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Elusiveness of Fluid-Fluid Demixing in Additive Hard-Core Mixtures

Luis Lafuente* and José A. Cuesta†
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The conjecture that when an additive hard-core mixture phase separates when one of the phases is
spatially ordered, well supported by considerable evidence, is in contradiction with some simulations of a
binary mixture of hard cubes on cubic lattices. By extending Rosenfeld’s fundamental measure theory to
lattice models we show that the phase behavior of this mixture is far more complex than simulations show,
exhibiting regions of stability of several smectic, columnar, and solid phases, but no fluid-fluid demixing.
A comparison with the simulations show that they are, in fact, compatible with a fluid-columnar demixing
transition, thus bringing this model into the same demixing scheme as the rest of additive hard-core
mixtures.
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disprove the above-mentioned conjecture and then to pro-
vide a model in which the mechanism for fluid-fluid dem-

such a system [31], so the process breaks down at step (iii).
We have nevertheless been able to construct the functional
The absence of a spinodal instability in the Percus-
Yevick solution for additive mixtures of hard spheres ruled
out for nearly 30 years the existence of demixing in this
system [1]. That entropy-driven demixing is possible is
evidenced by its appearance in nonadditive mixtures of
particles [2–5]. But until 1991 [6], when the first signs of a
spinodal instability were found by means of an integral
equation theory, it was thought that additivity is insuffi-
cient to induce demixing. This first result was followed by
an avalanche of theoretical [7–11], simulation [12–14], and
experimental [15–18] results supporting the existence of
demixing in binary mixtures of hard spheres when the large
and small diameters are at least in the ratio 5 : 1. At the
same time, it became clear that this demixing does not
separate the system into two fluid phases, but at least one is
always a crystal [10,11,13,14,16–18]. So the current sce-
nario for binary hard-sphere demixing is no more a fluid-
fluid one, but a fluid-solid one, or even (if the mixture is
sufficiently asymmetric) a solid-solid one [13,14]. A bi-
nary mixture of parallel hard cubes, another additive hard-
core mixture, also exhibits the same qualitative behavior
[19–21].

Fluid-fluid demixing can, however, be found in non-
additive hard-sphere mixtures [22,23], as well as in mix-
tures of anisotropic hard particles [24], which are a
particular case of nonadditive mixtures [25]. It is therefore
very tempting to conjecture that nonadditivity is a require-
ment for a binary mixture of hard-core particles to exhibit
fluid-fluid demixing. But, in an attempt to decide whether
entropic fluid-fluid demixing can be observed in additive
binary mixtures, Dijkstra and Frenkel performed some
simulations on the (admittedly academic) model of hard
cubes in a cubic lattice. According to these simulations,
this kind of demixing occurs if the cube edges are at least in
the ratio 3 : 1 [26]. The importance of this result (which
justifies considering this rather academic model) is to
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ixing can be analyzed in order to determine whether it can
also be observed in other more realistic additive mixtures.

The results of these simulations are, however, in frank
contradiction with the predictions of Rosenfeld’s funda-
mental measure theory for mixtures of parallel hard cubes
in the continuum [20,21]. This notwithstanding, in this
Letter we will show that the latter theory provides the
correct picture. To this purpose we will extend fundamental
measure theory to lattice models and apply it to the simu-
lated mixture. We will show that the simulation results are,
in fact, incompatible with a fluid-fluid demixing and that
they are remarkably consistent with the phase behavior
deduced from the theory.

The standard construction of a fundamental measure
functional amounts to taking the following steps [27–29]:
(i) decomposing the Mayer function into a sum of con-
volutions of one-particle ‘‘measures’’; (ii) defining a set of
densities weighted with these measures and assuming that
the local free-energy density is a function of them;
(iii) determining the functional form of this function
through the scaled particle assumption; (iv) forcing the
exactness of the lowest order in the virial expansion of
the direct correlation function; and (v) imposing dimen-
sional reduction (i.e., the lower-dimensional functionals
have to be recovered from the upper-dimensional ones by
constraining the density to lie in a lower-dimensional
space). There is some arbitrariness in the choice of the
‘‘fundamental measures,’’ step (i), and it can be shown
that different choices reproduce different functionals pro-
posed in the literature [27,30]. Once a set of measures has
been selected, all the remaining steps go straightforward.
Notice that it is not always possible to construct a funda-
mental measure functional because step (i) is not always
achievable.

The difficulty to accomplish this program for a lattice
model is that there is not a known scaled particle theory for
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by exploiting an analogy with the system of parallel hard
cubes [28,29]. The analogy is implied by the exact func-
tional for a one-dimensional mixture of hard rods. For a
single component mixture this functional has been derived
several times, in different ways, in the literature [32–34].
However, extending it to mixtures seems more demanding,
and, to the best of our knowledge, no one has ever reported
this generalization. By following a similar procedure to
that used by Vanderlick et al. for the continuum [35], we
arrive at a free-energy functional whose excess (over the
ideal gas) part can be written as

�F ex�f��g� �
X

x2Z

Dk��0��n�k��x��; (1)

where � is the inverse temperature, ��0��
� � 
	 �1
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� is the excess free energy of a zero-dimen-
sional system [30], n�k��x� �

P
�
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� �x
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with k � 0; 1, are weighted densities with weights
!�k�

� �x� � 1 if 
b��� 	 1�=2c 
 k < x < b��=2c and 0
otherwise, �� being the diameter of the rod and ���x�
the occupancy probability (density) of species � at point x,
and, finally, Dkf�k� � f�1� 
 f�0� is a difference operator
acting on the weighted density index k. This is not the way
in which this functional is normally written (for the mono-
component system) in the literature, but we have chosen to
do it this way because this expression explicitly shows that
(as it occurs for the continuum hard-rod model [28,29]) the
one-dimensional excess free-energy functional can be ob-
tained from the zero-dimensional one by applying a differ-
ential operator with respect to the particle sizes. Only in
this case the differential operator is a difference operator
instead, a consequence of the underlying lattice. For the
system of parallel hard cubes, this zero-dimensional func-
tional generates the d-dimensional one by successive ap-
plications of similar differential operators with respect to
the size along every coordinate axis. In Ref. [28] it was
proven that the functional so generated coincides with that
obtained by accomplishing all the above described require-
ments, steps (i)–(v). Accordingly, for the equivalent lattice
model we propose to generate the functional in a similar
way, though this time using difference operators. Hence,
the excess part will be given by

�F ex�f��g� �
X

x2Zd

Dk��0��n�k��x��; (2)

where now k � �k1; . . . ; kd�, n�k��x� is the corresponding
weighted function with weight !�k�

� �x� �
Qd

i�1 !
�ki�
� �xi�,

and Dk �
Q

d
i�1 Dki denotes the same finite difference

operator appearing in (1) but with respect to the particle
sizes along every coordinate axis. This differentiation gives
rise to a linear combination (with �1 coefficients) of the
function ��0��
� evaluated at the different weighted den-
sities n�k��x�, according to the pattern
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A full account of the details of the theory can be found in
Ref. [36].

We have checked that, indeed, this functional accom-
plishes the following items of the standard construction of
a fundamental measure functional (see above): (i) a correct
decomposition of the Mayer function as a sum of discrete
convolutions of one-particle measures; (ii) an expression of
the functional in terms of a set of densities weighted with
these measures; (iv) the exact lowest order in the virial
expansion of the direct correlation function; and (v) a
consistent dimensional reduction to any lower dimension.
Furthermore, this functional recovers, in the limit of van-
ishing lattice spacing, its continuum counterpart [28,29].
Also, this functional becomes exact in at least two cases:
for the one-dimensional system [Eq. (1)] and for the ideal
gas with site exclusion. As concerns step (iii), its presumed
compatibility with the scaled particle theory may precisely
provide an alternative route to formulate it. Research along
this line is currently in progress.

As a first test of this ‘‘lattice fundamental measure func-
tional’’ (LFMF), we have applied it to get the phase
behavior of the lattice fluid of hard squares on a square
lattice with second-neighbor exclusion. Results for the
equation of state of this fluid are available from cluster
expansions [37]. These results show a second order phase
transition at packing fraction 
 � 0:807 from a fluid phase
to a columnar phase. No direct simulations have, to our
knowledge, ever been performed on this system, but the
transition density can be inferred by extrapolating down to
zero temperature the available simulations of the antifer-
romagnetic second-neighbor Ising model [38,39]. The
transition density so obtained is 
 � 0:84. This result is
rather close (within a 10% deviation) to the one the LFMF
predicts, 
 � 0:764. Also the ordered phase is the correct
one. For the sake of comparison we plot together in Fig. 1
both the equation of state derived from the LFMF and that
of Ref. [37]. We can realize that, despite its simple deri-
vation, the LFMF produces results as accurate as those
obtained from more involved theoretical approaches.

We have further applied the LFMF to the system simu-
lated in Ref. [26], namely, a binary mixture of hard cubes
of sizes 6 and 2 lattice spacings on a cubic lattice. First of
all, we have determined the spinodal line (the dotted line of
Fig. 2) and the wave vector of the reciprocal lattice for
which the structure factor diverges at this spinodal. It
determines both the direction and the wavelength, �, of
the periodic inhomogeneous instabilities. For x from 0 up
to the cusp in the spinodal it yields � � 2, and from the
cusp up to 1, � � 7. Accordingly, to obtain the free energy
of the inhomogeneous phases we have assumed periodicity
in one, two, and three dimensions, corresponding to smec-
tic (Sm), columnar (C), and solid (S) phases, respectively.
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FIG. 2. Phase diagram of the binary mixture of hard cubes
(size ratio 6 : 2), 
 � 
L 	 
S being the total packing fraction
of the large (L) and small (S) cubes, and x � 
L=
. The phases
are labeled F (fluid), S� (solid), Sm� (smectic), and C� (colum-
nar), where � � 2; 6; 7 stands for the lattice parameter of the
ordered phases. A bunch of coexistence lines are also drawn
within the coexistence regions. The dotted line corresponds to
the spinodal of the uniform fluid. For 0:81 & x it marks a stable
continuous F-S7 phase transition. The points are simulation
results taken from from Ref. [26]; see text for details.
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FIG. 1. Reduced pressure, �P, vs packing fraction, 
, for the
hard-square (2� 2) model obtained from the present theory
(solid line) and from cluster expansions [37] (dashed line).
The former shows a second order fluid-columnar phase transition
at 
 � 0:764, while the latter shows a second order fluid-solid
phase transition at 
 � 0:807. The ordered phase is in both cases
a columnar phase.
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On the left of the cusp we have considered only period 2,
but on the right we have considered periods 6 and 7. Then
we have performed a free minimization with respect to the
occupation probabilities at all points within the unit cell
(taking into account the obvious symmetries in order to
reduce the number of minimizing variables). Finally we
have solved all possible phase equilibria by imposing
equality of pressure and chemical potentials between the
coexisting phases, resorting to the Gibbs free energy,
whenever there was a doubt, to decide which was the
most stable coexistence. The result of this laborious com-
putation is summarized in Fig. 2.

As concerns our discussion, the most important conclu-
sion one extracts from this phase diagram is that fluid-fluid
demixing never occurs in this system. In fact, if we restrict
the functional to homogeneous phases, it predicts stability
of the mixture up to size ratios as large as 26 : 2 (a result,
by the way, not very far from the value 10 : 1 obtained for
the system of parallel hard cubes [19,21]). This contradicts
the results of Ref. [26], according to which this system
undergoes a fluid-fluid phase separation.

A second striking feature of the phase diagram is its
extraordinary complexity. There appear regions of stability
of smectic, columnar, and solid phases, rich in both small
and large cubes, and the latter with lattice parameters 6 and
7. Triple points abound. Of course, our procedure does not
exclude the possibility that phases with more complex
structures are more stable than those considered, but it is
almost impossible to guess them just from the form of the
functional, without further knowledge.

Since this theory is just approximate and the complexity
of the phase diagram arises from a subtle balance between
the free energies of the different phases, many of the small
145701-3
stability regions may be incorrectly placed or may not exist
at all. However, we do not expect the main regions to be
very different from those appearing in Fig. 2, especially at
high densities, where, by construction, the functional is
more accurate [28]. And very likely, the true phase diagram
will also be as complex (so much that many regions will
probably be inaccessible to simulations as well).

In order to understand the discrepancy between the
conclusions of Ref. [26] and our results, we have repre-
sented with circles in Fig. 2 the state points corresponding
to the two coexisting fluids, according to the simulations,
together with the inferred critical point. Filled circles
correspond to data reported as being either true coexisting
states or the critical point; open circles are other data, not
reported as coexisting states, but lying very close to the
fitted binodal. It is very remarkable that these points follow
quite well a fluid-columnar (C6) coexistence in our phase
diagram. So, according to the present theory, the dense
fluid in the simulation must be a C6 columnar phase
instead. This conclusion is supported by the fact that the
presumed big-cube-rich fluid phase is actually too dense to
be a fluid (packing fractions are around 0.8–0.9). The
particular shape of these particles enhances the formation
of spatial ordering: parallel hard cubes, for instance, crys-
tallize at a packing fraction around 0.5 [40].

To summarize, we have reexamined the only known
example so far of fluid-fluid demixing in additive hard-
core mixtures: a simulation of a binary mixture of hard
145701-3
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cubes on a cubic lattice. We have shown convincing
evidence that this transition corresponds most likely
to a fluid-columnar phase separation rather than to a
fluid-fluid phase separation. This scenario is consistent
with the fluid-inhomogeneous phase scheme arising in all
additive hard-core mixtures studied so far. Accordingly,
only nonadditive models (or models with other degrees of
freedom inducing nonadditivity, like orientational ones)
are known to give rise to a true fluid-fluid phase separation
in a binary mixture of hard particles. The explanation of
this may rest in the fact that the range of the depletion
potential is larger for nonadditive mixtures than for addi-
tive ones. A detailed discussion of this effect appears in
Ref. [41].

As a by-product, on the way to achieve the above goal
we have constructed a ‘‘lattice fundamental measure
theory’’ for mixtures of hard cubes. Extensions of this
theory to other particle shapes and other lattice structures
are currently under exploration. However, the most prom-
ising feature of this theory is that it seems to patch the way
to build a scaled particle theory for lattice systems, so far
unknown.
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