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The direct correlation function of a fluid of aligned planar hard convex orientable bodies is
determined exactly using a simple form for the separation of the centers at contact. An
approximate analytical proposal for the direct correlation function in terms of a reference
direct correlation function of a fluid of spherical molecules is shown to lead to the exact
equation of state in the high-pressure limit.

1. Introduction

Certain organic liquids have structural order between that of conventional
liquids and solids. The term nematics [1] refers to liquids which are positionally
disordered but orientationally ordered, the most obvious way to achieve this
orientational order being for the liquid to consist of nonspherical molecules. In
the low temperature nematic phase the elongated constituent molecules are
preferentially aligned along some director vector. At higher temperatures the
orientational order disappears and nematics undergo a transition to an iso-
tropic phase. Computer simulations [2] show that systems of hard convex
elongated bodies reproduce these liquid crystalline phases and they are now
being used as reference model systems to elucidate in a fundamental way the
properties of more realistic systems.

The first principles statistical mechanical description of the equilibrium
behaviour of fluids consisting of hard convex nonspherical molecules is not at
present sufficiently advanced and analytical methods proposed for its study
usually represent extensions of those developed for simple fluids. The main
advantage of the hard convex body models is that the geometry of a pair of
such objects is quite well known. In particular, the second virial coefficient can
be expressed analytically for two- [3] and three-dimensional [4] fluids. How-
ever, higher virial coefficients can only be determined from numerical compu-
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tations [5] and semiempirical formulas [4]. Geometrical excluded volume
considerations are reduced to finding the distance between the centers of two
bodies at contact. This is a very complicated problem and approximate
analytical expressions for it, such as the Gaussian overlap method [6], have
been extensively considered in the literature. Moreover virial expansions and
their resummations are used in this traditional approach of statistical mechanics
to derive thermodynamic expressions for, e.g., the equation of state.

The density functional theory [7] has been recently applied to the study of
systems of hard convex bodies. Hard-ellipsoid [8] and hard-ellipse [9] model
systems have been considered in connection with the isotropic—nematic transi-
tion. In this modern approach to equilibrium statistical mechanics a privileged
role is played by the Ornstein—Zernike direct correlation function [10] from
which all the relevant thermodynamic quantities can be inferred. The direct
correlation function of a system of nonspherical molecules is usually expressed
in terms of some reference direct correlation function of a fluid of spherical
molecules. This ad hoc approximation was introduced some years ago [11] in
order to take advantage of the well-known analytical solution [12, 13] of the
Percus—Yevick equation [14] for hard spheres and was then worked out
numerically [15] with good results. To our knowledge, this approximation has
never been tested analytically even for simple model systems.

In this paper we examine the structural properties of a model system of
aligned planar hard convex nonspherical bodies and we find the exact expres-
sion for the direct correlation function. This work was prompted by a previous
investigation [16] concerning the thermodynamic properties of some one-
dimensional model systems. The different approximate forms for the direct
correlation function used in the literature [8, 11] are compared next with our
exact form and the effect of the approximations on the equation of state is
investigated. A new analytical expression for the direct correlation function in
terms of a reference direct correlation function of a fluid of spherical molecules
is proposed and shown to be exact in the high-pressure limit and to yield good
results for finite pressures.

2. Thermodynamics

We consider a system of N planar identical convex bodies moving in a plane
with their centers of symmetry restricted to lie on a line. We label the ith body
(i=1,2...,N) by the position x, (0 < x, =< L) of its center of symmetry and
by its orientation 6, with respect to the normal to the line of centers. We
assume nearest-neighbor hard-core interactions depending on the separation of
centers at contact a(6, 8') (see fig. 1), i.e.




1
¢
i
|
(
(
|
'
‘
1
'
[

/

-~ (,0)—»

Fig. 1. A diagram illustrating the separation of centers at contact o(6, 6’) of two planar convex
bodies.

o lx—x'|<a(6,0),
oy 1
b(x, 0, %', 0") {O, lx—x'|>0o(0,0") . (1)

As the precise determination of o(6, 8') is a complicated geometrical problem
we limit henceforth our study to the simplest (unrealistic) form of o(6, ')
which permits to solve the thermodynamics and structure of the system. In
particular, we consider that ¢(6, ") can be written as

a(6,0') = 2[a(6) + o (8")], (2)

where o(8) is an arbitrary positive function of 6.

As explained elsewhere [16] this approximation leads to a factorizable
transfer operator in the isobaric ensemble with a unique eigenvalue A which is
simply related to the chemical potential u(P) by Bu(P)= —log A, where
B =1/kyT is the inverse temperature and P the pressure. The equation of state
is then given by

1 _ou®) 1
n=ap PO, ®

where 7 is the average number density and ( - - - ) denotes the average over the
angular distribution function

exp[—BPo(8)]
{7 _d@exp[—BPo(8)] " (4)

h(8) =



For aligned hard disks of diameter o eq. (2) is exact with o(6) = o and eq. (3)
yields 1/n =0 + 1/BP, i.e., the equation of state of a hard-rod fluid.

For orientable bodies with a center of symmetry we clearly have o(8,
0')=o0(—6,—08")and o(8 £, 0')=0(6, 6') = o(6, 6’ =) and from eq. (2) a
general parametrization of o(8) can be given as o(#) =X _, a,, T, (cos 8),
where T, (cos 6) = cos(m#@) are the Chebyshev polynomials [17]. Although the
geometry has been strongly hidden in eq. (2) the coefficients a,,, in the
polynomial expansion can be related to some general properties. For example,
if we consider a system of aligned hard ellipses with minor axis o and major
axis ko, k being the aspect ratio (« > 1) and if 9 denotes the angle between the
major axis and the normal to the line of centers then we have o(0, 0) = ¢ and
o(w/2, w/2) = ko. Hence a,= j0(k +1) and a, = —Sa(x — 1) if we assume
for o(8) the simplest form o(6) = a, + a, cos (26). The angular distribution
function A(#) reads in this case

1 exp[3BPo(k — 1) cos(20)]

M) T L (BPek —1)

(%)

where [,(x) is the nth order modified Bessel function [17]. Notice that this
result corresponds to the one-order parameter approximation of 4(6) consid-
ered by Cuesta et al. [9] in their study of the two-dimensional isotropic—
nematic transition of the unrestricted hard-ellipse fluid with y = { BPo(x — 1)
being the corresponding order parameter. With this choice of 4(6) the equa-
tion of state can be written from eq. (3) as

1_1 L, (zBPo(k ~ 1))
no BP

I()(%BPO'(K - 1)) .

+io(k+1)—a(k — 1)

(6)

This is precisely the equation of state derived by Lebowitz et al. [16] in a recent
study of the thermodynamics of some orientable one-dimensional model
systems. As explained there the limiting equation of state in which the ellipses
are constrained to line up under high pressure has not the expected hard-rod
form but rather

. P 3
11m——2, (7

where P = n/B(1 — no) denotes the pressure of a hard-rod fluid. Such a result
is not specific of our model but can also be derived for aligned planar hard
convex objects using more realistic forms of o(6, 6') [16]. A similar behavior
was previously reported by Frenkel [18] for an elongated ellipsoidal system.




3. Distribution functions

In this section we determine the one- and two-point distribution functions of
the solvable model described by eq. (2). Our treatment is a generalization for
nonspherical bodies of that of Percus [19]. Since the methodology is standard
we merely gather here the main results.

The isobaric probability distribution function in phase space of a one-
dimensional system of N identical bodies with an internal degree of freedom 6,
interacting through a nonspherical pair nearest-neighbor potential ¢(y,; 0,_,,
6.) is given by

1
On(P)

(3000 )= 5 o0 =8 2 10000, 0)+ Py)) (®)

where y, = |x,,; — x,| denotes the relative distance separating a pair of contigu-
ous bodies and Q,(P) is the isobaric partition function

Qn(P) = ﬁlr gfr’ fdyi exx><—ﬁ ﬁl [6(yi5 615 6)+ Py,-]) ; )

where a periodic boundary condition x,_, = x, and 6, = 6, has been assumed.
From egs. (1) and (2) it is seen that the isobaric partition function Q,(P)
factorizes and this then permits the exact determination of the one- and
two-point distribution functions.

We start by considering the one-point distribution function or local number
density

n(x, 8) = <<’§1 6(x —x,)6(6 — 0,.)>> , (10)

where { ---) denotes the average over the isobaric probability distribution
function w({y,, 6.}, P). Whenever the system is translationally invariant, n(x,
6) is only a function of the orientation variable 6. Using egs. (1), (2) and (8),
(9) it can be readily found that for this case

n(x, 0) = nh(9), (11)

with h(6) given by eq. (4). For the system of aligned hard ellipses considered
above, egs. (5) and (11) show an orientational order (nematic phase), the
angular distribution A(6) being centered around 6 =0 with a width which
decreases as P or « increase, 8 playing only the role of a scale factor.




Next, we consider the two-point distribution function

n,(x,0;x’,6')= <<§N: ﬁ]: 8(x—x,)6(0—6)8(x" —x,)8(60' — 0].)>> . (12)

i=1i%j=1

Clearly, for translationally invariant systems n,(x, 0; x', 8') =n,(x — x'; 8, 6).
At this stage we shift our attention to the conditional probability density

g(x;6,0")= <<5(0’ - 6y) }:211 8(x —x;) 8(6 — 01)>> (13)

for finding a body at a distance x from the origin (where the Nth body with
orientation 6’ is localized because of the periodic boundary conditions) and
orientation 6. The determination of g(x; 0, 0') is straightforward using egs. (1),
(2) and (8), (9). The analysis can be further simplified by introducing the
Laplace transform g(q; 6, 6')= [, dxexp(—gx) g(x; 6, 8') to find in the
thermodynamic limit

éta:0.0)= (50 =0 3 expi-ax) 660 - )

BPh(0)

MO 1) (G D, (6) — BPR(®) expl— o (0)]
xexp{BPla(8) — a(8")] — 1q[a(8) + a(8)]}, (14)
where
O = (5 gl B s 1o (1)
Because of the translational invariance,
n,(x;6,0')=ng(x;0,0")=nh(0) h(8') [1,(x;6,0")+1], (16)

where we have introduced the pair correlation function [20] »,(x; 6, 6') which
can be related to the direct correlation function c(x; 6, ') through the
Ornstein—Zernike equation. Since this equation takes a particularly simple
form in the Fourier representation, we introduce the Fourier transform v,(k; 6,
6") which in a one-dimensional space can be written as: v,(k; 6, 8') = »,(+iq;
0, 8'y+ D,(—iq; 6, 8'). For eqs. (4) and (14), (16) we obtain after a lengthy
but simple calculation




vy(k; 6, 0") = A(k) cos(zk[a(8) + o(6")]) — p(k) sin(3k[a(8) + a(6")]),

(17)
where
1 u(k)
MO eGP+ otk + wT 1)
and
_1 v(k) + w(k)
) = TaGOF + [0k + w(oT (19)
with
u(k) = 41— (cos ka(6))], (20)
v(k) = 3 (sin ko(9)) , (21)
.k
W(k) =3 ’—B’*IS . (22)

Therefore, v,(k; 6, 6') has an oscillatory behavior with coefficients A(k) and
p(k) which depend on the angular distribution function through eqs. (20) and

(21).

4. Direct correlation function

The traditional formulation of equilibrium statistical mechanics [20] deals
with a set of n-point distribution functions of which the average density is the
first member, the second (the pair correlation function) playing a central role
for systems of bodies interacting through a pair interaction potential. The
modern theoretical approach to equilibrium statistical mechanics uses instead
the density-functional theory [7]. In this formulation a set of direct correlation
functions are obtained by taking successive functional derivatives of the
intrinsic Helmholtz free energy with respect to the local number density. The
second member of this hierarchy, the Ornstein—-Zernike direct correlation
function [10], plays a role analogous to that of the pair correlation function in
the traditional formulation. The link between both approaches is given by the
Ornstein-Zernike equation.

For the model system considered in this paper, the Ornstein—Zernike
equation reads in Fourier transform




+r
7, (k; 6,0") = E(k; 0,8')+n f de” h(0") i,(k; 6, 0") E(k; 0", 07),  (23)

where ¢(k; 6, 6') = [ dx exp(ikx) c(x; 6, 6') with c(x; 6, 8') denoting the
direct correlation function.
This functional equation has a degenerate kernel represented by

2
h(8") 5,(k: 6. 6") = 2, a,(6) B(6")
i=1
the analytical expressions of «,(8) and B,(8") being easily determined from egs.
(4) and (17). Following the general theory of linear integral equations [21] the
Ornstein—Zernike equation (23) reduces immediately to a system of two linear

equations in two unknowns, leading to the following exact expression for ¢(k;
0, 0'):

nc(k; 0,0") = — %%E sin(1k[a(6) + o(8")])

2BP\’
- <—[]i—> sin( 3 %a(8)) sin($ka(6")) , (24)
which has a simpler structure than »,(k; 6, 6”). The direct correlation function

c(x; 6, 0")= [ 7 dk exp(—ikx) é(k; 6, 8') can then be readily found by using
the Heaviside step function

1, x>0,
@(x)"{o, x<0. (23)
Clearly,
. L.
f dx exp(—ikx) O(a — |x|) = —Sl‘}(i@ . (26)

From egs. (24) and (26) we immediately find, using elementary properties of
the Fourier transforms, that

ne(x; 0,0') =~ BPO(L[0(0) + o(0)] ~ |1
—g2P* | ax 0(1o(0) - |v]) O(Lo(0) ~ |r—x]). (27)

where the integral appearing in eq. (27) corresponds to the overlap length of




the two step functions in the integrand. We thus get the following exact
expression for the direct correlation function of the model system considered in
this paper:

ne(|x(;8,0") = = BPO(5[0(6) + o(8)] — |x|)
X(1+ BP{3[a(0) + o(6")] - |x|} O(|x| - }[a(6) — (6")])
+BP min[o(8), 0(6)] O(3]a(6) — 0(6) — [x])),  (28)

which simplifies for aligned hard disks (a(8) = o) to
neo(|x]) = =BPO(o — |x[) [1+ BP(o — |x])] (29)
or, using the equation of state 1/n= o + 1/B8P, we have

en(x]) = =0 =[x G (30)

which is the well-known expression for the direct corrleation function of a
hard-rod fluid. We note from eq. (28) that c(|x|; 6, 0") has the range of the
separation of centers at contact o(8, 6'). We also remark that the terms
containing the difference |o(8) — o(#')| seem a bit artificial. These terms
appear as a consequence of the separable form of o(6, 6') considered in eq. (2)
and can also be found in hard-sphere mixtures [4] (notice that our model is
equivalent to a mixture of hard rods of continuously distributed diameters
o(8)).

We end this section by establishing the connection between the thermo-
dynamics and the structure. This can be done for spherical molecules through
the compressibility equation which relates the isothermal compressibility and
the Fourier transform of the pair correlation function at zero wave vector.
Then the Ornstein—Zernike equation permits to link the isothermal com-
pressibility and the direct correlation function at zero wave vector. For
anisotropic molecular fluids [22] an equation analogous to the compressibility
equation relating the isothermal compressibility and the direct correlation
function can be derived in a somehow more complicated form involving
k-space harmonic coefficients. Here, we consider a simpler connection valid for
the specific model considered in this paper.

Let us first integrate eq. (28) with respect to x to obtain

+ o0

nJ dx c(x; 0, 6')= —BP[a(8) + o(8")] — B*P’c(8) o(8") ,




where we have used the identity
2 min[o(8), o(8')] = o(8) + a(8') — |a(8) — a(8")] .

Multiplying this result by #(6)h(0') and integrating with respect to the
orientational variables over the period —= to +7 we have

n f de h(f))[ de’' h(6') f dx c(x;6,8")
=—2B8P(a(0)) — B°P*(a(0))”. (31)

Thus, using eq. (3) we get

(EE>2 =1-n j’ﬂ de h(e) r de’ h(6") r dxc(x;6,8'), (32)

n

relating the compressibility factor BP/n =1+ BP{a(8)) and the direct corre-
lation function. Eq. (32) is exact for the model system considered in this paper.
In the next section we introduce approximate proposals for the direct correla-
tion function and find from eq. (32) the corresponding compressibility factors.

5. Approximate forms for the direct correlation function

The direct correlation function for hard nonspherical bodies has been
expressed in the literature in terms of some reference direct correlation
function of a fluid of spherical molecules [8, 9, 11]. In this section we review
some of these approximations adapted to our specific model and compare them
with the exact results of the preceding section.

Proposed originally by Pynn [11] a first approximate analytical expression for
the direct correlation function of a fluid of hard anisotropic molecules is given
by the Percus—Yevick result for hard spheres [12, 13] with the hard-sphere
diameter appearing in the dimensionless distance x/o replaced by an orienta-
tion-dependent diameter, namely, the center-to-center separation between two
hard bodies at contact (o(f, 6’) in our model). When expressed in terms of
x/o, eq. (29) reads

ncy(|x]) = —BP@<1 - %) [l + BP(T(I - %—|>] ) (33)




Hence, Pynn’s suggestion takes in the present case the form

ne(|x|; 6, 0") = —BP@(l - o'((|9),6|0’)) [1 + BP0'<1 - T(L%”’S)] , (34)

where o = (0, 0). Notice that ¢(|x|; 6, 8’) is unphysical at the origin since it
has no orientational dependence there at all. As indicated by Lado [15] this is
not an important flaw for a D-dimensional fluid (D > 1) because one usuaily
needs only the D-dimensional integral of the direct correlation function so that
it will be multiplied by a power of the relative distance, a step which washes
out the short-range structure of the direct correlation function. Indeed, Lado
found a surprisingly good agreement between Pynn’s approximation and the
true Percus—Yevick solution for a model of hard dumbells. An elementary
integration of eq. (34) leads to

+oo

nf dxc(|x|;8,0")=—-2BP(1+ 1 BPo) 0(6,0"), (35)

and using egs. (2) and (32) we obtain an approximate compressibility factor
given by

(B2Y -1+ 2pp01+ 18Po) o))
=[1+BP(a(8))]’ + B’P*(a(6))[o — (c(6))] . (36)

As (o(8)) > o, Pynn’s approximation underestimates the compressibility
factor.

An alternative analytical proposal suggested by Baus et al. [8] in their study
of the isotropic—nematic transition of a hard-ellipsoid system is based on the
idea of factorizing the translational and angular variables in the direct correla-
tion function. The translational part is given by the isotropic direct correlation
function of a reference hard-sphere system, while the angular part is de-
termined by the excluded volume of two hard bodies of given orientations
averaged over the orientations of their center-to-center position and divided by
the hard-sphere volume. Clearly, for aligned bodies the average over the
center-to-center position is trivial and from eq. (33) the factorization approach
of Baus et al. reduces for our one-dimensional system simply to

nc(|x|;0,0’)=—w BP@<1—|1) [1+BP0'<1—%>]. (37)

a a




In spite of the different approaches proposed by Baus et al. and Pynn the
remarkable fact is that both suggestions lead to the same approximate com-
pressibility factor (eq. (36)). This can be easily checked by a simple integration
of eq. (37) using egs. (2) and (32). In general, this equivalence with respect to
the thermodynamics can be easily proved whenever the system is translational-
ly invariant.

A new analytical proposal for the direct correlation function can be derived
in view of eq. (28). As noted earlier, one might expect that terms containing
the difference |o(0) — o(8")| will not appear for realistic forms of the closest
separation of centers. Taking hence |o(8) — o(8')| =0 in eq. (28) we get

nc(|x|; 6,6") = —BPO(a(6, 6') — |x|) [1 + BP(a(6,0") — |x])], (38)

which has the same structure as eq. (29) with o replaced by o(6, 6'). However,
this is not Pynn’s proposal since eq. (38) now leads to an orientation-
dependent direct correlation function also at the origin. When this approxima-
tion is combined with eqgs. (32) and (2) we find

(B?P> =1+2BP(a(8)) + 1 B°P*[(o’(0)) + (a(6))’]
=[1+BP(a(0))] + 1B°P’[(07(6)) — (a(6))’]. (39)

Therefore, this proposal overestimates the compressibility factor by a term
containing the mean square fluctuations of o(9).

We are now ready for a quantitative comparison of the various approaches
considered in this section. Let us apply the above results to the fluid of aligned
hard ellipses described by eq. (6) which is assumed henceforth to be exact. The
two approximations (egs. (34) and (38)) can be checked in detail by determin-
ing (o(6)) and (a*(9)) over the distribution function given by eq. (5). In this
particular case, Pynn’s proposal leads to the following approximate com-
pressibility factor:

LBy, (40)

(%)2 =1+ P*1+ %P*)<K -G F

where P*= BPo and P = 1 P*(x — 1), while our proposal yields
3P>2 ( : 11<P>)
Ee) =14 P b1 - (k- 1) L
5 D L@

L,(P)
Io(P)

2l
(41)

+§P*2[§(K+1)2—(K2—1) +§(K—1)2<1+
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Fig. 2. Reduced pressure P* = B Po versus the packing fraction n = no of aligned hard ellipses of
aspect ratio x =6 as obtained from the exact equation of state eq. (6) (solid line), Pynn’s
approximation eq. (40) (short-dashed line) and the new proposal eq. (41) (long-dashed line).

In fig. 2 we plot the reduced pressure P* versus the packing fraction n = no
of aligned hard ellipses of aspect ratio x = 6 as obtained from egs. (6), (40)
and (41). As indicated earlier, it is easily seen that Pynn’s proposal underesti-
mates the reduced pressure while ours leads to an overestimation. However, in
the whole range of packing fractions eq. (41) fits quite well the exact equation
of state.

For low densities we can expand the pressure into virial series BP =
I, _o nB, with B, being the virial coefficients. Both approximations yield the
same (exact) second virial coefficient B, = o(k + 1)/2. In table I we summarize
the analytical expressions for the third and fourth virial coefficients where
discrepancies arise.

Finally, we consider the limiting equation of state at high pressures. From
eq. (40) it can be easily found that




Table 1
Analytical expressions for the third and fourth virial coefficients as obtained from eq. (6) (exact),
eq. (40) (Pynn) and eq. (41) (our new proposal).

Coefficient
Method B,/o* B,jo*
exact (e + 1 = 3k = 1)7] b + DIk + 1) = 3k — 1)7]
Pynn e+ 1)k +3) = (k = 1)7] (ke +1)" = 3(x + D)k = 1)°]
eq. (41) (e +1) = 3 = 1)°] Fx DIk +1)° = §(, = 1]

in contradiction with the exact result in eq. (7). In contrast, the high pressure
limit of eq. (41) leads to

limﬁ—§
=3

Poe Py

Therefore, our proposal is exact in this limit and also a good approximation for
finite pressures.

6. Conclusions

We have presented an exact determination of the direct correlation function
of a fluid of aligned planar hard convex orientable bodies using a simple form
for the separation of centers at contact. The model has been designed to permit
solvability of the thermodynamic and structural properties.

Recently, several authors have considered an approximate proposal for the
direct correlation function of an anisotropic fluid in a theoretical attempt
concerned with the isotropic—nematic transition of hard ellipsoids [8] and hard
ellipses [9]. For the model system considered in this paper we have shown that
this approximation underestimates the compressibility factor. This result agrees
with the quantitative discrepanceis between theoretical results [8] and compu-
ter simulations [23] for a system of hard ellipsoids (see figs. 9 and 10 of ref.
[8]). For the hard-ellipse fluid the comparison is a more complicated problem
because theory [9] and simulations [24] show different qualitative features.
However, we have to bear in mind that other simplifications introduced in
these theoretical studies could also be at the origin of the observed dis-
crepancies between theory and computer simulations.

We have also reported an approximate analytical expression for the direct
correlation function in terms of a reference direct correlation function of a fluid
of spherical molecules. Our proposal leads to the exact equation of state in the
high-pressure limit, being moreover a good approximation for finite pressures.




The extension of this new proposal to higher-dimensional systems is planned
for a future investigation.
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