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Abstract

Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology
to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes
mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population
grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first
proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-
field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This
review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the
outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for
strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key
problems in Biology and in other disciplines.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of evolution can hardly be overstated, in so far as it permeates all sciences. Indeed, in the 150 years
that have passed since the publication of On the Origin of the Species [1], the original idea of Darwin that evolution
takes place through descent with modification acted upon by natural selection has become a key concept in many
sciences. Thus, nowadays one can speak of course of evolutionary biology, but there are also evolutionary disciplines
in economics, psychology, linguistics, or computer science, to name a few.

Darwin’s theory of evolution was based on the idea of natural selection. Natural selection is the process through
which favorable heritable traits become more common in successive generations of a population of reproducing or-
ganisms, displacing unfavorable traits in the struggle for resources. In order to cast this process in a mathematically
precise form, J.B.S. Haldane and Sewall Wright introduced, in the so-called modern evolutionary synthesis of the
1920’s, the concept of fitness. They applied theoretical population ideas to the description of evolution and, in that
context, they defined fitness as the expected number of offspring of an individual that reach adulthood. In this way they
were able to come up with a well-defined measure of the adaptation of individuals and species to their environment.

The simplest mathematical theory of evolution one can think of arises when one assumes that the fitness of a species
does not depend on the distribution of frequencies of the different species in the population, i.e., it only depends on
factors that are intrinsic to the species under consideration or on environmental influences. Sewall Wright formalized
this idea in terms of fitness landscapes ca. 1930, and in that context R. Fisher proved his celebrated theorem, that
states that the mean fitness of a population is a non-decreasing function of time, which increases proportionally to
variability. Since then, a lot of work has been done on this kind of models; we refer the reader to [2–5] for reviews.

The approach in terms of fitness landscapes is, however, too simple and, in general, it is clear that the fitness of
a species will depend on the composition of the population and will therefore change accordingly as the population
evolves. If one wants to describe evolution at this level, the tool of reference is evolutionary game theory. Brought
into biology by Maynard Smith [6] as an “exaptation”1 of the game theory developed originally for economics [8], it
has since become a unifying framework for other disciplines, such as sociology or anthropology [9]. The key feature
of this mathematical apparatus is that it allows to deal with evolution on a frequency-dependent fitness landscape or,
in other words, with strategic interactions between entities, these being individuals, groups, species, etc. Evolutionary
game theory is thus the generic approach to evolutionary dynamics [10] and contains as a special case constant, or
fitness landscape, selection.

1 Borrowing the term introduced by Gould and Vrba in evolutionary theory, see [7].
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In its thirty year history, a great deal of research in evolutionary game theory has focused on the properties and
applications of the replicator equation [11]. The replicator equation was introduced in 1978 by Taylor and Jonker [12]
and describes the evolution of the frequencies of population types taking into account their mutual influence on their
fitness. This important property allows the replicator equation to capture the essence of selection and, among other
key results, it provides a connection between the biological concept of evolutionarily stable strategies [6] with the
economical concept of Nash equilibrium [13].

As we will see below, the replicator equation is derived in a specific framework that involves a number of assump-
tions, beginning with that of an infinite, well-mixed population with no mutations. By well-mixed population it is
understood that every individual either interacts with every other one or at least has the same probability to interact
with any other individual in the population. This hypothesis implies that any individual effectively interacts with a
player which uses the average strategy within the population (an approach that has been traditionally used in physics
under the name of mean-field approximation). Deviations from the well-mixed population scenario affect strongly and
non-trivially the outcome of the evolution, in a way which is difficult to apprehend in principle. Such deviations can
arise when one considers, for instance, finite size populations, alternative learning/reproduction dynamics, or some
kind of structure (spatial or temporal) in the interactions between individuals.

In this review we will focus on this last point, and discuss the consequences of relaxing the hypothesis that every
player interacts or can interact with every other one. We will address both spatial and temporal limitations in this
paper, and refer the reader to Refs. [10,11] for discussions of other perturbations. For the sake of definiteness, we will
consider those effects, that go beyond replicator dynamics, in the specific context of the emergence of cooperation, a
problem of paramount importance with implications at all levels, from molecular biology to societies and ecosystems
[14]; many other applications of evolutionary dynamics have also been proposed but it would be too lengthy to discuss
all of them here (the interested reader should see, e.g., [10]). Cooperation, understood as a fitness-decreasing behavior
that increases others’ fitness, is an evolutionary puzzle, and many researchers have considered alternative approaches
to the replicator equation as possible explanations of its ubiquity in human (and many animal) societies. As it turns
out, human behavior is unique in nature. Indeed, altruism or cooperative behavior exists in other species, but it can be
understood in terms of genetic relatedness (kin selection, introduced by Hamilton [15,16]) or of repeated interactions
(as proposed by Trivers [17]). Nevertheless, human cooperation extends to genetically unrelated individuals and to
large groups, characteristics that cannot be understood within those schemes. Subsequently, a number of theories
based on group and/or cultural evolution have been put forward in order to explain altruism (see [18] for a review).
Evolutionary game theory is also being intensively used for this research, its main virtue being that it allows to pose
the dilemmas involved in cooperation in a simple, mathematically tractable manner. To date, however, there is not a
generally accepted solution to this puzzle [19].

Considering temporal and spatial effects means, in the language of physics, going beyond mean-field to include
fluctuations and correlations. Therefore, a first step is to understand what are the basic mean field results. To this end,
in Section 2 we briefly summarize the main features of replicator equations and introduce the concepts we will refer to
afterwards. Subsequently, Section 3 discusses how fluctuations can be taken into account in evolutionary game theory,
and specifically we will consider that, generically, interactions and dynamics (evolution) need not occur at the same
pace. We will show that the existence of different time scales leads to quite unexpected results, such as the survival
and predominance of individuals that would be the less fit in the replicator description. For games in finite populations
with two types of individuals or strategies, the problem can be understood in terms of Markov processes and the games
can be classified according to the influence of the time scales on their equilibrium structure. Other situations can be
treated by means of numerical simulations with similarly non-trivial results.

Section 4 deals with spatial effects. The inclusion of population structure in evolutionary game theory has been the
subject of intense research in the last 15 years, and a complete review would be beyond our purpose (see e.g. [20]).
The existence of a network describing the possible interactions in the population has been identified as one of the
factors that may promote cooperation among selfish individuals [19]. We will discuss the results available to date and
show how they can be reconciled by realizing the role played by different networks, different update rules for the
evolution of strategies and the equilibrium structure of the games. As a result, we will be able to provide a clear-cut
picture of the extent as to which population structure promote cooperation in two strategy games.

Finally, in Section 5 we discuss the implications of the reviewed results on a more general context. Our major
conclusion will be the lack of generality of models in evolutionary game theory, where details of the dynamics and
the interaction modify qualitatively the results. A behavior like that is not intuitive to physicists, used to disregard
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those details as unimportant. Therefore, until we are able to discern what is and what is not relevant, when dealing
with problems in other sciences, modeling properly and accurately specific problems is of utmost importance. We will
also indicate a few directions of research that arise from the presently available knowledge and that we believe will be
most appealing in the near future.

2. Basic concepts and results of evolutionary game theory

In this section, we summarize the main facts about evolutionary game theory that we are going to need in the
remainder of the paper. The focus is on the stability of strategies and on the replicator equation, as an equivalent to
the dynamical description of a mean field approach which we will be comparing with. This summary is by no means
intended to be comprehensive and we encourage the reader to consult the review [21] or, for full details, the books [6,
9,11].

2.1. Equilibria and stability

The simplest type of game has only two players and, as this will be the one we will be dealing with, we will not
dwell into further complications. Player i is endowed with a finite number ni of strategies. A game is defined by listing
the strategies available to the players and the payoffs they yield: When a player, using strategy si , meets another, who
in turn uses strategy sj , the former receives a payoff Wij whereas the latter receives a payoff Zij . We will restrict
ourselves to symmetric games, in which the roles of both players are exchangeable (except in the example considered
in Section 3.1); mathematically, this means that the set of strategies are the same for both players and that W = ZT .
Matrix W is then called the payoff matrix of the normal form of the game. In the original economic formulation [8]
payoffs were understood as utilities, but Maynard Smith [6] reinterpreted them in terms of fitness, i.e. in terms of
reproductive success of the involved individuals.

The fundamental step to “solving” the game or, in other words, to find what strategies will be played, was put for-
ward by John Nash [13] by introducing the concept of equilibrium. In 2×2 games, a pair of strategies (si , sj ) is a Nash
equilibrium if no unilateral change of strategy allows any player to improve her payoff. When we restrict ourselves to
symmetric games, one can say simply, by an abuse of language [21], that a strategy si is a Nash equilibrium if it is
a best reply to itself: Wii � Wij , ∀sj (a strict Nash equilibrium if the inequality is strict). This in turn implies that if
both players are playing strategy si , none of them has any incentive to deviate unilaterally by choosing other strategy.
As an example, let us consider the famous Prisoner’s Dilemma game, which we will be discussing throughout the
review. Prisoner’s Dilemma was introduced by Rapoport and Chammah [22] as a model of the implications of nuclear
deterrence during the Cold War, and is given by the following payoff matrix (we use the traditional convention that
the matrix indicates payoffs to the row player)

(1)

( C D

C 3 0

D 5 1

)
.

The strategies are named C and D for cooperating and defecting, respectively. This game is referred to as Prisoner’s
Dilemma because it is usually posed in terms of two persons that are arrested accused of a crime. The police separates
them and makes the following offer to them: If one confesses and incriminates the other, she will receive a large
reduction in the sentence, but if both confess they will only get a minor reduction; and if nobody confesses then the
police is left only with circumstancial evidence, enough to imprison them for a short period. The amounts of the
sentence reductions are given by the payoffs in (1). It is clear from it that D is a strict Nash equilibrium: To begin with,
it is a dominant strategy, because no matter what the column player chooses to do, the row player is always better off
by defecting; and when both players defect, none will improve her situation by cooperating. In terms of the prisoners,
this translates into the fact that both will confess if they behave rationally. The dilemma arises when one realizes that
both players would be better off cooperating, i.e. not confessing, but rationality leads them unavoidable to confess.

The above discussion concerns Nash equilibria in pure strategies. However, players can also use the so-called mixed
strategies, defined by a vector with as many entries as available strategies, every entry indicating the probability of
using that strategy. The notation changes then accordingly: We use vectors x = (x1x2 . . . xn)

T , which are elements
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of the simplex Sn spanned by the vectors ei of the standard unit base (vectors ei are then identified with the n pure
strategies). The definition of a Nash equilibrium in mixed strategies is identical to the previous one: The strategy profile
x is a Nash equilibrium if it is a best reply to itself in terms of the expected payoffs, i.e., if xT Wx � xT Wy,∀y ∈ Sn.
Once mixed strategies have been introduced, one can prove, following Nash [13] that every normal form game has at
least one Nash equilibrium, albeit it need not necessarily be a Nash equilibrium in pure strategies. An example we will
also be discussing below is given by the Hawk–Dove game (also called Snowdrift or Chicken in the literature [23]),
introduced by Maynard Smith and Price to describe animal conflicts [24], whose payoff matrix is e.g. (strategies are
labeled H and D for Hawk and Dove, respectively)

(2)

( D H

D 3 1

H 5 0

)
.

In this case, neither H nor D are Nash equilibria, but there is indeed one Nash equilibrium in mixed strategies, that
can be shown [6] to be given by playing D with probability 1/3. This makes sense in terms of the meaning of the
game, which is an anti-coordination game, i.e. the best thing to do is the opposite of the other player. Indeed, in the
Snowdrift interpretation, two people are trapped by a snowdrift at the two ends of a road. For every one of them, the
best option is not to shovel snow off to free the road and let the other person do it; however, if the other person does
not shovel, then the best option is to shovel oneself. There is, hence, a temptation to defect that creates a dilemmatic
situation (in which mutual defection leads to the worst possible outcome).

In the same way as he reinterpreted monetary payoffs in terms of reproductive success, Maynard Smith reinter-
preted mixed strategies as population frequencies. This allowed to leave behind the economic concept of rational
individual and move forward to biological applications (as well as in other fields). As a consequence, the economic
evolutionary idea in terms of learning new strategies gives way to a genetic transmission of behavioral strategies to
offspring. Therefore, Maynard Smith’s interpretation of the above result is that a population consisting of one third
of individuals that always use the D strategy and two thirds of H-strategists is a stable genetic polymorphism. At the
core of this concept is his notion of evolutionarily stable strategy. Maynard Smith defined a strategy as evolutionarily
stable if the following two conditions are satisfied

(3)xT Wx � xT Wy, ∀y ∈ Sn,

(4)if x �= y and xT Wy = xT Wx, then xT Wy > yT Wy.

The rationale behind this definition is again of a population theoretical type: These are the conditions that must be
fulfilled for a population of x-strategists to be non-invadable by any y-mutant. Indeed, either x performs better against
itself than y or, if they perform equally, x performs better against y than y itself. These two conditions guarantee
non-invasibility of the population. On the other hand, comparing the definitions of evolutionarily stable strategy and
Nash equilibrium one can immediately see that a strict Nash equilibrium is an evolutionarily stable strategy and that
an evolutionarily stable strategy is a Nash equilibrium.

2.2. Replicator dynamics

After Nash proposed his definition of equilibrium, the main criticism that the concept has received relates to how
equilibria are reached. In other words, Nash provided a rule to decide which are the strategies that rational players
should play in a game, but how do people involved in actual game-theoretical settings but without knowledge of game
theory find the Nash equilibrium? Furthermore, in case there is more than one Nash equilibrium, which one should be
played, i.e., which one is the true “solution” of the game? These questions started out a great number of works dealing
with learning and with refinements of the concept that allowed to distinguish among equilibria, particularly within the
field of economics. This literature is out of the scope of the present review and the reader is referred to [25] for an
in-depth discussion.

One of the answers to the above criticism arises as a bonus from the ideas of Maynard Smith. The notion of evolu-
tionarily stable strategy has implicit some kind of dynamics when we speak of invasibility by mutants; a population
is stable if when a small proportion of it mutates it eventually evolves back to the original state. One could therefore
expect that, starting from some random initial condition, populations would evolve to an evolutionarily stable strategy,
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which, as already stated, is nothing but a Nash equilibrium. Thus, we would have solved the question as to how the
population “learns” to play the Nash equilibrium and perhaps the problem of selecting among different Nash equilib-
ria. However, so far we have only spoken of an abstract dynamics; nothing is specified as to what is the evolution of
the population or the strategies that it contains.

The replicator equation, due to Taylor and Jonker [12], was the first and most successful proposal of an evolution-
ary game dynamics. Within the population dynamics framework, the state of the population, i.e., the distribution of
strategy frequencies, is given by x as above. A first key point is that we assume that the xi are differentiable functions
of time t : This requires in turn assuming that the population is infinitely large (or that xi are expected values for an
ensemble of populations). Within this hypothesis, we can now postulate a law of motion for x(t). Assuming further
that individuals meet randomly, engaging in a game with payoff matrix W , then (Wx)i is the expected payoff for an
individual using strategy si , and xT Wx is the average payoff in the population state x. If we, consistently with our
interpretation of payoff as fitness, postulate that the per capita rate of growth of the subpopulation using strategy si is
proportional to its payoff, we arrive at the replicator equation (the name was first proposed in [26])

(5)ẋi = xi

[
(Wx)i − xT Wx

]
,

where the term xT Wx arises to ensure the constraint
∑

i xi = 1 (ẋi denotes the time derivative of xi ). This equation
translates into mathematical terms the elementary principle of natural selection: Strategies, or individuals using a
given strategy, that reproduce more efficiently spread, displacing those with smaller fitness. Note also that states with
xi = 1, xj = 0, ∀j �= i are solutions of Eq. (5) and, in fact, they are absorbing states, playing a relevant role in the
dynamics of the system in the absence of mutation.

Once an equation has been proposed, one can resort to the tools of dynamical systems theory to derive its most
important consequences. In this regard, it is interesting to note that the replicator equation can be transformed by an
appropriate change of variable in a system of Lotka–Volterra type [11]. For our present purposes, we will focus only
on the relation of the replicator dynamics with the two equilibrium concepts discussed in the preceding subsection.
The rest points of the replicator equation are those frequency distributions x that make the rhs of Eq. (5) vanish, i.e.
those that verify either xi = 0 or (Wx)i = xT Wx,∀i = 1, . . . , n. The solutions of this system of equations are all the
mixed strategy Nash equilibria of the game [9]. Furthermore, it is not difficult to show (see e.g. [11]) that strict Nash
equilibria are asymptotically stable, and that stable rest points are Nash equilibria. We thus see that the replicator
equation provides us with an evolutionary mechanism through which the players, or the population, can arrive at a
Nash equilibrium or, equivalently, to an evolutionarily stable strategy. The different basins of attraction of the different
equilibria further explain which of them is selected in case there are more than one.

For our present purposes, it is important to stress the hypothesis involved (explicitly or implicitly) in the derivation
of the replicator equation:

1. The population is infinitely large.
2. Individuals meet randomly or play against every other one, such that the payoff of strategy si is proportional to

the payoff averaged over the current population state x.
3. There are no mutations, i.e. strategies increase or decrease in frequency only due to reproduction.
4. The variation of the population is linear in the payoff difference.

Assumptions 1 and 2 are, as we stated above, crucial to derive the replicator equation in order to replace the fitness
of a given strategy by its mean value when the population is described in terms of frequencies. Of course, finite
populations deviate from the values of frequencies corresponding to infinite ones. In a series of recent works, Traulsen
and co-workers have considered this problem [27–29]. They have identified different microscopic stochastic processes
that lead to the standard or the adjusted replicator dynamics, showing that differences on the individual level can lead
to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can even invert the
direction of the evolutionary process. Their analytical framework, which they have extended to include an arbitrary
number of strategies, provides good approximations to simulation results for very small sizes. For a recent review
of these and related issues, see [30]. On the other hand, there has also been some work showing that evolutionarily
stable strategies in infinite populations may lose their stable character when the population is small (a result not totally
unrelated to those we will discuss in Section 3). For examples of this in the context of Hawk–Dove games, see [31,32].
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Assumption 3 does not pose any severe problem. In fact, mutations (or migrations among physically separated
groups, whose mathematical description is equivalent) can be included, yielding the so-called replicator–mutator
equation [33]. This is in turn equivalent to the Price equation [34], in which a term involving the covariance of fitness
and strategies appears explicitly. Mutations have been also included in the framework of finite size populations [29]
mentioned above. We refer the reader to Refs. [33,35] for further analysis of this issue.

Assumption 4 is actually the core of the definition of replicator dynamics. In Section 4 below we will come back to
this point, when we discuss the relation of replicator dynamics to the rules used for the update of strategies in agent-
based models. Work beyond the hypothesis of linearity can proceed otherwise in different directions, by considering
generalized replicator equations of the form

(6)ẋi = xi

[
Wi(x) − xT W(x)

]
.

The precise choice for the functions Wi(x) depends of course on the particular situation one is trying to model.
A number of the results on replicator equation carry on for several such choices. This topic is well summarized in [21]
and the interested reader can proceed from there to the relevant references.

Assumption 2 is the one to which this review is devoted to and, once again, there are very many different possibil-
ities in which it may not hold. We will discuss in depth below the case in which the time scale of selection is faster
than that of interaction, leading to the impossibility that a given player can interact with all others. Interactions may
be also physically limited, either for geographical reasons (individuals interact only with those in their surroundings),
for social reasons (individuals interact only with those with whom they are acquainted) or otherwise. As in previous
cases, these variations prevents one from using the expected value of fitness of a strategy in the population as a good
approximation for its growth rate. We will see the consequences this has in the following sections.

2.3. The problem of the emergence of cooperation

One of the most important problems to which evolutionary game theory is being applied is the understanding of
the emergence of cooperation in human (albeit non-exclusively) societies [14]. As we stated in the Introduction, this
is an evolutionary puzzle that can be accurately expressed within the formalism of game theory. One of the games
that has been most often used in connection with this problem is the Prisoner’s Dilemma introduced above, Eq. (1).
As we have seen, rational players should unavoidably defect and never cooperate, thus leading to a very bad outcome
for both players. On the other hand, it is evident that if both players had cooperated they would have been much
better off. This is a prototypical example of a social dilemma [36] which is, in fact, (partially) solved in societies.
Indeed, the very existence of human society, with its highly specialized labor division, is a proof that cooperation is
possible.

In more biological terms, the question can be phrased using again the concept of fitness. Why should an individ-
ual help other achieve more fitness, implying more reproductive success and a chance that the helper is eventually
displaced? It is important to realize that such a cooperative effort is at the roots of very many biological phenomena,
from mutualism to the appearance of multicellular organisms [37].

When one considers this problem in the framework of replicator equation, the conclusion is immediate and disap-
pointing: Cooperation is simply not possible. As defection is the only Nash equilibrium of Prisoner’s Dilemma, for
any initial condition with a positive fraction of defectors, replicator dynamics will inexorably take the population to a
final state in which they all are defectors. Therefore, one needs to understand how the replicator equation framework
can be supplemented or superseded for evolutionary game theory to become closer to what is observed in the real
world (note that there is no hope for classical game theory in this respect as it is based in the perfect rationality of the
players). Relaxing the above discussed assumptions leads, in some cases, to possible solutions to this puzzle, and our
aim here is to summarize and review what has been done along these lines with Assumption 2.

3. The effect of different time scales

Evolution is generally supposed to occur at a slow pace: Many generations may be needed for a noticeable change
to arise in a species. This is indeed how Darwin understood the effect of natural selection, and he always referred to its
cumulative effects over very many years. However, this needs not be the case and, in fact, selection may occur faster
than the interaction between individuals (or of the individuals with their environment). Thus, recent experimental
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studies have reported observations of fast selection [38–40]. It is also conceivable that in man-monitored or laboratory
processes one might make selection be the rapid influence rather than interaction. Another context where these ideas
apply naturally is that of cultural evolution or social learning, where the time scale of selection is much closer to the
time scale of interaction. Therefore, it is natural to ask about the consequences of the above assumption and the effect
of relaxing it.

This issue has already been considered from an economic viewpoint in the context of equilibrium selection (but see
an early biological example breaking the assumption of purely random matching in [41], which considered Hawk–
Dove games where strategists are more likely to encounter individuals using their same strategy). This refers to a
situation in which for a game there is more than one equilibrium, like in the Stag Hunt game, given e.g. by the
following payoff matrix

(7)

( C D

C 6 1

D 5 2

)
.

This game was already posed as a metaphor by Rousseau [42], which reads as follows: Two people go out hunting
for stag, because two of them are necessary to hunt down such a big animal. However, any one of them can cheat the
other by hunting hare, which one can do alone, leaving the other one in the impossibility of getting the stag. Therefore,
we have a coordination game, in which the best option is to do as the other: Hunt stag together or both hunting hare
separately. In game theory, this translates into the fact that both C and D are Nash equilibria, and in principle one is
not able to determine which one would be selected by the players, i.e., which one is the solution of the game. One
rationale to choose was proposed by Harsanyi and Selten2 [43], who classified C as the Pareto-efficient equilibrium
(hunting stag is more profitable than hunting hare), because that is the most beneficial for both players, and D as the
risk-dominant equilibrium, because it is the strategy that is better in case the other player chooses D (one can hunt hare
alone). Here the tension arises then from the risk involved in cooperation, rather than from the temptation to defect of
Snowdrift games [44] (note that both tensions are present in Prisoner’s Dilemma).

Kandori et al. [45] showed that the risk-dominant equilibrium is selected when using a stochastic evolutionary
game dynamics, proposed by Foster and Young [46], that considers that every player interacts with every other one
(implying slow selection). However, fast selection leads to another result. Indeed, Robson and Vega-Redondo [47]
considered the situation in which every player is matched to another one and therefore they only play one game before
selection acts. In that case, they showed that the outcome changed and that the Pareto-efficient equilibrium is selected.
This result was qualified later by Miekisz [48], who showed that the selected equilibrium depended on the population
size and the mutation level of the dynamics. Recently, this issue has also been considered in [49], which compares the
situation where the contribution of the game to the fitness is small (weak selection, see Section 4.6 below) to the one
where the game is the main source of the fitness, finding that in the former the results are equivalent to the well-mixed
population, but not in the latter, where the conclusions of [47] are recovered. It is also worth noticing in this regards the
works by Boylan [50,51], where he studied the types of random matching that can still be approximated by continuous
equations. In any case, even if the above are not general results and their application is mainly in economics, we have
already a hint that time scales may play a non-trivial role in evolutionary games.

In fact, as we will show below, rapid selection affects evolutionary dynamics in such a dramatic way that for
some games it even changes the stability of equilibria. We will begin our discussion by briefly summarizing results
on a model for the emergence of altruistic behavior, in which the dynamics is not replicator-like, but that illustrates
nicely the very important effects of fast selection. We will subsequently proceed to present a general theory for
symmetric 2 × 2 games. There, in order to make explicit the relation between selection and interaction time scales,
we use a discrete-time dynamics that produces results equivalent to the replicator dynamics when selection is slow.
We will then show that the pace at which selection acts on the population is crucial for the appearance and stability
of cooperation. Even in non-dilemma games such as the Harmony game [52], where cooperation is the only possible
rational outcome, defectors may be selected for if population renewal is very rapid.

2 Harsanyi and Senten received the Nobel Prize in Economics for this contribution, along with Nash, in 1994.
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3.1. Time scales in the Ultimatum game

As a first illustration of the importance of time scales in evolutionary game dynamics, we begin by dealing with
this problem in the context of a specific set of such experiments, related to the Ultimatum game [53,54]. In this game,
under conditions of anonymity, two players are shown a sum of money. One of the players, the “proposer”, is instructed
to offer any amount to the other, the “responder”. The proposer can make only one offer, which the responder can
accept or reject. If the offer is accepted, the money is shared accordingly; if rejected, both players receive nothing.
Note that the Ultimatum game is not symmetric, in so far as proposer and responder have clearly different roles and
are therefore not exchangeable. This will be our only such an example, and the remainder of the paper will only deal
with symmetric games. Since the game is played only once (no repeated interactions) and anonymously (no reputation
gain; for more on explanations of altruism relying on reputation see [55]), a self-interested responder will accept any
amount of money offered. Therefore, self-interested proposers will offer the minimum possible amount, which will
be accepted.

The above prediction, based on the rational character of the players, contrasts clearly with the results of actual Ul-
timatum game experiments with human subjects, in which average offers do not even approximate the self-interested
prediction. Generally speaking, proposers offer respondents very substantial amounts (50% being a typical modal
offer) and respondents frequently reject offers below 30% [56,57]. Most of the experiments have been carried out
with university students in western countries, showing a large degree of individual variability but a striking uniformity
between groups in average behavior. A large study in 15 small-scale societies [54] found that, in all cases, respondents
or proposers behave in such a reciprocal manner. Furthermore, the behavioral variability across groups was much
larger than previously observed: While mean offers in the case of university students are in the range 43–48%, in the
cross-cultural study they ranged from 26% to 58%.

How does this fit in our focus topic, namely the emergence of cooperation? The fact that indirect reciprocity is
excluded by the anonymity condition and that interactions are one-shot (repeated interaction, the mechanism proposed
by Axelrod to foster cooperation [58,59], does not apply) allows one to interpret rejections in terms of the so-called
strong reciprocity [60,61]. This amounts to considering that these behaviors are truly altruistic, i.e., that they are costly
for the individual performing them in so far as they do not result in direct or indirect benefit. As a consequence, we
return to our evolutionary puzzle: The negative effects of altruistic acts must decrease the altruist’s fitness as compared
to that of the recipients of the benefit, ultimately leading to the extinction of altruists. Indeed, standard evolutionary
game theory arguments applied to the Ultimatum game lead to the expectation that, in a well-mixed population,
punishers (individuals who reject low offers) have less chance to survive than rational players (individuals who accept
any offer) and eventually disappear. We will now show that this conclusion depends on the dynamics, and that different
dynamics may lead to the survival of punishers through fluctuations.

Consider a population of N agents playing the Ultimatum game, with a fixed sum of money M per game. Random
pairs of players are chosen, of which one is the proposer and another one is the respondent. In its simplest version,
we will assume that players are capable of other-regarding behavior (empathy); consequently, in order to optimize
their gain, proposers offer the minimum amount of money that they would accept. Every agent has her own, fixed
acceptance threshold, 1 � ti � M (ti are always integer numbers for simplicity). Agents have only one strategy:
Respondents reject any offer smaller than their own acceptance threshold, and accept offers otherwise. Money shared
as a consequence of accepted offers accumulates to the capital of each player, and is subsequently interpreted as
fitness as usual. After s games, the agent with the overall minimum fitness is removed (randomly picked if there are
several) and a new agent is introduced by duplicating that with the maximum fitness, i.e., with the same threshold
and the same fitness (again randomly picked if there are several). Mutation is introduced in the duplication process by
allowing changes of ±1 in the acceptance threshold of the newly generated player with probability 1/3 each. Agents
have no memory (interactions are one-shot) and no information about other agents (no reputation gains are possible).
We note that the dynamics of this model is not equivalent to the replicator equation, and therefore the results do not
apply directly in that context. In fact, such an extremal dynamics leads to an amplification of the effect of fluctuations
that allows to observe more clearly the influence of time scales. This is the reason why we believe it will help make
our main point.

Fig. 1 shows the typical outcome of simulations of our model for a population of N = 1000 individuals. An
important point to note is that we are not plotting averages but a single realization for each value of s; the realizations
we plot are not specially chosen but rather are representative of the typical simulation results. We have chosen to plot



Author's personal copy

C.P. Roca et al. / Physics of Life Reviews 6 (2009) 208–249 217

Fig. 1. Left: mean acceptance threshold as a function of simulation time. Initial condition is that all agents have ti = 1. Right: acceptance threshold
distribution after 108 games (note that this distribution, for small s, is not stationary). Initial condition is that all agents have uniformly distributed,
random ti . In both cases, s is as indicated from the plot.

single realizations instead of averages to make clear for the reader the large fluctuations arising for small s, which are
the key to understand the results and which we discuss below. As we can see, the mean acceptance threshold rapidly
evolves towards values around 40%, while the whole distribution of thresholds converges to a peaked function, with the
range of acceptance thresholds for the agents covering about a 10% of the available ones. These are values compatible
with the experimental results discussed above. The mean acceptance threshold fluctuates during the length of the
simulation, never reaching a stationary value for the durations we have explored. The width of the peak fluctuates
as well, but in a much smaller scale than the position. The fluctuations are larger for smaller values of s, and when
s becomes of the order of N or larger, the evolution of the mean acceptance threshold is very smooth. As is clear
from Fig. 1, for very small values of s, the differences in payoff arising from the fact that only some players play
are amplified by our extreme dynamics, resulting in a very noisy behavior of the mean threshold. This is a crucial
point and will be discussed in more detail below. Importantly, the typical evolution we are describing does not depend
on the initial condition. In particular, a population consisting solely of self-interested agents, i.e. all initial thresholds
set to ti = 1, evolves in the same fashion. Indeed, the distributions shown in the left panel of Fig. 1 (which again
correspond to single realizations) have been obtained with such an initial condition, and it can be clearly observed
that self-interested agents disappear in the early stages of the evolution. The number of players and the value M of
the capital at stake in every game are not important either, and increasing M only leads to a higher resolution of the
threshold distribution function, whereas smaller mutation rates simply change the pace of evolution.

To realize the effect of time scales, it is important to recall previous studies of the Ultimatum game by Page and
Nowak [62,63]. The model introduced in those works has a dynamics completely different from ours: Following
standard evolutionary game theory, every player plays with every other one in both roles (proponent and respondent),
and afterwards players reproduce with probability proportional to their payoff (which is fitness in the reproductive
sense). Simulations and adaptive dynamics equations show that the population ends up composed by players with fair
(50%) thresholds. Note that this is not what one would expect on a rational basis, but Page and Nowak traced this
result back to empathy, i.e., the fact that the model is constrained to offer what one would accept. In any event, what
we want to stress here is that their findings are also different from our observations: We only reach an equilibrium
for large s. The reason for this difference is that the Page–Nowak model dynamics describes the s/N → ∞ limit of
our model, in which between death–reproduction events the time average gain obtained by all players is with high
accuracy a constant O(N) times the mean payoff. We thus see that our model is more general because it has one free
parameter, s, that allows selecting different regimes whereas the Page–Nowak dynamics is only one limiting case.
Those different regimes are what we have described as fluctuation dominated (when s/N is finite and not too large)
and the regime analyzed by Page and Nowak (when s/N → ∞). This amounts to saying that by varying s we can
study regimes far from the standard evolutionary game theory limit. As a result, we find a variability of outcomes
for the acceptance threshold consistent with the observations in real human societies [54,57]. Furthermore, if one
considers that the acceptance threshold and the offer can be set independently, the results differ even more [64]: While
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in the model of Page and Nowak both magnitudes evolve to take very low values, close to zero, in the model presented
here the results, when s is small, are very similar to the one-threshold version, leading again to values compatible
with the experimental observations. This in turn implies that rapid selection may be an alternative to empathy as an
explanation of human behavior in this game.

The main message to be taken from this example is that fluctuations due to the finite number of games s are very
important. Among the results summarized above, the evolution of a population entirely formed by self-interested
players into a diversified population with a large majority of altruists is the most relevant and surprising one. One
can argue that the underlying reason for this is precisely the presence of fluctuations in our model. For the sake of
definiteness, let us consider the case s = 1 (agent replacement takes place after every game) although the discussion
applies to larger (but finite) values of s as well. After one or more games, a mutation event will take place and a “weak
altruistic punisher” (an agent with ti = 2) will appear in the population, with a fitness inherited from its ancestor.
For this new agent to be removed at the next iteration, our model rules imply that this agent has to have the lowest
fitness, and also that it does not play as a proposer in the next game (if playing as a responder the agent will earn
nothing because of her threshold). In any other event this altruistic punisher will survive at least one cycle, in which
an additional one can appear by mutation. It is thus clear that fluctuations indeed help altruists to take over: As soon
as a few altruists are present in the population, it is easy to see analytically that they will survive and proliferate even
in the limit s/N → ∞.

3.2. Time scales in symmetric binary games

The example in the previous subsection suggests that there certainly is an issue of relative time scales in evolu-
tionary game theory that can have serious implications. In order to gain insight into this question, it is important to
consider a general framework, and therefore we will now look at the general problem of symmetric 2 × 2 games.
Asymmetric games can be treated similarly, albeit in a more cumbersome manner, and their classification involves
many more types; we feel, therefore, that the symmetric case is a much clearer illustration of the effect of time scales.
In what follows, we review and extend previous results of us [65,66], emphasizing the consequences of the existence
of different time scales.

Let us consider a population of N individuals, each of whom plays with a fixed strategy, that can be either C or D
(for “cooperate” and “defect” respectively, as in Section 2). We denote the payoff that an X-strategist gets when con-
fronted to a Y -strategist (X and Y are C or D) by the matrix element WXY . For a certain time individuals interact with
other individuals in pairs randomly chosen from the population. During these interactions individuals collect payoffs.
We shall refer to the interval between two interaction events as the interaction time. Once the interaction period has
finished reproduction occurs, and in steady state selection acts immediately afterwards restoring the population size
to the maximum allowed by the environment. The time between two of these reproduction/selection events will be
referred to as the evolution time.

Reproduction and selection can be implemented in at least two different ways. The first one is through the Fisher–
Wright process [5] in which each individual generates a number of offspring proportional to her payoff. Selection acts
by randomly killing individuals of the new generation until restoring the size of the population back to N individuals.
The second option for the evolution is the Moran process [5,67]. It amounts to randomly choosing an individual for
reproduction proportionally to payoffs, whose single offspring replaces another randomly chosen individual, in this
case with a probability 1/N equal for all. In this manner populations always remains constant. The Fisher–Wright
process is an appropriate model for species which produce a large number of offspring in the next generation but only
a few of them survive, and the next generation replaces the previous one (like insects or some fishes). The Moran
process is a better description for species which give rise to few offspring and reproduce in continuous time, because
individuals neither reproduce nor die simultaneously, and death occurs at a constant rate. The original process was
generalized to the frequency-dependent fitness context of evolutionary game theory by Taylor et al. [68], and used
to study the conditions for selection favoring the invasion and/or fixation of new phenotypes. The results were found
to depend on whether the population was infinite or finite, leading to a classification of the process in three or eight
scenarios, respectively.

Both the Fisher–Wright and Moran processes define Markov chains [69,70] on the population, characterized by
the number of its C-strategists n ∈ {0,1, . . . ,N}, because in both cases it is assumed that the composition of the next
generation is determined solely by the composition of the current generation. Each process defines a stochastic matrix
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P with elements Pn,m = p(m|n), the probability that the next generation has m C-strategists provided the current
one has n. While for the Fisher–Wright process all the elements of P may be nonzero, for the Moran process the
only nonzero elements are those for which m = n or m = n ± 1. Hence Moran is, in the jargon of Markov chains, a
birth–death process with two absorbing states, n = 0 and n = N [69,70]. Such a process is mathematically simpler,
and for this reason it will be the one we will choose for our discussion on the effect of time scales.

To introduce explicitly time scales we will implement the Moran process in the following way, generalizing the
proposal by Taylor et al. [68]. During s time steps pairs of individuals will be chosen to play, one pair every time step.
After that the above described reproduction/selection process will act according to the payoffs collected by players
during the s interaction steps. Then, the payoffs of all players are set to zero and a new cycle starts. Notice that in
general players will play a different number of times – some not at all – and this will reflect in the collected payoffs.
If s is too small most players will not have the opportunity to play and chance will have a more prominent role in
driving the evolution of the population.

Quantifying this effect requires that we first compute the probability that, in a population of N individuals of which
n are C-strategists, an X-strategist is chosen to reproduce after the s interaction steps. Let nXY denote the number of
pairs of X- and Y -strategists that are chosen to play. The probability of forming a given pair, denoted pXY , will be

(8)pCC = n(n − 1)

N(N − 1)
, pCD = 2

n(N − n)

N(N − 1)
, pDD = (N − n)(N − n − 1)

N(N − 1)
.

Then the probability of a given set of nXY is dictated by the multinomial distribution

(9)M
({nXY }; s) =

{
s!p

nCC
CC

nCC!
p

nCD
CD

nCD!
p

nDD
DD

nDD! , if nCC + nCD + nDD = s,

0, otherwise.

For a given set of variables nXY , the payoffs collected by C- and D-strategists are

(10)WC = 2nCCWCC + nCDWCD, WD = nCDWDC + 2nDDWDD.

Then the probabilities of choosing a C- or D-strategist for reproduction are

(11)PC(n) = EM

[
WC

WC + WD

]
, PD(n) = EM

[
WD

WC + WD

]
,

where the expectations EM [·] are taken over the probability distribution M (9). Notice that we have to guarantee
WX � 0 for the above expressions to define a true probability. This forces us to choose all payoffs WXY � 0. In
addition, we have studied the effect of adding a baseline fitness to every player, which is equivalent to a translation of
the payoff matrix W , obtaining the same qualitative results (see below).

Once these probabilities are obtained the Moran process accounts for the transition probabilities from a state with
n C-strategists to another with n ± 1 C-strategists. For n → n + 1 a C-strategist must be selected for reproduction
(probability PC(n)) and a D-strategist for being replaced (probability (N − n)/N ). Thus

(12)Pn,n+1 = p(n + 1|n) = N − n

N
PC(n).

For n → n − 1 a D-strategist must be selected for reproduction (probability PD(n)) and a C-strategist for being
replaced (probability n/N ). Thus

(13)Pn,n−1 = p(n − 1|n) = n

N
PD(n).

Finally, the transition probabilities are completed by

(14)Pn,n = 1 − Pn,n−1 − Pn,n+1.

3.2.1. Slow selection limit
Let us assume that s → ∞, i.e. the evolution time is much longer than the interaction time. Then the distribution

(9) will be peaked at the values nXY = spXY , the larger s the sharper the peak. Therefore in this limit

(15)PC(n) → WC(n)

WC(n) + WD(n)
, PD(n) → WD(n)

WC(n) + WD(n)
,
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where

WC(n) = n

N

[
n − 1

N − 1
(WCC − WCD) + WCD

]
,

(16)WD(n) = N − n

N

[
n

N − 1
(WDC − WDD) + WDD

]
.

In general, for a given population size N we have to resort to a numerical evaluation of the various quantities that
characterize a birth–death process, according to the formulas in Appendix A. However, for large N the transition
probabilities can be expressed in terms of the fraction of C-strategists x = n/N as

(17)Pn,n+1 = x(1 − x)
wC(x)

xwC(x) + (1 − x)wD(x)
,

(18)Pn,n−1 = x(1 − x)
wD(x)

xwC(x) + (1 − x)wD(x)
,

where

(19)wC(x) = x(WCC − WCD) + WCD, wD(x) = x(WDC − WDD) + WDD.

The terms wC and wD are, respectively, the expected payoff of a cooperator and a defector in this case of large s

and N . The factor x(1−x) in front of Pn,n+1 and Pn,n−1 arises as a consequence of n = 0 and n = N being absorbing
states of the process. There is another equilibrium x∗ where Pn,n±1 = Pn±1,n, i.e. wC(x∗) = wD(x∗), with x∗ given by

(20)x∗ = WCD − WDD

WDC − WCC + WCD − WDD
.

For x∗ to be a valid equilibrium 0 < x∗ < 1 we must have

(21)(WDC − WCC)(WCD − WDD) > 0.

This equilibrium is stable3 as long as the function wC(x) − wD(x) is decreasing at x∗, for then if x < x∗ Pn,n+1 >

Pn+1,n and if x > x∗ Pn,n−1 > Pn−1,n, i.e. the process will tend to restore the equilibrium, whereas if the function is
increasing the process will be led out of x∗ by any fluctuation. In terms of (19) this implies

(22)WDC − WCC > WDD − WCD.

Notice that the two conditions

(23)wC
(
x∗) = wD

(
x∗), w′

C

(
x∗) < w′

D

(
x∗),

are precisely the conditions arising from the replicator dynamics for x∗ to be a stable equilibrium [10,11], albeit
expressed in a different manner than in Section 2 (w′

X represents the derivative of wX with respect to x). Out of the
classic dilemmas, condition (21) holds for Stag Hunt and Snowdrift games, but condition (22) only holds for the latter.
Thus, as we have already seen, only Snowdrift has a dynamically stable mixed population.

This analysis leads us to conclude that the standard setting of evolutionary games as advanced above, in which the
time scale for reproduction/selection is implicitly (if not explicitly) assumed to be much longer than the interaction
time scale, automatically yields the distribution of equilibria dictated by the replicator dynamics for that game. We
have explicitly shown this to be true for binary games, but it can be extended to games with an arbitrary number of
strategies. In the next section we will analyze what happens if this assumption on the time scales does not hold.

3 Here the notion of stability implies that the process will remain near x∗ for an extremely long time, because as long as N is finite, no matter
how large, the process will eventually end up in x = 0 or x = 1, the absorbing states.
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3.2.2. Fast selection limit
When s is finite, considering all the possible pairings and their payoffs, we arrive at

PC(n) =
s∑

j=0

s−j∑
k=0

2s−j−k s!ns−k(n − 1)j (N − n)s−j (N − n − 1)k

j !k!(s − j − k)!Ns(N − 1)s

(24)× 2jWCC + (s − j − k)WCD

2jWCC + 2kWDD + (s − j − k)(WCD + WDC)
,

and PD(n) = 1 − PC(n). We have not been able to write this formula in a simpler way, so we have to evaluate it
numerically for every choice of the payoff matrix. However, in order to have a glimpse at the effect of reducing the
number of interactions between successive reproduction/selection events, we can examine analytically the extreme
case s = 1, for which

(25)Pn,n+1 = n(N − n)

N(N − 1)

[
2WCD

WDC + WCD
+ n

N

WDC − WCD

WDC + WCD
− 1

N

]
,

(26)Pn,n−1 = n(N − n)

N(N − 1)

[
1 + n

N

WDC − WCD

WDC + WCD
− 1

N

]
.

From these equations we find that

Pn,n−1

Pn,n+1
= Dn + S(N − 1)

D(n + 1) + S(N − 1) − D(N + 1)
,

(27)D = WDC − WCD, S = WDC + WCD,

and this particular dependence on n allows us to find the following closed-form expression for cn, the probability that
starting with n cooperators the population ends up with all cooperators (see Appendix B)

(28)cn = Rn

RN

, Rn =
{∏n

j=1
S(N−1)+Dj

S(N−1)−D(N+1−j)
− 1, if D �= 0,

n, if D = 0.

The first thing worth noticing in this expression is that it only depends on the two off-diagonal elements of the
payoff matrix (through their sum, S, and difference, D). This means that in an extreme situation in which the evolution
time is so short that it only allows a single pair of players to interact, the outcome of the game only depends on what
happens when two players with different strategies play. The reason is obvious: Only those two players that have been
chosen to play will have a chance to reproduce. If both players have strategy X, an X-strategist will be chosen to
reproduce with probability 1. Only if each player uses a different strategy the choice of the player that reproduces will
depend on the payoffs, and in this case they are precisely WCD and WDC. Of course, as s increases this effect crosses
over to recover the outcome for the case s → ∞.

We can extend our analysis further for the case of large populations. If we denote x = n/N and c(x) = cn, then we
can write, as N → ∞,

(29)c(x) ∼ eNφ(x) − 1

eNφ(1) − 1
, φ(x) =

x∫
0

[
ln(S + Dt) − ln

(
S + D(t − 1)

)]
dt.

Then

(30)φ′(x) = ln

(
S + Dx

S + D(x − 1)

)
,

which has the same sign as D, and hence φ(x) is increasing for D > 0 and decreasing for D < 0.
Thus if D > 0, because of the factor N in the argument of the exponentials and the fact that φ(x) > 0 for x > 0,

the exponential will increase sharply with x. Then, expanding around x = 1,

(31)φ(x) ≈ φ(1) − (1 − x)φ′(1),
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so

(32)c(x) ∼ exp
{−N ln(1 + D/S)(1 − x)

}
.

The outcome for this case is that absorption will take place at n = 0 for almost any initial condition, except if we start
very close to the absorbing state n = N , namely for n � N − 1/ ln(1 + D/S).

On the contrary, if D < 0 then φ(x) < 0 for x > 0 and the exponential will be peaked at 0. So expanding around
x = 0,

(33)φ(x) ≈ xφ′(0)

and

(34)c(x) ∼ 1 − exp
{−N ln(1 − D/S)x

}
.

The outcome in this case is therefore symmetrical with respect to the case D > 0, because now the probability of
ending up absorbed into n = N is 1 for nearly all initial conditions except for a small range near n = 0 determined
by n � 1/ ln(1 − D/S). In both cases the range of exceptional initial conditions increases with decreasing |D|, and in
particular when D = 0 the evolution becomes neutral,4 as it is reflected in the fact that in that special case cn = n/N

(cf. Eq. (28)) [5].
In order to illustrate the effect of a finite s, even in the case when s > 1, we will consider all possible symmetric

2×2 games. These were classified by Rapoport and Guyer [71] in 12 non-equivalent classes which, according to their
Nash equilibria and their dynamical behavior under replicator dynamics, fall into three different categories:

(i) Six games have WCC > WDC and WCD > WDD, or WCC < WDC and WCD < WDD. For them, their unique Nash
equilibrium corresponds to the dominant strategy (C in the first case and D in the second case). This equilibrium
is the global attractor of the replicator dynamics.

(ii) Three games have WCC > WDC and WCD < WDD. They have several Nash equilibria, one of them with a mixed
strategy, which is an unstable equilibrium of the replicator dynamics and therefore acts as a separator of the
basins of attractions of two Nash equilibria in pure strategies, which are the attractors.

(iii) The remaining three games have WCC < WDC and WCD > WDD. They also have several Nash equilibria, one of
them with a mixed strategy, but in this case this is the global attractor of the replicator dynamics.

Examples of the first category are the Harmony and Prisoner’s Dilemma games. Category (ii) includes the Stag
Hunt game, whereas the Snowdrift game belongs to category (iii).

We will begin by considering one example of category (i): the Harmony game. To that aim we will choose the
parameters WCC = 1, WCD = 0.25, WDC = 0.75 and WDD = 0.01. The name of this game refers to the fact that it
represents no conflict, in the sense that all players get the maximum payoff by following strategy C. The values of cn

obtained for different populations N and several values of s are plotted in Fig. 2. The curves for large s illustrate the
no-conflicting character of this game as the probability cn is almost 1 for every starting initial fraction of C-strategists.
The results for small s also illustrate the effect of fast selection, as the inefficient strategy, D, is selected for almost any
initial fraction of C-strategists. The effect is more pronounced the larger the population. The crossover between the
two regimes takes place at s = 2 or 3, but it depends on the choice of payoffs. A look at Fig. 2 reveals that the crossing
over to the s → ∞ regime as s increases has no connection whatsoever with N , because it occurs nearly at the same
values for any population size N . It does depend, however, on the precise values of the payoffs. As a further check, in
Fig. 3 we plot the results for s = 1 for different population sizes N and compare with the asymptotic prediction (32),
showing its great accuracy for values of N = 100 and higher; even for N = 10 the deviation from the exact results is
not large.

Let us now move to category (ii), well represented by the Stag Hunt game, discussed in the preceding subsection.
We will choose for this game the payoffs WCC = 1, WCD = 0.01, WDC = 0.8 and WDD = 0.2. The values of cn

obtained for different populations N and several values of s are plotted in Fig. 4. The panel (c) for s = 100 reveals the
behavior of the system according to the replicator dynamics: Both strategies are attractors, and the crossover fraction

4 Notice that if D = 0 then WDC = WCD and therefore the evolution does not favor any of the two strategies.
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Fig. 2. Absorption probability cn to state n = N starting from initial state n, for a Harmony game (payoffs WCC = 1, WCD = 0.25, WDC = 0.75
and WDD = 0.01), population sizes N = 10 (a), N = 100 (b) and N = 1000 (c), and for values of s = 1, 2, 3, 10 and 100. The values for s = 100
are indistinguishable from the results of replicator dynamics.

Fig. 3. Same as in Fig. 2 plotted against N − n, for s = 1 and N = 10, 100 and 1000. The solid line is the asymptotic prediction (32).

Fig. 4. Absorption probability cn to state n = N starting from initial state n, for a Stag Hunt game (payoffs WCC = 1, WCD = 0.01, WDC = 0.8
and WDD = 0.2), population sizes N = 10 (a), N = 100 (b) and N = 1000 (c), and for values of s = 1, 3, 5, 10 and 100. Results from replicator
dynamics are also plotted for comparison.

of C-strategists separating the two basins of attraction (given by Eq. (20)) is, for this case, x∗ ≈ 0.49. We can see that
the effect of decreasing s amounts to shifting this crossover towards 1, thus increasing the basins of attraction of the
risk-dominated strategy. In the extreme case s = 1 this strategy is the only attractor. Of course, for small population
sizes (Fig. 4(a)) all these effects (the existence of the threshold and its shifting with decreasing s) are strongly softened,
although still noticeable. An interesting feature of this game is that the effect of a finite s is more persistent compared
to what happens to the Harmony game. Whereas in the latter the replicator dynamics was practically recovered, for
values of s � 10 we have to go up to s = 100 to find the same in Stag Hunt.
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Fig. 5. Absorption time starting from the state n/N = 0.5 for a Snowdrift game (payoffs WCC = 1, WCD = 0.2, WDC = 1.8 and WDD = 0.01), as
a function of s for population size N = 100 (a) and as a function of N in the limit s → ∞ (b). Note the logarithmic scale for the absorption time.

Fig. 6. Distribution of visits to state n before absorption for population N = 100, initial number of cooperators n = 50 and several values of s. The
game is the same Snowdrift game of Fig. 5. The curve for s = 100 is indistinguishable from the one for s → ∞ (labeled ‘replicator’).

Finally, a representative of category (iii) is the Snowdrift game, for which we will choose the payoffs WCC = 1,
WCD = 0.2, WDC = 1.8 and WDD = 0.01. For these values, the replicator dynamics predicts that both strategies coexist
with fractions of population given by x∗ in (20), which for these parameters takes the value x∗ ≈ 0.19. However, a
birth–death process for finite N always ends up in absorption into one of the absorbing states. In fact, for any s and
N and this choice of payoffs, the population always ends up absorbed into the n = 0 state – except when it starts
very close to n = N . But this case has a peculiarity that makes it entirely different from the previous ones. Whereas
for the former cases the absorption time (50) is τ = O(N) regardless of the value of s, for Snowdrift the absorption
time is O(N) for s = 1 but grows very fast with s towards an asymptotic value τ∞ (see Fig. 5(a)) and τ∞ grows
exponentially with N (see Fig. 5(b)). This means that, while for s = 1 the process behaves as in previous cases, being
absorbed into the n = 0 state, as s increases there is a crossover to a regime in which the transient states become more
relevant than the absorbing state because the population spends an extremely long time in them. In fact, the process
oscillates around the mixed equilibrium predicted by the replicator dynamics. This is illustrated by the distribution
of visits to states 0 < n < N before absorption (48), shown in Fig. 6. Thus the effect of fast selection on Snowdrift
games amounts to a qualitative change from the mixed equilibrium to the pure equilibrium at n = 0.

Having illustrated the effect of fast selection in these three representative games, we can now present the general
picture. Similar results arise in the remaining 2 × 2 games, fast selection favoring in all cases the strategy with
the highest payoff against the opposite strategy. For the remaining five games of category (i) this means favoring
the dominant strategy (Prisoner’s Dilemma is a prominent example of it). The other two cases of category (ii) also
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Fig. 7. Absorption probability starting from state n for the Harmony game of Fig. 2 (a) and the Stag Hunt game of Fig. 4 (b) when N = 100 and
baseline fitness fb = 1.

experience a change in the basins of attraction of the two equilibria. Finally, the remaining two games of category (iii)
experience the suppression of the coexistence state in favor of one of the two strategies. The conclusion of all this is
that fast selection changes completely the outcome of replicator dynamics. In terms of cooperation, as the terms in the
off-diagonal of social dilemmas verify WDC > WCD, this change in outcome has a negative influence on cooperation,
as we have seen in all the games considered. Even for some payoff matrices of a non-dilemma game such as Harmony,
it can make defectors invade the population.

Two final remarks are in order. First, these results do not change qualitatively with the population size. In fact,
Eqs. (32) and (34) and Fig. 3 very clearly illustrate this. Second, there might be some concern about this analysis
which the extreme s = 1 case puts forward: All this might just be an effect of the fact that most players do not play
and therefore have no chance to be selected for reproduction. In order to sort this out we have made a similar analysis
but introducing a baseline fitness for all players, so that even if a player does not play she can still be selected for
reproduction. The probability will be, of course, smaller than the one of the players who do play; however, we should
bear in mind that when s is very small, the overwhelming majority of players are of this type and this compensates
for the smaller probability. Thus, let fb be the total baseline fitness that all players share per round, so that sfb/N is
the baseline fitness every player has at the time reproduction/selection occurs. This choice implies that if fb = 1 the
overall baseline fitness and that arising from the game are similar, regardless of s and N . If fb is very small (fb � 0.1),
the result is basically the same as that for fb = 0. The effect for fb = 1 is illustrated in Fig. 7 for Harmony and Stag
Hunt games. Note also that at very large baseline fitness (fb � 10) the evolution is almost neutral, although the small
deviations induced by the game – which are determinant for the ultimate fate of the population – still follow the same
pattern (see Fig. 8). Interestingly, Traulsen et al. [72] arrive at similar results by using a Fermi like rule (see Section 4.1
below) to introduce noise (temperature) in the selection process, and a interaction probability q of interactions between
individuals leading to heterogeneity in the payoffs, i.e., in the same words as above, to fluctuations, that in turn reduce
the intensity of selection as is the case when we introduce a very large baseline fitness.

4. Structured populations

Having seen the highly non-trivial effects of considering temporal fluctuations in evolutionary games, in this sec-
tion we are going to consider the effect of relaxing the well-mixed hypothesis by allowing the existence of spatial
correlations in the population. Recall from Section 2.2 that a well-mixed population presupposes that every individual
interacts with equal probability with every other one in the population, or equivalently that each individual interacts
with the “average” individual. It is not clear, however, that this hypothesis holds in many practical situations. Ter-
ritorial or physical constraints may limit the interactions between individuals, for example. On the other hand, an
all-to-all network of relationships does not seem plausible in large societies; other key phenomena in social life, such
as segregation or group formation, challenge the idea of a mean player that everyone interacts with.
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Fig. 8. Same as Fig. 7 for fb = 10.

It is adequate, therefore, to take into consideration the existence of a certain network of relationships in the pop-
ulation, which determines who interacts with whom. This network of relationships is what we will call from now on
the structure of the population. Consistently, a well-mixed population will be labeled as unstructured and will be rep-
resented by a complete graph. Games on many different types of networks have been investigated, examples of which
include regular lattices [73,74], scale-free networks [75], real social networks [76], etc. This section is not intended to
be an exhaustive review of all this existent work and we refer the reader to [20] for such a detailed account. We rather
want to give a panoramic and a more personal and idiosyncratic view of the field, based on the main available results
and our own research.

It is at least reasonable to expect that the existence of structure in a population could give rise to the appearance of
correlations and that they would have an impact on the evolutionary outcome. For more than fifteen years investigation
into this phenomena has been a hot topic of research, as the seminal result by Nowak and May [73], which reported
an impressive fostering of cooperation in Prisoner’s Dilemma on spatial lattices, triggered a wealth of work focused
on the extension of this effect to other games, networks and strategy spaces. On the other hand, the impossibility
in most cases of analytical approaches and the complexity of the corresponding numerical agent-based models have
made any attempt of exhaustive approach very demanding. Hence most studies have concentrated on concrete settings
with a particular kind of game, which in most cases has been the Prisoner’s Dilemma [73,77–91]. Other games has
been much less studied in what concerns the influence of population structure, as show the comparatively much
smaller number of works about Snowdrift or Hawk–Dove games [92–97], or Stag Hunt games [98–100]. Moreover,
comprehensive studies in the space of 2 × 2 games are very scarce [74,75]. As a result, many interesting features of
population structure and its influence on evolutionary games have been reported in the literature, but the scope of these
conclusions is rather limited to particular models, so a general understanding of these issues, in the broader context of
2 × 2 games and different update rules, is generally missing.

However, the availability and performance of computational resources in recent years have allowed us to undertake
a systematic and exhaustive simulation program [101,102] on these evolutionary models. As a result of this study we
have reached a number of conclusions that are obviously in relation with previous research and that we will discuss
in the following. In some cases, these are generalizations of known results to wider sets of games and update rules,
as for example for the issue of the synchrony of the updating of strategies [73,77,78,95,96,100,103] or the effect of
small-world networks vs regular lattices [84,96,104,105]. In other cases, the more general view of our analysis has
allowed us to integrate apparently contradictory results in the literature, as the cooperation on Prisoner’s Dilemma
vs. Snowdrift games [73,92–94,96], or the importance of clustering in spatial lattices [85,89,96]. Other conclusions
of ours, however, refute what seems to be established opinions in the field, as the alleged robustness of the positive
influence of spatial structure on Prisoner’s Dilemma [73,74,77]. And finally, we have reached novel conclusions that
have not been highlighted by previous research, as the robustness of the influence of spatial structure on coordination
games, or the asymmetry between the effects on games with mixed equilibria (coordination and anti-coordination
games) and how it varies with the intensity of selection.
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It is important to make clear from the beginning that evolutionary games on networks may be sensitive to another
source of variation with respect to replicator dynamics besides the introduction of spatial correlations. This source is
the update rule, i.e. the rule that defines the evolution dynamics of individuals’ strategies, whose influence seems to
have been overlooked [74]. Strictly speaking, only when the model implements the so-called replicator rule (see be-
low) one is considering the effect of the restriction of relationships that the population structure implies, in comparison
with standard replicator dynamics. When using a different update rule, however, we are adding a second dimension
of variability, which amounts to relax another assumption of replicator dynamics, namely number 4, which posits a
population variation linear in the difference of payoffs (see Section 2). We will show extensively that this issue may
have a huge impact on the evolutionary outcome.

In fact, we will see that there is not a general influence of population structure on evolutionary games. Even for a
particular type of network, its influence on cooperation depends largely on the kind of game and the specific update
rule. All one can do is to identify relevant topological characteristics that have a consistent effect on a broad range
of games and update rules, and explain this influence in terms of the same basic principles. To this end, we will be
looking at the asymptotic states for different values of the game parameters, and not at how the system behaves when
the parameters are varied, which would be an approach of a more statistical mechanics character. In this respect, it is
worth pointing out that some studies did use this perspective: thus, it has been shown that the extinction transitions
when the temptation parameter varies within the Prisoner’s Dilemma game and the evolutionary dynamics is stochastic
fall in the directed percolation universality class, in agreement with a well known conjecture [106]. In particular,
some of the pioneering works in using a physics viewpoint on evolutionary games [82,107] have verified this result
for specific models. The behavior changes under deterministic rules such as unconditional imitation (see below), for
which this extinction transition is discontinuous.

Although our ultimate interest may be the effect on the evolution of cooperation, measuring to which extent co-
operation is enforced or inhibited is not enough to clarify this effect. As in previous sections, our basic observables
will be the dynamical equilibria of the model, in comparison with the equilibria of our reference model with standard
replicator dynamics – which, as we have explained in Section 2, are closely related to those of the basic game. The
understanding of how the population structure modifies qualitatively and quantitatively these equilibria will give us a
much clearer view on the behavior and properties of the model under study, and hence on its influence on coopera-
tion.

4.1. Network models and update rules

Many kinds of networks have been considered as models for population structure (for recent reviews on networks,
see [108,109]). A first class includes networks that introduce a spatial arrangement of relationships, which can rep-
resent territorial or physical constraints in the interactions between individuals. Typical examples of this group are
regular lattices, with different degrees of neighborhood. Other important group is that of synthetic networks that try
to reproduce important properties that have been found in real networks, such as the small-world or scale-free proper-
ties. Prominent examples among these are Watts–Strogatz small-world networks [110] and Barabási–Albert scale-free
networks [111]. Finally, “real” social networks that come directly from experimental data have also been studied, as
for example in [112,113].

As was stated before, one crucial component of the evolutionary models that we are discussing in this section is
the update rule, which determines how the strategy of individuals evolves in time. There is a very large variety of
update rules that have been used in the literature, each one arising from different backgrounds. The most important
for our purposes is the replicator rule, also known as the proportional imitation rule, which is inspired on replicator
dynamics and we describe in the following.5 Let i = 1 . . .N label the individuals in the population. Let si be the
strategy of player i, Wi her payoff and Ni her neighborhood, with ki neighbors. One neighbor j of player i is chosen
at random, j ∈ Ni . The probability of player i adopting the strategy of player j is given by

5 To our knowledge, Helbing was the first to show that a macroscopic population evolution following replicator dynamics could be induced by a
microscopic imitative update rule [114,115]. Schlag proved later the optimality of such a rule under certain information constraints, and named it
proportional imitation [116].
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Fig. 9. Asymptotic density of cooperators x∗ with the replicator rule on a complete network, when the initial density of cooperators is x0 = 1/3
(left, A), x0 = 1/2 (middle, B) and x0 = 2/3 (right, C). This is the standard outcome for a well-mixed population with replicator dynamics, and
thus constitutes the reference to assess the influence of a given population structure (see main text for further details).
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with Φ appropriately chosen as a function of the payoffs to ensure P{·} ∈ [0,1].
The reason for the name of this rule is the fact that the equation of evolution with this update rule, for large sizes

of the population, is equal, up to a time scale factor, to that of replicator dynamics [9,11]. Therefore, the complete
network with the replicator rule constitutes the finite-size, discrete-time version of replicator dynamics on an infinite,
well-mixed population in continuous time. Fig. 9 shows the evolutionary outcome of this model, in the same type of
plot as subsequent results in this section. Each panel of this figure displays the asymptotic density of cooperators x∗ for
a different initial density x0, in a grid of points in the ST -plane of games. The payoff matrix of each game is given by

(36)

( C D

C 1 S

D T 0

)
.

We will consider the generality of this choice of parameters at the end of this section, after introducing the
other evolutionary rules. Note that, in the notation of Section 3, we have taken WCC = 1, WCD = S, WDC = T ,
WDD = 0; note also that for these payoffs, the normalizing factor in the replicator rule can be chosen as Φ =
max(ki, kj )(max(1, T ) − min(0, S)). In this manner, we visualize the space of symmetric 2 × 2 games as a plane
of co-ordinates S and T – for Sucker’s and Temptation, which are the respective payoffs of a cooperator and a de-
fector when confronting each other. The four quadrants represented correspond to the following games: Harmony
(upper left), Stag Hunt (lower left), Snowdrift or Hawk–Dove (upper right) and Prisoner’s Dilemma (lower right). As
expected, these results reflect the close relationship between the equilibria of replicator dynamics and the equilibria
of the basic game. Thus, all Harmony games end up in full cooperation and all Prisoner’s Dilemmas in full defection,
regardless of the initial condition. Snowdrift games reach a mixed strategy equilibrium, with density of cooperators
xe = S/(S + T − 1). Stag Hunt games are the only ones whose outcome depends on the initial condition, because
of their bistable character with an unstable equilibrium also given by xe. To allow a quantitative comparison of the
degree of cooperation in each game, we have introduced a quantitative index, the average cooperation over the region
corresponding to each game, which appears beside each quadrant. The results in Fig. 9 constitute the reference against
which the effect of population structure will be assessed in the following.

One interesting variation of the replicator rule is the multiple replicator rule, whose difference consists on checking
simultaneously all the neighborhood and thus making more probable a strategy change. With this rule the probability
that player i maintains her strategy is

(37)P
{
st
i → st+1

i

} =
∏
j∈Ni

(
1 − pt

ij

)
,

with pt
ij given by (35). In case the strategy update takes place, the neighbor j whose strategy is adopted by player i is

selected with probability proportional to pt
ij .
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A different option is the following Moran-like rule, also called Death–Birth rule, inspired on the Moran dynamics,
described in Section 3. With this rule a player chooses the strategy of one of her neighbors, or herself’s, with a
probability proportional to the payoffs

(38)P
{
st
j → st+1

i

} = Wt
j − Ψ∑

k∈N∗
i
(W t

k − Ψ )
,

with N∗
i = Ni ∪ {i}. Because payoffs may be negative in Prisoner’s Dilemma and Stag Hunt games, the constant

Ψ = maxj∈N∗
i
(kj )min(0, S) is subtracted from them. Note that with this rule a player can adopt, with low probability,

the strategy of a neighbor that has done worse than herself.
The three update rules presented so far are imitative rules. Another important example of this kind is the uncon-

ditional imitation rule, also known as the “follow the best” rule [73]. With this rule each player chooses the strategy
of the individual with largest payoff in her neighborhood, provided this payoff is greater than her own. A crucial
difference with the previous rules is that this one is a deterministic rule.

Another rule that has received a lot of attention in the literature, specially in economics, is the best response
rule. In this case, instead of some kind of imitation of neighbor’s strategies based on payoff scoring, the player has
enough cognitive abilities to realize whether she is playing an optimum strategy (i.e. a best response) given the current
configuration of her neighbors. If it is not the case, she adopts with probability p that optimum strategy. It is clear that
this rule is innovative, as it is able to introduce strategies not present in the population, in contrast with the previous
purely imitative rules.

Finally, an update rule that has been widely used in the literature, because of being analytically tractable, is the
Fermi rule, based on the Fermi distribution function [82,117,118]. With this rule, a neighbor j of player i is selected
at random (as with the replicator rule) and the probability of player i acquiring the strategy of j is given by

(39)P
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} = 1

1 + exp(−β(Wt
j − Wt

i ))
.

The parameter β controls the intensity of selection, and can be understood as the inverse of temperature or noise in
the update rule. Low β represents high temperature or noise and, correspondingly, weak selection pressure. Whereas
this rule has been employed to study resonance-like behavior in evolutionary games on lattices [119], we use it in this
work to deal with the issue of the intensity of selection (see Section 4.6).

Having introduced the evolutionary rules we will consider, it is important to recall our choice for the payoff matrix
(36), and discuss its generality. Most of the rules (namely the replicator, the multiple replicator, the unconditional
imitation and the best response rules) are invariant on homogeneous networks6 under translation and (positive) scaling
of the payoff matrix. Among the remaining rules, the dynamics changes upon translation for the Moran rule and upon
scaling for the Fermi rule. The corresponding changes in these last two cases amount to a modification of the intensity
of selection, which we also treat in this work. Therefore, we consider that the parameterization of (36) is general
enough for our purposes.

It is also important to realize that for a complete network, i.e. for a well-mixed or unstructured population, the
differences between update rules may be not relevant, as far as they do not change in general the evolutionary out-
come [121]. These differences, however, become crucial when the population has some structure, as we will point out
in the following.

The results displayed in Fig. 9 have been obtained analytically, but the remaining results of this section come
from the simulation of agent-based models. In all cases, the population size is N = 104 and the allowed time for
convergence is 104 time steps, which we have checked it is enough to reach a stationary state. One time step represents
one update event for every individual in the population, exactly in the case of synchronous update and on average in
the asynchronous case, so it could be considered as one generation. The asymptotic density of cooperators is obtained
averaging over the last 103 time steps, and the values presented in the plots are the result of averaging over 100
realizations. Cooperators and defectors are randomly located at the beginning of evolution and, when applicable,
networks have been built with periodic boundary conditions. See [101] for further details.

6 The invariance under translations of the payoff matrix does not hold if the network is heterogenous. In this case, players with higher degrees
receive comparatively more (less) payoff under positive (negative) translations. Only very recently has this issue been studied in the literature [120].
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Fig. 10. Asymptotic density of cooperators x∗ in a square lattice with degree k = 8 and initial density of cooperators x0 = 0.5, when the game
is the Prisoner’s Dilemma as given by (40), proposed by Nowak and May [73]. Note that the outcome with replicator dynamics on a well-mixed
population is x∗ = 0 for all the displayed range of the temptation parameter T . Notice also the singularity at T = 1.4 with unconditional imitation.
The surrounding points are located at T = 1.3999 and T = 1.4001.

4.2. Spatial structure and homogeneous networks

In 1992 Nowak and May published a very influential paper [73], where they showed the dramatic effect that the
spatial distribution of a population could have on the evolution of cooperation. This has become the prototypical exam-
ple of the promotion of cooperation favored by the structure of a population, also known as network reciprocity [19].
They considered the following Prisoner’s Dilemma:

(40)

( C D

C 1 0

D T ε

)
,

with 1 � T � 2 and ε � 0. Note that this one-dimensional parameterization corresponds in the ST -plane to a line very
near the boundary with Snowdrift games.

Fig. 10 shows the great fostering of cooperation reported by [73]. The authors explained this influence in terms
of the formation of clusters of cooperators, which give cooperators enough payoff to survive even when surrounded
by some defectors. This model has a crucial detail, whose importance we will stress later: The update rule used is
unconditional imitation.

Since the publication of this work many studies have investigated related models with different games and net-
works, reporting qualitatively consistent results [20]. However, Hauert and Doebeli published in 2004 another im-
portant result [93], which casted a shadow of doubt on the generality of the positive influence of spatial structure on
cooperation. They studied the following parameterization of Snowdrift games:

(41)

( C D

C 1 2 − T

D T 0

)
,

with 1 � T � 2 again.
The unexpected result obtained by the authors is displayed in Fig. 11. Only for low T there is some improvement

of cooperation, whereas for medium and high T cooperation is inhibited. This is a surprising result, because the
basic game, the Snowdrift, is in principle more favorable to cooperation. As we have seen above, its only stable
equilibrium is a mixed strategy population with some density of cooperators, whereas the unique equilibrium in
Prisoner’s Dilemma is full defection (see Fig. 9). In fact, a previous paper by Killingback and Doebeli [92] on the
Hawk–Dove game, a game equivalent to the Snowdrift game, had reported an effect of spatial structure equivalent to
a promotion of cooperation.
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Fig. 11. Asymptotic density of cooperators x∗ in a square lattice with degree k = 8 and initial density of cooperators x0 = 0.5, when the game is
the Snowdrift game as given by (41), proposed by Hauert and Doebeli [93]. The result for a well-mixed population is displayed as a reference as a
dashed line.

Fig. 12. Asymptotic density of cooperators x∗ in square lattices with degree k = 8 and initial density of cooperators x0 = 0.5, for both Prison-
er’s Dilemma (40) and Snowdrift games (41), displayed separately according to the update rule: (a) unconditional imitation (Nowak and May’s
model [73]), (b) replicator rule (Hauert and Doebeli’s model [93]). The result for Snowdrift in a well-mixed population is displayed as a reference
as a dashed line. It is clear the similar influence of regular lattices on both games, when the key role of the update rule is taken into account (see
main text for details).

Hauert and Doebeli explained their result in terms of the hindrance to cluster formation and growth, at the micro-
scopic level, caused by the payoff structure of the Snowdrift game. Notwithstanding the different cluster dynamics
in both games, as observed by the authors, a hidden contradiction looms in their argument, because it implies some
kind of discontinuity in the microscopic dynamics in the crossover between Prisoner’s Dilemma and Snowdrift games
(S = 0,1 � T � 2). However, the equilibrium structure of both basic games, which drives this microscopic dynamics,
is not discontinuous at this boundary, because for both games the only stable equilibrium is full defection. So, where
does this change in the cluster dynamics come from?

The fact is that there is not such a difference in the cluster dynamics between Prisoner’s Dilemma and Snowdrift
games, but different update rules in the models. Nowak and May [73], and Killingback and Doebeli [92], used the
unconditional imitation rule, whereas Hauert and Doebeli [93] employed the replicator rule. The crucial role of the
update rule becomes clear in Fig. 12, where results in Prisoner’s Dilemma and Snowdrift are depicted separately for
each update rule. It shows that, if the update rule used in the model is the same, the influence on both games, in
terms of promotion or inhibition of cooperation, has a similar dependence on T . For both update rules, cooperation
is fostered in Prisoner’s Dilemma and Snowdrift at low values of T , and cooperation is inhibited at high T . Note that
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Fig. 13. Asymptotic density of cooperators x∗ in homogeneous random networks (upper row, A to C) compared to regular lattices (lower row, D
to F), with degrees k = 4 (A, D), 6 (B, E) and 8 (C, F). The update rule is the replicator rule and the initial density of cooperators is x0 = 0.5. The
plots show that the main influence occurs in Stag Hunt and Snowdrift games, specially for regular lattices with large clustering coefficient, k = 6
and 8 (see main text).

with unconditional imitation the crossover between both behaviors takes place at T ≈ 1.7, whereas with the replicator
rule it occurs at a much lower value of T ≈ 1.15. The logic behind this influence is better explained in the context of
the full ST -plane, as we will show later.

The fact that this apparent contradiction has been resolved considering the role of the update rule is a good example
of its importance. This conclusion is in agreement with those of [96], which performed an exhaustive study on Snow-
drift games with different network models and update rules, but refutes those of [74], which defended that the effect
of spatial lattices was almost independent of the update rule. In consequence, the influence of the network models
that we consider in the following is presented separately for each kind of update rule, highlighting the differences in
results when appropriate. Apart from this, to assess and explain the influence of spatial structure, we need to consider
it along with games that have different equilibrium structures, not only a particular game, in order to draw sufficiently
general conclusions. One way to do it is to study their effect on the space of 2 × 2 games described by the parameters
S and T (36). A first attempt was done by Hauert [74], but some problems in this study make it inconclusive (see
[101] for details on this issue).

Apart from lattices of different degrees (4, 6 and 8), we have also considered homogeneous random networks, i.e.
random networks where each node has exactly the same number of neighbors. The aim of comparing with this kind
of networks is to isolate the effect of the spatial distribution of individuals from that of the mere limitation of the
number of neighbors and the context preservation [85] of a degree-homogeneous random network. The well-mixed
population hypothesis implies that every player plays with the “average” player in the population. From the point of
view of the replicator rule this means that every player samples successively the population in each evolution step. It
is not unreasonable to think that if the number of neighbors is sufficiently restricted the result of this random sampling
will differ from the population average, thus introducing changes in the evolutionary outcome.

Fig. 13 shows the results for the replicator rule with random and spatial networks of different degrees. First, it
is clear that the influence of these networks is negligible on Harmony games and minimal on Prisoner’s Dilemmas,
given the reduced range of parameters where it is noticeable. There is, however, a clear influence on Stag Hunt and
Snowdrift games, which is always of opposite sign: An enhancement of cooperation in Stag Hunt and an inhibition in
Snowdrift. Second, it is illuminating to consider the effect of increasing the degree. For the random network, it means
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that its weak influence vanishes. The spatial lattice, however, whose result is very similar to that of the random one
for the lowest degree (k = 4), displays remarkable differences for the greater degrees (k = 6 and 8). These differences
are a clear promotion of cooperation in Stag Hunt games and a lesser, but measurable, inhibition in Snowdrift games,
specially for low S.

The relevant topological feature that underlies this effect is the existence of clustering in the network, understood
as the presence of triangles or, equivalently, common neighbors [108,109]. In regular lattices, for k = 4 there is no
clustering, but there is for k = 6 and 8. This point explains the difference between the conclusions of Cohen et al. [85]
and those of Ifti et al. [89] and Tomassini et al. [96], regarding the role of network clustering in the effect of spatial
populations. In [85], rectangular lattices of degree k = 4 were considered, which have strictly zero clustering because
there are not closed triangles in the network, hence finding no differences in outcome between the spatial and the
random topology. In the latter case, on the contrary, both studies employed rectangular lattices of degree k = 8, which
do have clustering, and thus they identified it as a key feature of the network, for particular parameterizations of the
games they were studying, namely Prisoner’s Dilemma [89] and Snowdrift [96].

An additional evidence for this conclusion is the fact that small-world networks, which include random links to
reduce the average path between nodes while maintaining the clustering, produce almost indistinguishable results from
those of Fig. 13 D–F. This conclusion is in agreement with existent theoretical work about small-world networks, on
Prisoner’s Dilemma [84,104,105] and its extensions [122,123], on Snowdrift games [96], and also with experimental
studies on coordination games [124]. The difference between the effect of regular lattices and small-world networks
consists, in general, in a greater efficiency of the latter in reaching the stationary state (see [101] for a further discussion
on this comparison).

The mechanism that explains this effect is the formation and growth of clusters of cooperators, as Fig. 14 displays
for a particular realization. The outcome of the population is then totally determined by the stability and growth of
these clusters, which in turn depend on the dynamics of clusters interfaces. This means that the result is no longer
determined by the global population densities but by the local densities that the players at the cluster interfaces see
in their neighborhood. In fact, the primary effect that the network clustering causes is to favor, i.e., to maintain or
to increase, the high local densities that were present in the population from the random beginning. This favoring
produces opposite effects in Stag Hunt and Snowdrift games. As an illustrating example, consider that the global
density is precisely that of the mixed equilibrium of the game. In Stag Hunt games, as this equilibrium is unstable,
a higher local density induces the conversion of nearby defectors to cooperators, thus making the cluster grow. In
Snowdrift games, on the contrary, as the equilibrium is stable, it causes the conversion of cooperators to defectors.
See [101] for a full discussion on this mechanism.

In view of this, recalling that these are the results for the replicator rule, and that therefore they correspond to the
correct update rule to study the influence of population structure on replicator dynamics, we can state that the pres-
ence of clustering (triangles, common neighbors) in a network is a relevant topological feature for the evolution of
cooperation. Its main effects are, on the one hand, a promotion of cooperation in Stag Hunt games, and, on the other
hand, an inhibition (of lower magnitude) in Snowdrift games. We note, however, that clustering may not be the only
relevant factor governing the game asymptotics: one can devise peculiar graphs, not representing proper spatial struc-
ture, where other influences prove relevant. This is the case of networks consisting of a complete subgraphs connected
to each other by a few connections [119], a system whose behavior, in spite of the high clustering coefficient, is sim-
ilar to those observed on the traditional square lattice where the clustering coefficient is zero. This was subsequently
related [125] to the existence of overlapping triangles that support the spreading of cooperation. We thus see that our
claim about the outcome of evolutionary games on networks with clustering is anything but general and depends on
the translational invariance of the network.

Other stochastic non-innovative rules, such as the multiple replicator and Moran rules, yield similar results, without
qualitative differences [101]. Unconditional imitation, on the contrary, has a very different influence, as can be seen
in Fig. 15.

In the first place, homogenous random networks themselves have a marked influence, that increases with network
degree for Stag Hunt and Snowdrift games, but decreases for Prisoner’s Dilemmas. Secondly, there are again no
important differences between random and spatial networks if there is no clustering in the network (note how the
transitions between the different regions in the results are the same). There are, however, stark differences when there
is clustering in the network. Interestingly, these are the cases with an important promotion of cooperation in Snowdrift
and Prisoner’s Dilemma games.
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Fig. 14. Snapshots of the evolution of a population on a regular lattice of degree k = 8, playing a Stag Hunt game (S = −0.65 and T = 0.65).
Cooperators are displayed in red and defectors in blue. The update rule is the replicator rule and the initial density of cooperators is x0 = 0.5. The
upper left label shows the time step t . During the initial steps, cooperators with low local density of cooperators in their neighborhood disappear,
whereas those with high local density grow into the clusters that eventually take up the complete population. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

In this case, the dynamical mechanism is the formation and growth of clusters of cooperators as well, and the fate
of the population is again determined by the dynamics of cluster interfaces. With unconditional imitation, however,
given its deterministic nature, interfaces advance one link every time step. This makes very easy the calculation of the
conditions for their advancement, because these conditions come down to those of a flat interface between cooperators
and defectors [101]. See Fig. 16 for a typical example of evolution.

An interesting consequence of the predominant role of flat interfaces with unconditional imitation is that, as long
as there is in the initial population a flat interface (i.e., a cluster with it, as for example a 3 × 2 cluster in a 8-neighbor
lattice), the cluster will grow and eventually extend to the entire population. This feature corresponds to the 3 × 3
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Fig. 15. Asymptotic density of cooperators x∗ in homogeneous random networks (upper row, A to C) compared to regular lattices (lower row, D
to F), with degrees k = 4 (A, D), 6 (B, E) and 8 (C, F). The update rule is unconditional imitation and the initial density of cooperators is x0 = 0.5.
Again as in Fig. 13, spatial lattices have greater influence than random networks when the clustering coefficient is high (k = 6 and 8). In this case,
however, the beneficial effect for cooperation goes well into Snowdrift and Prisoner’s Dilemma quadrants.

cluster rule proposed by Hauert [74], which relates the outcome of the entire population to that of a cluster of this size.
This property makes the evolutionary outcome quite independent of the initial density of cooperators, because even for
a low initial density the probability that a suitable small cluster exists will be high for sufficiently large populations;
see Fig. 17 D–F about the differences in initial conditions. Nevertheless, it is important to realize that this rule is
based on the dynamics of flat interfaces and, therefore, it is only valid for unconditional imitation. Other update rules
that also give rise to clusters, as replicator rule for example, develop interfaces with different shapes, rendering the
particular case of flat interfaces irrelevant. As a consequence, the evolution outcome becomes dependent on the initial
condition, as Fig. 17 A–C displays.

In summary, the relevant topological feature of these homogeneous networks, for the games and update rules
considered so far, is the clustering of the network. Its effect depends largely on the update rule, and the most that can
be said in general is that, besides not affecting Harmony games, it consistently promotes cooperation in Stag Hunt
games.

4.3. Synchronous vs asynchronous update

Huberman and Glance [103] questioned the generality of the results reported by Nowak and May [73], in terms
of the synchronicity of the update of strategies. Nowak and May used synchronous update, which means that every
player is updated at the same time, so the population evolves in successive generations. Huberman and Glance, in
contrast, employed asynchronous update (also called random sequential update), in which individuals are updated
independently one by one, hence the neighborhood of each player always remains the same while her strategy is be-
ing updated. They showed that, for a particular game, the asymptotic cooperation obtained with synchronous update
disappeared. This has become since then one of the most well-known and cited examples of the importance of syn-
chronicity in the update of strategies in evolutionary models. Subsequent works have, in turn, criticized the importance
of this issue, showing that the conclusions of [73] are robust [77,126], or restricting the effect reported by [103] to
particular instances of Prisoner’s Dilemma [78] or to the short memory of players [100]. Other works, however, in the
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Fig. 16. Snapshots of the evolution of a population on a regular lattice of degree k = 8, playing a Stag Hunt game (S = −0.65 and T = 0.65).
Cooperators are displayed in red and defectors in blue. The update rule is unconditional imitation and the initial density of cooperators is x0 = 1/3
(this lower value than that of Fig. 14 has been used to make the evolution longer and thus more easily observable). The upper left label shows
the time step t . As with the replicator rule (see Fig. 14), during the initial time steps clusters emerge from cooperators with high local density of
cooperators in their neighborhood. In this case, the interfaces advance deterministically at each time step, thus giving a special significance to flat
interfaces and producing a much faster evolution than with the replicator rule (compare time labels with those of Fig. 14). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

different context of Snowdrift games [95,96] have found that the influence on cooperation can be positive or negative,
in the asynchronous case compared with the synchronous one.

We have thoroughly investigated this issue, finding that the effect of synchronicity in the update of strategies is
the exception rather than the rule. With the replicator rule, for example, the evolutionary outcome in both cases is
virtually identical, as Fig. 18 A–B shows. Moreover, in this case, the time evolution is also very similar (see Fig. 19
A–B). With unconditional imitation there are important differences only in one particular subregion of the space of
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Fig. 17. Asymptotic density of cooperators x∗ in regular lattices of degree k = 8, for different initial densities of cooperators x0 = 1/3 (A, D),
1/2 (B, E) and 2/3 (C, F). The update rules are the replicator rule (upper row, A to C) and unconditional imitation (lower row, D to F). With the
replicator rule, the evolutionary outcome in Stag Hunt games depends on the initial condition, as is revealed by the displacement of the transition
line between full cooperation and full defection. However, with unconditional imitation this transition line remains in the same position, thus
showing the insensitivity to the initial condition. In this case, the outcome is determined by the presence of small clusters of cooperators in the
initial random population, which takes place for a large range of values of the initial density of cooperators x0.

parameters, corresponding mostly to Snowdrift games, to which the specific game studied by Huberman and Glance
belongs (see Figs. 18 C–D and 19 C–D).

4.4. Heterogeneous networks

The other important topological feature for evolutionary games was introduced by Santos and co-workers [75,127,
128], who studied the effect of degree heterogeneity, in particular scale-free networks. Their main result is shown in
Fig. 20, which displays the variation in the evolutionary outcome induced by increasing the variance of the degree
distribution in the population, from zero (homogeneous random networks) to a finite value (Erdős–Rényi random
networks), and then to infinity (scale-free networks). The enhancement of cooperation as degree heterogeneity in-
creases is very clear, specially in the region of Snowdrift games. The effect is not so strong, however, in Stag Hunt
or Prisoner’s Dilemma games. Similar conclusions are obtained with other scale-free topologies, as for example with
Klemm–Eguíluz scale-free networks [129]. Very recently, it has been shown [130] that much as we discussed above
for the case of spatial structures, clustering is also a factor improving the cooperative behavior in scale-free networks.

The positive influence on Snowdrift games is quite robust against changes in network degree and the use of other
update rules. On the other hand, the influence on Stag Hunt and Prisoner’s Dilemma games is quite restricted and
very dependent on the update rule, as Fig. 21 reveals. In fact, with unconditional imitation cooperation is inhibited in
Stag Hunt games as the network becomes more heterogeneous, whereas in Prisoner’s Dilemmas it seems to have a
maximum at networks with finite variance in the degree distribution.

A very interesting insight from the comparison between the effects of network clustering and degree heterogeneity
is that they mostly affect games with one equilibrium in mixed strategies, and that in addition the effects on these
games are different. This highlights the fact that they are different fundamental topological properties, which induce
mechanisms of different nature. In the case of network clustering we have seen the formation and growth of clusters
of cooperators. For network heterogeneity the phenomena is the bias and stabilization of the strategy oscillations in
Snowdrift games towards the cooperative strategy [131,132], as we explain in the following. The asymptotic state of
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Fig. 18. Asymptotic density of cooperators x∗ in regular lattices of degree k = 8, with synchronous update (left, A and C) compared to asynchronous
(right, B and D). The update rules are the replicator rule (upper row) and unconditional imitation (lower row). The initial density of cooperators is
x0 = 0.5. For the replicator rule, the results are virtually identical, showing the lack of influence of the synchronicity of update on the evolutionary
outcome. In the case of unconditional imitation the results are very similar, but there are differences for some points, specially Snowdrift games
with S � 0.3 and T > 5/3 ≈ 1.67. The particular game studied by Huberman and Glance [103], which reported a suppression of cooperation due
to asynchronous update, belongs to this region.

Snowdrift games in homogeneous networks consists of a mixed strategy population, where every individual oscillates
permanently between cooperation and defection. Network heterogeneity tends to prevent this oscillation, making play-
ers in more connected sites more prone to be cooperators. At first, having more neighbors makes any individual receive
more payoff, despite her strategy, and hence she has an evolutionary advantage. For a defector, this is a short-lived
advantage, because it triggers the change of her neighbors to defectors, thus loosing payoff. A high payoff cooperator,
on the contrary, will cause the conversion of her neighbors to cooperators, increasing even more her own payoff. These
highly connected cooperators constitute the hubs that drive the population, fully or partially, to cooperation. It is clear
that this mechanism takes place when cooperators collect more payoff from a greater neighborhood, independently of
their neighbors’ strategies. This only happens when S > 0, which is the reason why the positive effect on cooperation
of degree heterogeneity is mainly restricted to Snowdrift games.

4.5. Best response update rule

So far, we have dealt with imitative update rules, which are non-innovative. Here we present the results for an
innovative rule, namely best response. With this rule each player chooses, with certain probability p, the strategy that
is the best response for her current neighborhood. This rule is also referred to as myopic best response, because the
player only takes into account the last evolution step to decide the optimum strategy for the next one. Compared to
the rules presented previously, this one assumes more powerful cognitive abilities on the individual, as she is able to
discern the payoffs she can obtain depending on her strategy and those of her neighbors, in order to chose the best
response. From this point of view, it constitutes a next step in the sophistication of update rules.

An important result of the influence of this rule for evolutionary games was published in 2005 by Sysi-Aho and
co-workers [94]. They studied the combined influence of this rule with regular lattices, in the same one-dimensional
parameterization of Snowdrift games (41) that was employed by Hauert and Doebeli [93]. They reported a modifica-
tion in the cooperator density at equilibrium, with an increase for some subrange of the parameter T and a decrease
for the other, as Fig. 22 shows.
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Fig. 19. Time evolution of the density of cooperators x in regular lattices of degree k = 8, for typical realizations of Stag Hunt (left, A and C) and
Snowdrift games (right, B and D), with synchronous (continuous lines) or asynchronous (dashed lines) update. The update rules are the replicator
rule (upper row) and unconditional imitation (lower row). The Stag Hunt games for the replicator rule (A) are: a, S = −0.4, T = 0.4; b, S = −0.5,
T = 0.5; c, S = −0.6, T = 0.6; d, S = −0.7, T = 0.7; e, S = −0.8, T = 0.8. For unconditional imitation the Stag Hunt games (C) are: a, S = −0.6,
T = 0.6; b, S = −0.7, T = 0.7; c, S = −0.8, T = 0.8; d, S = −0.9, T = 0.9; e, S = −1.0, T = 1.0. The Snowdrift games are, for both update rules
(B, D): a, S = 0.9, T = 1.1; b, S = 0.7, T = 1.3; c, S = 0.5, T = 1.5; d, S = 0.3, T = 1.7; e, S = 0.1, T = 1.9. The initial density of cooperators
is x0 = 0.5. The time scale of the asynchronous realizations has been re-scaled by the size of the population, so t hat for both kinds of update a
time step represents the same number of update events in the population. Figures A and B show that, in the case of the replicator rule, not only
the outcome but also the time evolution is independent of the update synchronicity. With unconditional imitation the results are also very similar
for Stag Hunt (C), but somehow different in Snowdrift (D) for large T , displaying the influence of synchronicity in this subregion. Note that in all
cases unconditional imitation yields a much faster evolution than the replicator rule.

Fig. 20. Asymptotic density of cooperators x∗ with the replicator update rule, for model networks with different degree heterogeneity: homogeneous
random networks (left, A), Erdős–Rényi random networks (middle, B) and Barabási–Albert scale-free networks (right, C). In all cases the average
degree is k̄ = 8 and the initial density of cooperators is x0 = 0.5. As degree heterogeneity grows, from left to right, cooperation in Snowdrift games
is clearly enhanced.

At the moment, it was intriguing that regular lattices had opposite effects (promotion or inhibition of cooperation)
in some ranges of the parameter T , depending on the update rule used in the model. Very recently we have carried
out a thorough investigation of the influence of this update rule on a wide range of networks [102], focusing on the
key topological properties of network clustering and degree heterogeneity. The main conclusion of this study is that,
with only one relevant exception, the best response rule suppresses the effect of population structure on evolutionary
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Fig. 21. Asymptotic density of cooperators x∗ with unconditional imitation as update rule, for model networks with different degree heterogeneity:
homogeneous random networks (left, A), Erdős–Rényi random networks (middle, B) and Barabási–Albert scale-free networks (right, C). In all
cases the average degree is k̄ = 8 and the initial density of cooperators is x0 = 0.5. As degree heterogeneity grows, from left to right, cooperation
in Snowdrift games is enhanced again. In this case, however, cooperation is inhibited in Stag Hunt games and reaches a maximum in Prisoner’s
Dilemmas for Erdős–Rényi random networks.

Fig. 22. Asymptotic density of cooperators x∗ in a square lattice with degree k = 8 and best response as update rule, in the model with Snowdrift
(41) studied by Sysi-Aho and co-workers [94]. The result for a well-mixed population is displayed as a reference. Note how the promotion or
inhibition of cooperation does not follow the same variation as a function of T than in the case with the replicator rule studied by Hauert and
Doebeli [93] (Fig. 11).

games. Fig. 23 shows a summary of these results. In all cases the outcome is very similar to that of replicator dynamics
on well-mixed populations (Fig. 9), despite the fact that the networks studied explore different options of network
clustering and degree heterogeneity. The steps in the equilibrium density of Snowdrift games, as those reported in
[94], show up in all cases, with slight variations which depend mostly on the mean degree of the network.

The exception to the absence of network influence is the case of regular lattices, and consists of a modification
of the unstable equilibrium in Stag Hunt games, in the sense that it produces a promotion of cooperation for initial
densities lower than 0.5 and a corresponding symmetric inhibition for greater densities. An example of this effect is
given in Fig. 24, where the outcome should be compared to that of well-mixed populations in Fig. 9A. The reason for
this effect is that the lattice creates special conditions for the advancement (or receding) of the interfaces of clusters
of cooperators. We refer the interested reader to [102] for a detailed description of this phenomena. Very remarkably,
in this case network clustering is not relevant, because the effect also takes place for degree k = 4, at which there is
no clustering in the network.

4.6. Weak selection

This far, we have considered the influence of population structure in the case of strong selection pressure, which
means that the fitness of individuals is totally determined by the payoffs resulting from the game. In general this may
not be the case, and then to relax this restriction the fitness can be expressed as f = 1 −w +wπ [133]. The parameter
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Fig. 23. Asymptotic density of cooperators x∗ in random (left, A and D), regular (middle, B and E), and scale-free networks (right, C and F)
with average degrees k̄ = 4 (upper row, A to C) and 8 (lower row, D to F). The update rule is best response with p = 0.1 and the initial density
of cooperators is x0 = 0.5. Differences are negligible in all cases; note, however, that the steps appearing in the Snowdrift quadrant are slightly
different.

Fig. 24. Asymptotic density of cooperators x∗ in regular lattices with initial density of cooperators x0 = 1/3. The degrees are k = 4 (left, A),
k = 6 (middle, B) and k = 8 (right, C). The update rule is best response with p = 0.1. Comparing with Fig. 9A, there is a clear displacement of
the boundary between full defection and full cooperation in Stag Hung games, which amounts to a promotion of cooperation. The widening of the
border in panel C is a finite size effect, which disappears for larger populations. See main text for further details.

w represents the intensity of selection and can vary between w = 1 (strong selection limit) and w � 0 (weak selection
limit). With a different parameterization, this implements the same idea as the baseline fitness discussed in Section 3.
We note that another interpretation has been recently proposed [134] for this limit, namely δ-weak selection, which
assumes that the game means much to the determination of reproductive success, but that selection is weak because
mutant and wild-type strategies are very similar. This second interpretation leads to different results [134] and we do
not deal with it here, but rather we stick with the first one, which is by far the most generally used.

The weak selection limit has the nice property of been tractable analytically. For instance, Ohtsuki and Nowak
have studied evolutionary games on homogeneous random networks using this approach [135], finding an interesting
relation with replicator dynamics on well-mixed populations. Using our normalization of the game (36), their main
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Fig. 25. Asymptotic density of cooperators x∗ in regular lattices of degree k = 8, for the Fermi update rule with β equal to 10 (A), 1 (B), 0.1 (C)
and 0.01 (D). The initial density of cooperators is x0 = 0.5. For high β the result is quite similar to that obtained with the replicator rule (Fig. 13F).
As β decreases, or equivalently for weaker intensities of selection, the influence becomes smaller and more symmetrical between Stag Hunt and
Snowdrift games.

result can be written as the following payoff matrix

(42)

(
1 S + 


T − 
 0

)
.

This means that the evolution in a population structured according to a random homogeneous network, in the weak
selection limit, is the same as that of a well-mixed population with a game defined by this modified payoff matrix.
The effect of the network thus reduces to the term 
, which depends on the game, the update rule and the degree k

of the network. With respect to the influence on cooperation it admits a very straightforward interpretation: If both
the original and the modified payoff matrices correspond to a Harmony or Prisoner’s Dilemma game, then there
is logically no influence, because the population ends up equally in full cooperation or full defection; otherwise,
cooperation is enhanced if 
 > 0, and inhibited if 
 < 0.

The actual values of 
, for the update rules Pairwise Comparison (PC), Imitation (IM) and Death–Birth (DB)
(see [135] for full details), are

(43)
PC = S − (T − 1)

k − 2
,

(44)
IM = k + S − (T − 1)

(k + 1)(k − 2)
,

(45)
DB = k + 3(S − (T − 1))

(k + 3)(k − 2)
,

k being the degree of the network. A very remarkable feature of these expressions is that for every pair of games with
parameters (S1, T1) and (S2, T2), if S1 − T1 = S2 − T2 then 
1 = 
2. Hence the influence on cooperation for such a
pair of games, even if one is a Stag Hunt and the other is a Snowdrift, will be the same. This stands in stark contrast
to all the reported results with strong selection, which generally exhibit different, and in many cases opposite, effects
on both games. Besides this, as the term S − (T − 1) is negative in all Prisoner’s Dilemmas and half the cases of Stag
Hunt and Snowdrift games, the beneficial influence on cooperation is quite reduced for degrees k as those considered
above [101].

Another way to investigate the influence of the intensity of selection if to employ the Fermi update rule, presented
above, which allows to study numerically the effect of varying the intensity of selection on any network model. Figs. 25
and 26 display the results obtained, for different intensities of selection, on networks that are prototypical examples
of strong influence on evolutionary games, namely regular lattices with high clustering and scale-free networks, with
large degree heterogeneity. In both cases, as the intensity of selection is reduced, the effect of the network becomes
weaker and more symmetrical between Stag Hunt and Snowdrift games. Therefore, these results show that the strong
and weak selection limits are not comparable from the viewpoint of the evolutionary outcome, and that weak selection
largely inhibits the influence of population structure.
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Fig. 26. Asymptotic density of cooperators x∗ in Barabási–Albert scale-free networks of average degree k̄ = 8, for the Fermi update rule with β

equal to 10 (A), 1 (B), 0.1 (C) and 0.01 (D). The initial density of cooperators is x0 = 0.5. As in Fig. 25, for high β the result is quite similar to that
obtained with the replicator rule (Fig. 20C), and analogously, as β decreases the influence of the network becomes smaller and more symmetrical
between Stag Hunt and Snowdrift games.

5. Conclusion and future prospects

In this review, we have discussed non-mean-field effects on evolutionary game dynamics. Our reference framework
for comparison has been the replicator equation, a pillar of modern evolutionary game theory that has produced many
interesting and fruitful insights on different fields. Our purpose here has been to show that, in spite of its many
successes, the replicator equation is only a part of the story, much in the same manner as mean-field theories have
been very important in physics but they cannot (nor are they intended to) describe all possible phenomena. The main
issues we have discussed are the influence of fluctuations, by considering the existence of more than one time scale,
and of spatial correlations, through the constraints on interaction arising from an underlying network structure. In
doing so, we have shown a wealth of evidence supporting our first general conclusion: Deviations with respect to the
hypothesis of a well-mixed population (including nonlinear dependencies of the fitness on the payoff or not) have a
large influence on the outcome of the evolutionary process and in a majority of cases do change the equilibria structure,
stability and/or basins of attraction.

The specific question of the existence of different time scales was discussed in Section 3. This is a problem that has
received some attention in economics but otherwise it has been largely ignored in biological contexts. In spite of this,
we have shown that considering fast evolution in the case of Ultimatum game may lead to a non-trivial, unexpected
conclusion: That individual selection may be enough to explain the experimental evidence that people do not behave
rationally. This is an important point in so far as, to date, simple individual selection was believed not to provide an
understanding of the phenomena of altruistic punishment reported in many experiments [56]. We thus see that the
effect of different time scales might be determinant and therefore must be considered among the relevant factors with
an influence on evolutionary phenomena.

This conclusion is reinforced by our general study of symmetric 2 × 2 symmetric games, that shows that the equi-
libria of about half of the possible games change when considering fast evolution. Changes are particularly surprising
in the case of the Harmony game, in which it turns out that when evolution is fast, the selected strategy is the “wrong”
one, meaning that it is the less profitable for the individual and for the population. Such a result implies that one has
to be careful when speaking of adaptation through natural selection, because in this example we have a situation in
which selection leads to a bad outcome through the influence of fluctuations. It is clear that similar instances may arise
in many other problems. On the other hand, as for the particular question of the emergence of cooperation, our results
imply that in the framework of the classical 2 × 2 social dilemmas, fast evolution is generally bad for the appearance
of cooperative behavior.

The results reported here concerning the effect of time scales on evolution are only the first ones in this direction
and, clearly, much remains to be done. In this respect, we believe that it would be important to work out the case of
asymmetric 2 × 2 games, trying to reveal possible general conclusions that apply to families of them. The work on
the Ultimatum game [64] is just a first example, but no systematic analysis of asymmetric games has been carried out.
A subsequent extension to games with more strategies would also be desirable; indeed, the richness of the structures
arising in those games (such as, e.g., the rock-scissors-papers game [11]) suggests that considering fast evolution may
lead to quite unexpected results. This has been very recently considered in the framework of the evolutionary minority
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game [136] (where many strategies are possible, not just two or three) once again from an economics perspective
[137]; the conclusion of this paper, namely that there is a phase transition as a function of the time scale parameter
that can be observed in the predictability of market behavior is a further hint of the interest of this problem.

In Section 4 we have presented a global view of the influence of population structure on evolutionary games. We
have seen a rich variety of results, of unquestionable interest, but that on the downside reflect the non-generality of this
kind of evolutionary models. Almost every detail in the model matters on the outcome, and some of them dramatically.

We have provided evidence that population structure does not necessarily promote cooperation in evolutionary
game theory, showing instances in which population structure enhances or inhibits it. Nonetheless, we have identified
two topological properties, network clustering and degree heterogeneity, as those that allow a more unified approach
to the characterization and understanding of the influence of population structure on evolutionary games. For certain
subset of update rules, and for some subregion in the space of games, they induce consistent modifications in the
outcome. In summary, network clustering has a positive impact on cooperation in Stag Hunt games and degree het-
erogeneity in Snowdrift games. Therefore, it would be reasonable to expect similar effects in other networks which
share these key topological properties. In fact, there is another topological feature of networks that conditions evolu-
tionary games, albeit of a different type: The community structure [108,109]. Communities are subgraphs of densely
interconnected nodes, and they represent some kind of mesoscopic organization. A recent study [76] has pointed out
that communities may have their own effects on the game asymptotics in otherwise similar graphs, but more work is
needed to assess this influence.

On the other hand, the importance of the update rules cannot be overstated. We have seen that for the best response
and Fermi rules even these “robust” effects of population structure are greatly reduced. It is very remarkable from
a application point of view that the influence of population structure is inhibited so greatly when update rules more
sophisticated than merely imitative ones are considered, or when the selection pressure is reduced. It is evident that
a sound justification of several aspects of the models is mandatory for applications. Crucial details, as the payoff
structure of the game, the characteristics of the update rule or the main topological features of the network are critical
for obtaining significant results. For the same reasons, unchecked generalizations of the conclusions obtained from a
particular model, which go beyond the kind of game, the basic topology of the network or the characteristics of the
updated rule, are very risky in this field of research. Very easily the evolutionary outcome of the model could change
dramatically, making such generalizations invalid.

This conclusion has led a number of researchers to address the issue from a further evolutionary viewpoint: Perhaps,
among the plethora of possible networks one can think of, only some of them (or some values of their magnitudes)
are really important, because the rest are not found in actual situations. This means that networks themselves may be
subject to natural selection, i.e., they may co-evolve along with the game under consideration. This promising idea
has already been proposed [138–145] and a number of interesting results, which would deserve a separate review on
their own right,7 have been obtained regarding the emergence of cooperation. In this respect, it has been observed
that co-evolution seems to favor the stabilization of cooperative behavior, more so if the network is not rewired from
a preexisting one but rather grows upon arrival of new players [147]. A related approach, in which the dynamics
of the interaction network results from the mobility of players over a spatial substrate, has been the focus of recent
works [148,149]. Albeit these lines of research are appealing and natural when one thinks of possible applications, we
believe the same caveat applies: It is still too early to draw general conclusions and it might be that details would be
again important. Nevertheless, work along these lines is needed to assess the potential applicability of these types of
models. Interestingly, the same approach is also being introduced to understand which strategy update rules should be
used, once again as a manner to discriminate among the very many possibilities. This was pioneered by Harley [150]
(see also the book by Maynard Smith [6], where the paper by Harley is presented as a chapter) and a few works have
appeared in the last few years [151–155]; although the available results are too specific to allow for a glimpse of any
general feature, they suggest that continuing this research may render fruitful results.

We thus reach our main conclusion: The outcome of evolutionary game theory depends to a large extent on the
details, a result that has very important implications for the use of evolutionary game theory to model actual biological,
sociological or economical systems. Indeed, in view of this lack of generality, one has to look carefully at the main
factors involved in the situation to be modeled because they need to be included as close as necessary to reality to

7 For a first attempt, see Section 5 of [146].
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produce conclusions relevant for the case of interest. Note that this does not mean that it is not possible to study
evolutionary games from a more general viewpoint; as we have seen above, general conclusions can be drawn, e.g.,
about the beneficial effects of clustering for cooperation or the key role of hubs in highly heterogeneous networks.
However, what we do mean is that one should not take such a general conclusions for granted when thinking of
a specific problem or phenomenon, because it might well be that some of its specifics render these abstract ideas
unapplicable. On the other hand, it might be possible that we are not looking at the problem in the right manner; there
may be other magnitudes we have not identified yet that allow for a classification of the different games and settings
into something similar to universality classes. Whichever the case, it seems clear to us that much research is yet to be
done along the lines presented here. We hope that this review encourages others to walk off the beaten path in order
to make substantial contributions to the field.
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Appendix A. Characterization of birth–death processes

One of the relevant quantities to determine in a birth–death process is the probability cn that, starting from state n,
the process ends eventually absorbed into the absorbing state n = N . There is a simple relationship between cn and
the stochastic matrix P , namely

(46)cn = Pn,n−1cn−1 + Pn,ncn + Pn,n+1cn+1, 0 < n < N,

with the obvious boundary conditions c0 = 0 and cN = 1. The solution to this equation is [69]

(47)cn = Qn

QN

, Qn =
n−1∑
j=0

qj , q0 = 1, qj =
j∏

i=1

Pi,i−1

Pi,i+1
(j > 0).

Another relevant quantity is vk,n, the expected number of visits that, starting from state k, the process pays to site n

before it enters one absorbing state. If V = (vk,n), with 0 < k,n < N , then

(48)V = I + R + R2 + · · · = (I − R)−1,

where I is the identity matrix and R is the submatrix of P corresponding to the transient (non-absorbing) states. The
series converges because R is substochastic [70]. Thus V fulfills the equation V = V R + I , which amounts to an
equation similar to (46) for every row of V , namely

(49)vk,n = vk,n−1Pn−1,n + vk,nPn,n + vk,n+1Pn+1,n + δk,n, 0 < k,n < N,

where δk,n = 1 if k = n and 0 otherwise. Contrary to what happens with Eq. (46), this equation has no simple solution
and it is better solved as in (48). Finally, τk , the number of steps before absorption occurs into any absorbing state,
when starting at state k, is obtained as

(50)τk =
N−1∑
n=1

vk,n.

Appendix B. Absorption probability in the hypergeometric case

For the special case in which

(51)
Pn,n−1

Pn,n+1
= αn + β

α(n + 1) + γ
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the absorption probability into state n = N , cn, can be obtained in closed form. According to (47) the sequence qj

fulfills the hypergeometric relation

(52)
qj

qj−1
= αj + β

α(j + 1) + γ
,

from which

(53)
(
α(j + 1) + γ

)
qj = (αj + β)qj−1.

Adding this equation up for j = 1, . . . , n − 1 we get

(54)α

n−1∑
j=1

(j + 1)qj + γ (Qn − 1) = α

n−2∑
j=0

(j + 1)qj + β(Qn − qn−1),

and therefore

(55)(γ − β)Qn = γ + α − (β + αn)qn−1.

Thus, provided γ �= β , we obtain

(56)Qn = γ + α

γ − β

[
1 −

n∏
j=1

αj + β

αj + γ

]
.

If α = 0 this has the simple form

(57)Qn = γ

γ − β

[
1 − (β/γ )n

]
.

If α �= 0, then we can rewrite

(58)Qn = γ + α

γ − β

[
1 − Γ (β/α + n + 1)Γ (γ /α + 1)

Γ (γ /α + n + 1)Γ (β/α + 1)

]
.

The case γ = β can be obtained from (55) or as the limit of expression (58) when γ → β . Both ways yield

(59)Qn =
n∑

j=1

α + γ

αj + γ
.
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