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Let us analyze the following evolution equations
Elz(t), f(t)] = 0 for the variables x(t) (position) and ()
(velocity) of a relativistic particle of mass M > 0
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where zg and ug are the initial conditions, v > 0 rep-
resents the damping coefficient and f(t) is a T-periodic
driving force [1]. Notice that defining the momentum
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we can transform Eq. (1) into the linear equation
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where 8 = v/M, whose solution is given by

P(t) = P(0)e Pt — /0 dzf(z)ePt=2), (4)

Equation (1) is invariant under time shift (S : t — t +
T/2) along with the change x — —x, provided (Sf)(t) =
ft+T/2) = —f(¢t). The bi-harmonic force

f(t) = €1 cos(qwt + ¢1) + €2 cos(pwt + ¢2), (5)

preserves this symmetry if, both, p and ¢ are odd integer
numbers, so in this case the average velocity

t

v= lim E / u(T) dr, (6)
t—+oo ¢ g

is zero. In contrast, if p + ¢ is odd and p and ¢ are

coprimes, a nonzero average current can appear. For the

sake of simplicity we will take p = 2 and ¢ = 1 in Eq. (5)

[2]. Then the solution to (4) for the chosen force (5) will

be

P(t) = Pyexp(—ft) — ﬁ cos(wt + ¢1 — x1)
— =2 cos(2wt + ¢z — x2), (7)

52 + 4(4)2

with Py = P(0) + (e1/v/F2 +w?)cos(¢1 — x1) +
(e2/+/B% + 4w?) cos(¢2 — X2), x1 = arctan (w/f), and

X2 = arctan (2w/(3). From (2), one obtains

— (—1)k(1/2
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where (1/2), = (1/2())(1/2 +1)---(1/2+ k—1). From
(6) and (8) it follows that the time-average velocity, v,
cannot be expressed as a function of the odd moments
of f(t), unless P(t) is proportional to f(t). Indeed, it is
only in the overdamped case [in which the inertial term
in (1) is neglected] that the evolution equation is given
by P(t) = —(1/8) f(t) and then v do admit an expansion
in odd moments of f(t).

Moreover, for small amplitudes €; and €5, the leading
term of the time-average velocity (8) reads

v = Bejez cos(2¢1 — ¢o + 0p), (9)

where B = 3/(8M?(3* + w?)y/f?+ 4w?) and 6, =
—2x1 + x2. This expression is in agreement with the pre-
diction of our theory. Furthermore, in the limit § — 0
we have —2x1 + x2 — 7/2, and in the combined limit
M — 0 and 8 — oo, with v = const., —2x1 + x2 — 0.
One can check that in the former case Eq. (1) is in-
variant under time reversal (R : t +— —t) provided
(Rf)(t) = f(—t) = f(t), and therefore 8y = 7/2 is the
prediction of our theory. In the latter case, however, it
is (Rf)(t) = f(—t) = —f(¢) that leaves Eq. (1) invariant
and then our theory predicts 6y = 0.
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