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Exact analytical expressions for the excluded volume and the second virial coefficient of the D-dimensional hard Gaussian
overlap model are obtained. The functional form of the excluded volume is proven to be independent of D provided D> 2. The
second virial coefficient is given in terms of a hypergeometric function but alternative formulas for some particular values of D

are also reported.

In the last decade it has been proven [1-7] that
systems of hard non-spherical molecules can capture
the main properties of the liquid crystalline phases.
For this reason, they have been used as reference sys-
tems in perturbational theories of liquid crystals.
Along this line of thought, several models of aniso-
tropic hard molecules have been developed to study
different properties of mesophases. Almost all these
models can be classified into two different groups:
fused hard spheres and convex bodies (see ref. [8]
for a detailed description of these models). Among
the convex-body models one of the most studied is
the hard-ellipsoid system [7-9]. Although exact cri-
teria for the overlap of a pair of two- or three-di-
mensional (2D or 3D) ellipsoids of revolution do
exist [9,10], no closed analytic expression for the
contact distance between them has as yet been found
for arbitrary orientations of the ellipsoids. While
computationally such criteria are sufficient in order
to simulate a hard-ellipsoid fluid [3,7], for most of
the theoretical studies however, a more detailed
expression of the contact distance is in general
needed. To overcome this difficulty the so-called
Gaussian overlap approximation [ 11] has been used
throughout the literature [4-6]. Apart from being a
rather good approximation for the hard-ellipsoid
system its nice practical features have motivated a
wider use of the Gaussian overlap model leading to
intermolecular potentials depending on the relative

orientation of a pair of molecules [12,13]. Recently,
the possibility of studying the hard-molecule version
of the Gaussian overlap as a model by itself has also
been suggested [14]. Following the standard no-
menclature we henceforth refer to this model as the
hard Gaussian overlap model (HGOM).

Some results for the HGOM have already been re-
ported. The excluded volume formula of a pair of
arbitrarily oriented molecules and the exact expres-
sion for the second virial coefficient of the 3D
HGOM were obtained by Baus et al. [4]. Inref. [6]
the same calculations were given for the 2D HGOM
and it was also stated there that the excluded volume
formula in ref. [4] remains valid for arbitrary di-
mension D, provided D> 2, although no proof of this
statement was given there. Apparently, these results
have been overlooked since several authors have used
numerical and approximate calculations for the eval-
uation of the second virial coefficient. Indeed, nu-
merical computations of virial coefficients (up to Bs)
as well as some Monte Carlo results for the equation
of state for the 3D HGO system have recently been
reported by Rigby [15]. These results indicate that
the second virial coefficient has an oblate-prolate
symmetry and the author points out that there is no
algebraic verification of this result. Moreover, in a
study of equilibrium properties of hard non-spheri-
cal fluids, Singh et al. [16] used a series expansion
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in terms of the eccentricity of the molecules to com-
pute the second virial coefficient.

The aim of the present note is to clarify the above
situation by giving a simple proof of the excluded
volume formula obtained in ref. [6] and by provid-
ing an exact analytical expression for the second vi-
rial coefficient of the D-dimensional HGOM (D-
HGOM).

The D-HGOM describes a system of identical D-
dimensional anisotropic uniaxial convex bodies, with
diameter o, along the symmetry axis and diameter
o, along any other orthogonal axis, interacting
through the following pair hard-core potential,

¢(r7ul’u2)=(x>’ r<0(f;u|,u2),

=0, r>o(Fu,uy), (1)
with the contact distance o(F; u,, u,) given by the
Berne-Pechukas formula [11]

2
g1 4

o (riuy,u) 1=y (uyuy)?

X[ (Frup )2+ (Fouy)? = 2x(Fouy) (romp) (uyom3) |
(2)

In these expressions £ is the unit vector along the line
joining the centres of the two molecules of orienta-
tions u, and u#,, which are unit vectors along their
corresponding symmetry axes, and y is a parameter
which characterizes the eccentricity of the molecules
related to the aspect ration k=0,/0 . as

_K,'2—1
T+

X

For x>0 (x<0) the HGOM describes prolate (ob-
late ) molecules, while for y=0 the model reduces to
the D-dimensional hard-sphere system.

The excluded volume to a pair of such molecules
of given orientations, namely the volume enclosed
by the (D-—1)-dimensional surface defined by
r=o(f,u,,u,), r being the distance between the
centres of the molecules, is given by

Veu(uy uy) = J d®r, (3)
r<o{Fui.u2)

where we have anticipated that V., can depend on
the orientations only through the dot product u,-u,
since it must be invariant under a global rotation of
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the two molecules. For convenience we will work with
the ratio of the excluded volume to the volume of a
D-dimensional ellipsoid of revolution with semiaxes
gyand g, ie.

Vex 1°
Eotuw) = SO
— 1 D
= %Vp(1) J d=r, (4)

r<o(fiuu2)/oL

where V,(R) denotes the volume of a D-dimen-
sional sphere of radius R and x is the aspect ratio.
Clearly, from eqgs. (2) and (4) we find that
2p(u -uy)=1 for k=1. A useful form of writing eq.
(2)is

m._.oj___“_;.TAi. (5)
o (Fu,uy) ’

where the superscript T denotes the transpose and A
is the real symmetric (DX D) matrix given by

X
A=I1- m [u1u1T+u2u§
—x(u-uy) (uwyul +uyut)], (6)

from which it follows that

1
ED("]'”2)=m J dDr. (7)

rTAr<1

Eq. (5) implies that A is a definite positive matrix,
so rTAr=1 is the equation of a D-dimensional el-
lipsoid. Therefore

dPr=Vp(1)|A|7"2, (8)

TAr<1

where |A| denotes the determinant of A. From egs.
(7) and (8) we get

1
ZD(”I'"2)=;|AI_I/2' (9)

The simplest way to compute |A] is to determine its
eigenvalues. Hence we separate the D-dimensional
space into two orthogonal subspaces: W, spanned by
u, and u,, and W+, From eq. (6) it can be easily seen
that any vector weW+ is an eigenvector of A with
eigenvalue A,=1, i.e., Aw=w. Since dim(W*)=
D=2, Ay is (D—2)-fold degenerated. On the other




hand, it can be proven that A has two different un-
itary eigenvectors in W,

ve=[2%(uy'ur) 17" (0 ty)

with eigenvalues

PR L S
T 1t x(u,uy)

(Av.=4.v.). As |A|=4,4_, a straightforward
calculation leads to the final expression,

1—x2(u1-u2)2>”2

2puyuy)= (
which 1s the result obtained by Baus et al. [4]. The
most striking fact is that this formula remains the
same for all D as long as D>dim (W) =2. Another
remarkable feature is that X, (u,-u,) depends only
on x?, showing oblate-prolate symmetry, i.e., it is in-
variant for k> 1/k.

The second virial coefficient of a fluid of hard non-
spherical molecules can be expressed [8] as

BéD) =3 (Ve (u,-u5) Dutus s

where { >, ., denotes the average over orienta-
tions. From eq. (4) we have

B2 (x*)=2"""Hp(X* ) Vemor » (11)
with
o (o D1
=V(1)2 —L>
Vmol p(1) B ( 3

the volume of a D-dimensional ellipsoid of revolu-
tion with diameters ¢, and o, and H,(y?)=
<ED(ul '"2) >u1.u2: i.e.,

Jdu, [du, 2p(uyuy)

2y
Hp(x*)= Tdu, [du,

_ J5d6sin®~26 (1 —x? cos?0)!/?
T (1=x?)" [5d0sin® 0

(12)

The integral in the numerator of (12) can be written
in terms of the variable 7=cos?6, as
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Table 1

Alternative expressions for Hy(x?) for some values of D. The
D=2, 3 formulae were obtained in refs. [6] and [4], respec-
tively. The D=co expression can be obtained from eq. (12) by
realizing that as D—oo, ([5d8sin®=20)~!sin®~20-4(6—in).
Here, E(x) denotes the complete elliptic integral of the second
kind defined as E(x) = [%2df (1 —x sin?6)'/2.

D Hp(x%)
2 2 EQXD)
n(l—x?)'?
3 1 arcsin y
2( x(l—xz)'/2>
5 3 arcsin x )
{1427 — (1 —ay?) 0L
16)(2(( ) —(1—4y )X(I—Xz)]/z
<) 1

(1-x*)'"?

J df sin?—20 (1 —x? cos?g)'/?
0

1
=Jdt1”1/2(1—t)(D‘”/Z(l—)(zt)'/z, (13)
0

which can be related to the hypergeometric function
defined by [17]

ey L)
He B 9= T ro=p)
XJdttﬁ"(l—t)"’“”"(l—tz)“', (14)
0

with Rey>Re >0 and I'(x) the Euler gamma
function. As [17]

7[ 1 _ 2
Jd@sin”‘20=2‘)—2£%D:*2l)—!))—, (13)
0

Hp(x?) in eq. (12) reduces to the compact form

F(—=13, 33D, x%)
(=)'

which is our final result.

Alternative expressions for H,(x?) can be found
for particular values of D. They can be obtained either
from eq. (12) or using the well-known properties of

Hp(x*) = (16)
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the hypergeometric function [17]. In table 1 we
summarize some of these alternative expressions. Fi-
nally, series expansions of the hypergeometric func-
tion [17] in eq. (16) as well as numerical integra-
tion of eq. (12) can also be used to estimate the
second virial coefficient of the HGOM for any par-
ticular choice of D.
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