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We put forward a general procedure to obtain an approximate free-energy density functional for any
hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of
the system. The procedure is conceptually very simple and recovers effortlessly previous results for
some particular systems. Also, the obtained density functionals belong to the class of fundamental
measure functionals and, therefore, are always consistent through dimensional reduction. We discuss
possible extensions of this method to account for attractive lattice models.
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Despite the crucial role that lattice models have had in
the development of statistical physics, when one looks for
such models in the literature of density functional theory,
the results are scarce. In the past few years, though, some
of the most classical approximations have been extended
to lattice systems [1–3] and used to study different phe-
nomena (such as freezing and fluid-solid interfaces [1,2]
or confined fluids [3]). Also very recently, the fundamen-
tal measure (FM) theory has been added to the list
through its formulation for systems of parallel hard hy-
percubes in hypercubic lattices [4]. The construction
mimics that of its continuum counterpart [5] and, similar
to the FM functional for hard spheres, it is obtained from
a zero-dimensional (0D) functional (a functional for cav-
ities holding one particle at most). This theory possesses a
remarkable property: dimensional crossover, which al-
lows obtaining the functional for D� 1 dimensions
from the one for D dimensions by confining the system
through an external field to lie in a �D� 1�-dimensional
slit. Dimensional crossover has been applied to the al-
ready mentioned system of parallel hard hypercubes in
order to obtain FM functionals for nearest-neighbor ex-
clusion lattice gases in two-dimensional (square and tri-
angular) and three-dimensional (simple, body-centered,
and face-centered cubic) lattices [6].

This increasing interest in density functionals for lat-
tice models has several motivations. On the one hand,
some systems are particularly difficult to study using
continuum models. For them, lattice models provide con-
venient simplifications. This is the case of glasses [7] or
fluids in porous media [8], to name only two. On the other
hand, lattice models cover a wider range of problems,
many of which do not even belong to the theory of fluids
(such as roughening [9] or DNA denaturation [10], to
name only two) and so have never been studied with
density functional theory. Finally, from a purely theoreti-
cal point of view, these extensions are also interesting
because they reveal features of the structure of the ap-
proximate functionals which are hidden or at least not
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apparent in their continuum counterparts (this is the case
of FM functionals).

In this Letter, we propose a simple systematic proce-
dure to construct a FM functional for any hard-core
lattice model. The construction is based on the dimen-
sional crossover of this theory, much like the latest ver-
sions for continuum models.

Let us begin by realizing that all FM functionals for
lattice models studied in Refs. [4,6] share a common
pattern, namely, the excess free energy can be written as

�F ex��� �
X
s2L

X
k2I

ak�0�n
�k��s��; (1)

where L denotes the lattice, I is a set of indices suitably
chosen to denote the different weighted densities
n�k��s� �

P
t2Ck�s���t�, ak are integer coefficients which

depend on the specific model, �0��� � �	 �1� ��

ln�1� �� is the excess free energy of a 0D cavity with
average occupancy 0 � � � 1, ��s� is the density profile
of the system (specifically, the occupancy probability of
node s), and Ck�s� is, for each k 2 I , a finite labeled
subgraph of the lattice placed at node s (vertices are
labeled with node vectors). The shape of the graphs
Ck�s� also depends on the model. From the definition,
n�k��s� appears as the mean occupancy of the lattice region
defined by Ck�s�.

For the sake of clarity, we will illustrate this formal
setup and the arguments to come with a simple example:
the two-dimensional square lattice gas with first and
second neighbor exclusion. With the help of a diagram-
matic notation already introduced in [11], the excess free-
energy functional for this model takes the form

�F ex��� �
X
s2Z2

��0�A� ��0�B� ��0�C� 	�0�D��;

(2)

where the diagrams represent the (four in this case)
weighted densities A � n�1;1��s�, B � n�1;0��s�, C �
n�0;1��s�, and D � n�0;0��s�, where [s � �s1; s2�]
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FIG. 1. Examples of 0D profiles corresponding to maximal
cavities for the first and second neighbor exclusion lattice gas in
the square lattice (a) and the nearest-neighbor exclusion lattice
gas in the triangular lattice (b). The density can have only
nonzero values at the black nodes (which define maximal
cavities).
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n�k1;k2��s� �
Xk1
i�0

Xk2
j�0

��s1 	 i; s2 	 j�: (3)

This notation uses explicitly the shape of the graphs
Ck�s�. Thanks to this more visual representation, it is
easily verified that all these graphs represent 0D cavities
of the lattice, because we can place at most one particle in
any of them. This is a general feature of all FM func-
tionals described by the pattern (1) so, from now on, the
Ck�s� will be referred to as 0D cavities.

As we will make clear immediately, the form (1) with
the Ck�s� given by 0D cavities is a direct consequence of
the exact dimensional crossover to any 0D cavity that FM
functionals possess. The latter means that, if we take a
density profile which vanishes outside a given 0D cavity
(henceforth a 0D profile) and evaluate the functional, we
will obtain the exact value of the free energy. The only
known approximate density functionals having this prop-
erty are FM ones [4–6,12]. (As a matter of fact, the
property can be regarded as the very constructive princi-
ple of FM theory [12].)

Before we start, let us define a maximal cavity to be
any 0D cavity which, enlarged by any lattice site, stops
being a 0D cavity because it can accommodate more than
one particle. Clearly, any 0D cavity must be contained in
a maximal cavity, so dimensional crossover to 0D needs
only to be proved for maximal cavities. (Notice that there
can be more than one maximal cavity in a given system.)

Let us now try to construct the simplest possible func-
tional of the class (1) which fulfills the exact dimensional
crossover requirement. Its construction will proceed iter-
atively. In the first place, if the functional must return the
exact free energy when evaluated at any 0D profile, there
must appear a term in (1) for each maximal cavity of the
model, and the corresponding coefficient ak must be 1.
For the running example we are considering, Eq. (2), this
means that we should start off with the ansatz

�F ex
1 ��� �

X
s2Z2

�0�A�; (4)

because A is the only maximal cavity of this model.
If (4) were the final functional, evaluated at any maxi-

mal 0D profile (one corresponding to a maximal cavity),
it should return the exact free energy. In the example, all
maximal 0D profiles have the form illustrated in Fig. 1(a).
Let us now substitute this profile in (4) and see what
comes out. For an easy way to do the evaluation, just
imagine the graphs Ck�s� as windows which only allow
one to see the content of the lattice nodes they overlap.
Then the sum over the lattice nodes implies that we must
place these windows at every lattice site, evaluate the
content, and add up the results of these evaluations.
When the density profile is a 0D one [as in Fig. 1(a)], all
contributions will vanish except those for which the
window overlaps at least one node of the 0D profile. In
our example, this means that (4) will return
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�F ex
1 ��0D� � �0�E� 	 ��0�F� 	�0�G��

	 ��0�H� 	�0�I�� 	
X4
i�1

�0�J�; (5)

where �0D�s� denotes a 0D profile of the form given in
Fig. 1(a). (Filled numbered circles in the diagrams repre-
sent actual evaluations of the density profile for the
corresponding numbered nodes of the lattice.)

We can see that, apart from the exact value [the first
term on the right-hand side (rhs)], there appear a number
of spurious contributions. Therefore (4) cannot be the
final functional. These spurious terms are like evaluations
of �0D with nonmaximal cavities, so we will try to
eliminate them by adding new terms to (4) corresponding
to nonmaximal cavities, with the appropriate coefficients.
Since a term such as

P
s�0�B� evaluated at �0D�s� will

return �0�F� 	�0�G� 	
P4

i�1 �0�J�, it seems rea-
sonable to choose it to remove the first bracket on the rhs
of (5) (and the vertical one to remove the second bracket).
Thus, we use as our second ansatz

�F ex
2 ��� �

X
s2Z2

��0�A� ��0�B� ��0�C��: (6)

Note that, in doing this, we have chosen new graphs Ck�s�
and their corresponding coefficients ak in (1). When
we insert �0D�s� in this new functional we obtain

�F ex
2 ��0D� � �0�E� �

P4
i�1 �0�J�. We have indeed

removed many spurious contributions, but there still re-
main some. It should now be clear that in order to remove
the latter we must add to the previous ansatz the termP

s2Z2�0�D�. This way we obtain the functional (2),
which was already derived in [4] by a different procedure.

It is straightforward to check that �F ex��0D� �

�0�E�, thus proving its exact dimensional crossover.
In order to be illustrative, let us apply this procedure

again to obtain the FM functional for a different model:
the nearest-neighbor exclusion lattice gas in the triangu-
lar lattice (hard hexagons). This example is different from
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the previous one in that it has two maximal cavities: K
and L. Then, the first-step functional must be

�F ex
1 ��� �

X
s2Z2

��0�K� 	�0�L��: (7)

Corresponding to the existence of two different maximal
cavities there are two different density profiles, as illus-
trated in Fig. 1(b). The exact dimensional crossover to 0D
must be satisfied for both of them. Let us start by the one
with a triangle-up shape and let us denote it �0D�s�.
Substituting it in each of the two terms of (7), we obtain
(using again the window metaphor)

X
s2Z2

�0�K� � �0�M� 	 2
X3
i�1

�0�J�;

X
s2Z2

�0�L� � �0�N� 	�0�O� 	�0�F� 	
X3
i�1

�0�J�

(8)

As in the previous example, to remove the ‘‘largest’’
spurious contributions (those of the dimers) we propose

�F ex
2 ��� � �F ex

1 ��� �
X
s2Z2

��0�P� 	�0�Q�

	�0�B��: (9)

Substituting �0D�s� again we get �F ex
2 ��0D� �

�0�M� �
P3

i�1 �0�J�, so we have to add a last correc-
tion for the pointlike cavities, which finally leads to

�F ex��� �
X
s2Z2

��0�K� 	�0�L� ��0�P�

��0�Q� ��0�B� 	�0�D��: (10)

This functional is exact for �0D�s�. We would now have to
check if the same occurs for the 0D cavity corresponding
to the triangle-down in Fig. 1(b), but symmetry consid-
erations immediately show that this is the case. In gen-
eral, checking dimensional crossover for a new 0D cavity
may lead to the appearance of additional spurious contri-
butions. These have to be eliminated by adding the cor-
responding terms to the functional.

Finally, notice that (10) coincides with the functional
obtained in [6] through a completely different (and far
more involved) route.

Let us summarize the procedure to follow for an arbi-
trary lattice gas with hard-core interaction. The steps are
as follows.

(i) Determine the complete set of maximal 0D cavities
of the model. If we denote them by C�

k (k � 1; . . . ; m),
then the first-step approximation to the functional will be
[n�k��s� �

P
t2C�

k
��t�]

�F ex
1 ��� �

X
s2L

Xm
k�1

�0�n
�k��s��: (11)

(ii) Select a maximal cavity C�
k and let �0D�s� denote a

generic density profile for it.
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(iii) Insert �0D in the current functional, �F ex
i ���, and

see which spurious contributions appear. Identify the
terms with the largest graphs (those not contained in
any other of the graphs appearing, except C�

k) and pick
one of them.

(iv) Construct the next step functional �F ex
i	1��� by

adding to �F ex
i ��� a new term, with its corresponding

coefficient ak, so that it eliminates the selected spurious
contribution.

(v) Repeat steps (iii)–(v) until no spurious contribution
remains. (Of course, one can exploit the symmetries of
the model to resume several steps of this process in just
one, as we have done in the examples.)

(vi) Repeat steps (ii)–(vi) until exhausting all maximal
cavities.

The functional resulting from this process will be of
the form (1) and will have, by construction, an exact
dimensional crossover to 0D. It can be proven that start-
ing from (11) there is a unique functional of the form (1)
with an exact dimensional crossover to 0D, so any other
procedure leading to it is equally valid. (In other words,
the fact that we have chosen to remove the spurious terms
in decreasing order of ‘‘size’’ is immaterial, but in doing
so we abbreviate the process.) A sketch of the existence
and uniqueness proof goes as follows (a more detailed
account will be reported in [13]).

Let us form the set P with the lattice L and all
maximal cavities C�

k�s� (s 2 L, k � 1; . . . ; m), and let
us complete it with all nonempty intersections of any
number of maximal cavities. For any x; y 2 P , we will
say that x � y iff all nodes of x are in y. This transforms
P into a partially ordered set or poset. Any interval
�x; y� � fz 2 P :x � z � yg is a finite subset of P , so P
is a locally finite poset. Locally finite posets have the
property [14] that, for any mapping f:P � V, with V a
vector space, there exists g:P � V such that

f�x� �
X
y�x

g�y�; g�x� �
X
y�x

f�y���y; x�: (12)

The way to prove this is by inserting the second expres-
sion into the first, which leads to

��x; x� � 1; ��y; x� � �
X

y<z�x

��z; x�; (13)

a recursion which defines the (integer) coefficients
��y; x�. This scheme is referred to in the literature as a
Möbius inversion, and ��y; x� is a Möbius function [14].

For the poset P defined above, let V be the space of
density functionals and take f�x� � F ex

x ��� the (exact)
excess free-energy functional of a given model on the
graph x. Specializing (12) to x � L,

F ex
L ��� � �L��� 	

X
x<L

����x;L��F ex
x ���: (14)

where �L��� � g�L� is an unknown functional. The sum
on the rhs of (14) contains only evaluations of F ex

x ��� for
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0D cavities and so is an expression similar to (1). Now let
�0D
x �s� be a generic 0D density profile for cavity x. Then,

F ex
y ��

0D
x � �

�
0 if x \ y � ;
F ex

y\x��
0D
x � otherwise: (15)

As x \L � x, evaluating (14) for �0D
x �s� yields

�L��
0D
x � �

X
z�x

��z; x�F ex
z ��

0D
x �;

��z; x� �
X

y\x�z

��y;L�;
(16)

and it is a consequence of Weisner’s theorem [14] that
��z; x� � 0 for any x <L; therefore �L��

0D
x � � 0 or, in

other words, the sum on the rhs of (14) is exact for any 0D
cavity.

This completes the proof that the requirement of an
exact dimensional reduction to 0D cavities leads to a
functional of the form (1). As to the uniqueness, it suffices
to realize that ��z; x� � 0 [a necessary condition for a
functional of the form (1) to have an exact dimensional
reduction to 0D cavities] is a particular case of the re-
currence (13), whose only solution is ��x;L�.

With this method, one can easily recover all function-
als previously obtained in Refs. [4,6,11] and obtain those
of virtually any other hard-core lattice gas [15]. One
further striking feature of all functionals obtained in
this way is that they also have an exact dimensional
crossover to one dimension, simply because the exact
one-dimensional functional is of the form (1) [4,6].

Clearly, the procedure presented above has no restric-
tion in its application other than the determination of the
maximal cavities. It can be applied to particles of any
shape, in any lattice (including regular lattices, Bethe
lattices, Husimi trees, etc.), and in any dimension. It
can even be applied to mixtures, either additive or non-
additive, provided a 0D cavity is properly defined as a
superposition of cavities, one for each species, such that at
most one particle of only one species can be placed in it
(see [4] for more details).

The readers familiar with Kikuchi’s cluster variation
method may have recognized a similarity with the pro-
cedure we have presented here. The connection is more
prominent through the Möbius inversion formula [16] and
will be properly discussed elsewhere [13].

Finally, the theory can be generalized in several ways.
First of all, we have already mentioned that there is a
straightforward extension to mixtures which recovers the
functionals for mixtures already derived in [4,11,17]. A
second extension is the inclusion of ‘‘extended’’ 0D cav-
ities in which there can be up to n particles. We have
already checked that the inclusion of two-particle 0D
cavities for the Ising lattice gas (which has repulsive
and attractive interactions) yields the functional obtained
from the cluster variation method at the level of the Bethe
approximation [18], which is exact in one dimension.
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Finally, there is a third extension for lattice gases in the
presence of a porous matrix that we have already begun to
explore [19]. Work along these lines is in progress.
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