalism that can be
extended to tackle other ERG models—its advantage with
respect to more standard mean-field approaches being that it
provides a systematic procedure to deal with them. Hopefully,
it may become a useful tool to analyze this class of network
models.
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APPENDIX A: FREE ENERGY OF A SINGLE TRIANGLE

For a triangle,

�3 = (1 + zi j )(1 + z jk )(1 + zki ) + ζi jkzi jz jkzki, (A1)

hence,

ρi j = zi j (1 + z jk )(1 + zki ) + ζi jkzi jz jkzki

�3
,

ρ jk = z jk (1 + zi j )(1 + zki ) + ζi jkzi jz jkzki

�3
, (A2)

ρki = zki(1 + zi j )(1 + z jk ) + ζi jkzi jz jkzki

�3
. (A3)

It will prove convenient to introduce

ρi jk ≡ ζi jkzi jz jkzki

�3
. (A4)

Now, dividing (A1) by �3 we get

(1 + zi j )(1 + z jk )(1 + zki )

�3
= 1 − ρi jk . (A5)

On the other hand, (A3) can be rewritten as

ρi j − ρi jk = zi j (1 + z jk )(1 + zki )

�3
,

ρ jk − ρi jk = z jk (1 + zi j )(1 + zki )

�3
, (A6)

ρki − ρi jk = zki(1 + zi j )(1 + z jk )

�3
. (A7)

Multiplying them out and using (A4) and (A5) leads to
Eq. (13). Also, using (A5) in (A7) we obtain

ρi j − ρi jk = zi j

1 + zi j
(1 − ρi jk ),

ρ jk − ρi jk = z jk

1 + z jk
(1 − ρi jk ), (A8)

ρki − ρi jk = zki

1 + zki
(1 − ρi jk ),

whose solutions are

zi j = ρi j − ρi jk

1 − ρi j
, z jk = ρ jk − ρi jk

1 − ρ jk
, zki = ρki − ρi jk

1 − ρki
.

Substituting these expressions in (A4) and using (13) we
obtain

�3 = (1 − ρi jk )2

(1 − ρi j )(1 − ρ jk )(1 − ρki )
. (A9)

Thus, �3 = ρi j ln zi j + ρ jk ln z jk + ρki ln zki − ln �3

becomes (12).

APPENDIX B: PROBABILITY OF FORMING A TRIANGLE

The probability that nodes i, j, k form a triangle can be
obtained from the grand potential as

Ti jk ≡ 〈τi jτ jkτki〉 = −N
∂	

∂γi jk
. (B1)

But inverting the Legendre transform (7),

	 = F −
∑
{i j}

φi jρi j, (B2)

where ρi j depends φ and γ through (8). Thus,

Ti jk =
∑
{lm}

φlmN
∂ρlm

∂γi jk
− N

∂F

∂γi jk
. (B3)

Now,

∂F

∂γi jk
=

∑
{lm}

∂F

∂ρlm

∂ρlm

∂γi jk
+

(
∂F

∂γi jk

)
ρ

,
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where the last partial derivative is taken at constant ρ. Thus,
substituting into (B3) and using (8) we obtain

Ti jk = −N

(
∂F

∂γi jk

)
ρ

= −(1 + ζi jk )

(
∂F

∂ζi jk

)
ρ

. (B4)

Notice that the free energy depends on ζi jk only through ρi jk

via Eq. (13), therefore,

Ti jk = −(1 + ζi jk )

(
∂F

∂ρi jk

)
ρ

(
∂ρi jk

∂ζi jk

)
ρ

= (1 + ζi jk )ρi jk

[
1 − 3ρi jk

ρi jk (1 − ρi jk )
+ 1

ρi j − ρi jk

+ 1

ρ jk − ρi jk
+ 1

ρki − ρi jk

](
∂ρi jk

∂ζi jk

)
ρ

.

On the other hand, taking logarithms of (13) and differentiat-
ing with respect to ζi jk at constant ρ we get

1

ζi jk
=

[
1 − 3ρi jk

ρi jk (1 − ρi jk )
+ 1

ρi j − ρi jk

+ 1

ρ jk − ρi jk
+ 1

ρki − ρi jk

](
∂ρi jk

∂ζi jk

)
ρ

,

which finally leads to (14).

APPENDIX C: STRAUSS’S MODEL
FOR SMALL NETWORKS

Let τ denote a vector of components τν , where ν is a subset
of two elements of {1, 2, . . . , N}, and W ≡ {0, 1}N . The grand

partition function is defined as

� =
∑
σ∈W

exp

⎛
⎝φ

N∑
i< j

τi j + γ

N

N∑
i< j<k

τi jτ jkτik

⎞
⎠

=
(N

2 )∑
L=0

(N
3 )∑

T =0

Q(L, T )eφL+γ T/N , (C1)

where Q(L, T ) is the number of configurations τ with L links
and T triangles.

Let us set N = 4 and compute the values of Q(L, T ).
Clearly, Q(L, 0) = (6

L

)
for L = 0–2, but Q(L, T ) = 0 other-

wise. Furthermore, Q(5, 2) = 6, Q(6, 4) = 1, and Q(5, T ) =
Q(6, T ) = 0 otherwise. As for L = 3, 4, there are configu-
rations with either T = 0 or T = 1. Thus, Q(3, 1) = 4 and
Q(3, 0) = (6

3

) − 4 = 16. On the other hand, Q(4, 0) = 3 and
Q(4, 1) = (6

4

) − 3 = 12. Accordingly, if we denote x ≡ eφ ,
y ≡ eγ /4,

� = 1 + 6x + 15x2 + 16x3 + 3x4 + 4x3(1 + 3x)y

+ 6x5y2 + x6y4. (C2)

The density can be obtained as

ρ = 1

6

∂

∂φ
ln � = x

6

∂

∂x
ln �, (C3)

and from that,

f = F

6
= ρ ln x − 1

6
ln �. (C4)

Thus, fixing the interaction γ (i.e., fixing y) we can obtain
parametrically as 0 < x < ∞, the curve f (ρ, γ ).
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