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On one-dimensional fluids of anisotropic molecules near a hard wall
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A separable one-dimensional model of anisotropic hard molecules recently
introduced in the literature is worked out to compute the radial density profiles
and the angular distributions in the vicinity of a hard wall. Its results are tested
against Monte Carlo simulations performed on a system of aligned hard ellipses
confined in a segment. We find that the model provides a good description of
such a system whenever the angular mobility of the particles is small enough.
Accordingly, we find that the density profiles are better described for high pres-
sures, and the angular distributions when they are close to the wall. Neverthe-
less, the distribution functions in the bulk have the same functional shape but
for a smaller eccentricity. Such effective eccentricities follow a power law
extremely well when compared with the true ones.

1. Introduction

The statistical mechanical description of the equilibrium properties of one-
dimensional (1D) fluids with nearest neighbour interactions has attracted the inter-
est of physicists since the pioncering works of Rayleigh [1] and Tonks [2] concerning
the equation of state of a 1D system of hard rods. Salsburg et al. [3] further extended
these studies by determining the distribution functions of the homogeneous hard rod
fluid, and the direct correlation function was obtained in a later work by Percus [4].
In recent years, attention has been shifted to the study of inhomogeneous fluids.
Semi-infinite systems, fluids confined by hard walls, and fluids in an arbitrary exter-
nal field have been investigated in detail. The main interest of these model systems is
to provide approximations for a microscopic theory of real fluids in contact with
walls or adsorbed at solid substrates. Functional methods were first developed by
Percus [5], who obtained the one-body density and the direct correlation function of
a fluid with sticky-core interactions near a hard wall. Fluids confined on a line of
finite length have been analysed by Leff and Coopersmith [6] and Robledo and
Rowlinson {7]. Absorption of 1D hard rods in a hard wall has been obtained with
computer simulation by Finn and Monson [8]. 1D mixtures of hard rods [9] and
square-well fluids [10] have recently been considered for describing selective adsorp-
tion. Also polymerization has been studied with 1D models of associating hard rods
in an external field [11].

For 1D fluids with anisotropic hard core interactions very little work has been
done. The orientational properties of some of these models have recently been
investigated by Lebowitz et al. [12]. In the case where the molecules are assumed
to have a single rotational degree of freedom (say, ellipses in a plane with their
centres of mass restricted to lic on the x axis) the hard core diameter (contact
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distance) depends quite generally on the orientations of two neighbouring molecules.
Nevertheless, a separable model can be introduced in which this diameter is written
as a sum of two terms, each one containing the orientation of a molecule. The
thermodynamics [12] and structure [13] of this model can be determined exactly in
the bulk. Although the separable model reproduces the exact results for hard aniso-
tropic bodies in the high pressure limit [12, 13], very little is known about how it is
related to these systems at finite pressures.

In this paper, we extend the study of the separable model to include the calcula-
tion of the radial and angular distributions in the vicinity of a hard wall. We also
perform a Monte Carlo (MC) simulation for the hard ellipse system to test the
results of the theory. We find surprisingly good agreement for such a simple
model, so that it can be considered as a first approach to the study of liquid crystal
phases in contact with solid surfaces.

2. Model

As a representative model of a 1D system of N anisotropic hard convex bodies,
let us consider freely rotating ellipses in a plane with their centres of mass restricted
to move along a segment of length L. These ellipses interact via a nearest neighbours
hard core potential, which we denote by

0 _ ! !
¢(|X_x/|;§0, (P,): { Ix xl| >0'(SO7 80/)’ (1)
oo |x—x'| <a(p, )

where o(y, ¢') is the contact distance between two neighbouring ellipses with orien-
tations ¢ and ¢’. We can write down the expression for the partition function of such
a system as

N
ZN(ﬁa L):TI' exp{_ﬂz ¢(Ixj_xj+l|;(pj7 <Pj+l)}7 (2)
j=0

with 3 = 1/kgT the inverse of the temperature in units of the Boltzmann’s constant,
and the trace defined as

N rn dej L
Tr _]Hlj_n = JO dx; (3)
Since we have hard walls at the extremes of the interval, the boundary conditions can
be implemented as the interaction of the first and last particles with their mirror
images with respect to the extremes of the segment. Thus, xu = —x,, wo =
—@1, Xyy1 = 2L — xy and py o = —py.

As formulated, this problem is too general to be solved analytically, although a
few exact results can be obtained from equation (2) by a transfer-matrix formalism
[12]. However, it has also been pointed out that the partition function (2) can be
computed if the contact distance is assumed separable, i.e.

a(, @) = 3lo(e) +a(e")), (4)
which for the system of hard ellipses is an approximation that is valid when the
mobility of the particles is small enough. This model was tested against the exact

results of [12] and was found to behave reasonably well [13]. Besides, it has the great
advantage that its properties can be obtained analytically. The point is that with the
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approximation (4) the partition function is similar to that of hard rods with variable
lengths o(y;) averaged over the angles y;; that is,

N _wN . N

=

where the average denotes the normalized integration over the angular variables, i.e.,
()= H}VZI dy;/2n, and O(x) is the Heaviside step function. The result becomes
simpler in the isobaric ensemble, where the isobaric partition function is obtained as

© o 1 [1(ePn¥
,P)=| dLePPrzy(8, L :—[——] ) 6
on(B P) = |, v(B.1) =35 |55 ©)
In this formula, P stands for the pressure and I(x) denotes the integral
— " d90 —x0(p)
I{x)= J‘n 5 © . (7

3. Density profiles near a hard wall

The ability of this model to be worked out analytically will be used in this section
to study the radial and angular distribution profiles of the system of hard ellipses
near a wall. The definition of the 1-body distribution function in the canonical
ensemble is

N

pL(x, ) =D (8(x = x1)6(% — #x))ean- (8)

k=1
In our separable model this distribution has the form

N
pL(x, ) = -ZN—(lﬂwff) > Zio (B x—30(0) Zu-i (B, L— x = 1o(9)).  (9)
et

As in the previous section, let us introduce the distribution function in the isobaric
ensemble:

N
pp(x, ¢) Z<6(x_xk)5(<p_30k)>iso

k=1

= m JOOO dLe " Zy (8, L) pr(x, ). (10)

The integration can be performed easily by using equation (5). The result, which for
convenience will be expressed in terms of the variable y = x — o{¢)/2, is

op(3,0) = PP 3 7, (53 [—@—Y ()
P\ = k—1 B I(ﬂp) .

To evaluate the latter expression it is necessary to Laplace transform in the y
variable. Thus, the transformed profile turns out to be, in the thermodynamic limit,

prls o) = | e on(n, o)

_ 5P
~M R — (e @)

(12)
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where

e~ PPa(y)
o) = ——r, 13
() 73 (13)
and (), = [7, - h(p) dyp/2m.
Equation (12) gives us information on the behaviour of pp(y, ¢) in the limits
y — oo (bulk) and y — 0 (closest distance to the wall) through the Tauberian
theorem [14]. This theorem states that if F () is a non-decreasing function and if
the integral defined by

) =] et ar ) (14
0
(provided it converges for Re s > 0) behaves, in the limit s — 0 (s — 00), as
f(s) ~s7TL(1/s), (15)
with > 0, then, in the limit 1 — oo (¢ — 0) F(r) behaves as
t7L(1)
F(t) ~ e, 16
0~ 700 (16)
Direct application of the theorem to equation (12) yields
. BP
lim yP) =t h(0), 17
yllg}) pp(y; ) = BPh(yp). (18)

Note that, for isotropic bodies (h(¢) = 1), equation (18) implies that the well known
sum rule for hard walls [15] is exactly verified.

Transforming fp(s, ¢) back to obtain the density profile is a difficult task that
can be achieved only numerically. For this purpose it is easier to work with the
Fourier transform instead of the Laplace transform. The former can be obtained
from the latter through the simple relation

pr(9, ) = pp(iq, ©) + pp(~iq, ¥). (19)

This equation holds only for Laplace transforms with no singularities, something

that equation (12) violates (it is singular for s = 0). The reason for this divergence is

that pp(y, ) is non-integrable, since it tends to a non-zero value for y —oo. Itis

easy, however, to circumvent this difficulty by applying equation (19) to the adsorp-
abs

tion function pp™*(y, @) = pp(y, ) — pp(oo, ) instead. This yields

2[1 — (cos (qo ()]

[1 — {cos (g ()))]* + Eq,;+ (sin (g0 (12)) )

~abs

pp (9, @) =

sh(e), (20

where the averages can be expressed in terms of I(x) (equation (7)) as
_I(BP —iq)+ I(BP + iq)
- 21(5P) ’

_ I(BP —iq) — I(BP + iq)
- 2i1(8P)

(cos (g0 ()

(sin (go(£)))n
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Now the computation of the adsorption function is carried out by numerically
transforming back equation (20), with the choice of o(y) suggested in [12] and
[13], i.e. o(¢) =0[(k+ 1) — (k — 1) cos (2¢)]/2, where o is the minor diameter of
the ellipse and « is the ratio of the major diameter to o. This particular form allows
us to write I(x) =exp[—x(k+ 1)o/2]Ily(x(k — 1)5/2), with Ij(x) the modified
Bessel function of zeroth order [16] and, consequently,

e~ v cos(2p)

h(p) = A

(23)

with v = fPo(k — 1)/2.

4. Monte Carlo simulation

To test our analytical findings we have performed MC simulations on the hard
ellipse system in a segment bounded by hard walls. Basically, we have followed the
method worked out in [8] for hard rods. The simulations have been carried out in the
isothermal—isobaric (7, P constant) ensemble [17]. Acceptable configurations are
those for which there is no overlap between the ellipses.

A MC trial consists of moving simultaneously both the position x; and the
orientation ¢; of the ith particle. Position and orientation are changed by adding
random numbers A, and A, uniformly chosen within the intervals (— A, A) and
(—A', A"). The movement is rejected if, after the change, the ellipse overlaps any
of its nearest neighbours. Testing the overlap is done via Vieillard-Baron’s cri-
terion [18]. We have chosen A and A’ such that the acceptance ratio is around
20-30%.

After attempting to move all particles once, a change of length trial is performed.
The change is done by multiplying the current length L of the interval by a factor
exp (§1), where £, is a random number uniformly chosen in the interval (—¢, £). The
movement is rejected if an overlap occurs and accepted with probability

r=min {1, exp [(N+ 1)& — BP(exp (£,) — 1) L]} (24)

otherwise. With this procedure we actually sample In L instead of L itself. The
reason for doing this is that in this way the domain of the generated random chain
coincides with the range of acceptable values of L(L > 0), thus improving the
efficiency of the sampling [17, 19]. Again, £ is chosen so as to get a length-change
acceptance ratio of about 20-30%.

Table 1. Data for the packing fraction n = po obtained by MC simulation of the hard ellipse
system compared with the theoretical (T) results of the separable model, for different
aspect ratios () and reduced pressures ( 3Po). Values in parentheses are affected by
statistical error. Notice the weak x-dependence of the values.

k=2 k=4 K=6
BPc MC T MC T MC T
0-5 0-29(4) 0-291 0-25(6) 0-252 0-23(8) 0-239
1-0 0-42(5) 0-421 0-38(3) 0-384 0-37(6) 0-387
2:0 0-57(0) 0-563 0-55(4) 0-560 0-55(7) 0-566
4-0 0-71(8) 0-714 0-72(5) 0-724 0-72(3) 0-725
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Figure 1. Radial density profiles at constant pressure pp(y) = (pp(¥, ©)), as a function of y,
the distance to the centre of mass of the closest particle to the wall, for different reduced
pressures (P* = BPo) and aspect ratios (x). Dots are the MC results for the hard ellipse
system, and solid lines are the theoretical results of the separable model. Dashed lines
are the theoretical results for the effective « obtained from the fit of equation (23) to the
bulk angular distribution function (see text and figures 2 and 3). For the sake of clarity
the curves are shifted upwards by 0-1 (P* = 0-5), 02 (P* = 1:0), 0-3 (P* = 2-0) and 1
(P* = 4-0) units with respect to the previous one.
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Figure 1. Continued.

As in [8] we have kept one wall fixed and performed the length changes by
moving the other wall. This method reduces the number of particles needed, as it
directly provides an asymmetric density profile. Besides, no strong system size
dependence is expected in a 1D system. Thus, we have found, as in [8], that ten
particles are sufficient to reproduce the density profile near the wall in the whole
range of interest. Pressures have been chosen in a wide interval between representa-
tive values of the ‘high’ (8Po = 4) and ‘low’ (8Po = 0-5) pressure limits. The system
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Figure 2. Angular distributions 4(p) = (pp(y, ¢))y/p as a function of the molecular
orientation ¢ for different reduced pressures (P * = 3Ps) and aspect ratios (k). The MC
results at the contact with the wall and in the bulk are represented by triangles and
circles, respectively. Solid lines are the angular distributions obtained from the separable
model. Such curves are always closer to the MC angular distributions near the wall.
Dashed lines represent the angular distributions of the model but computed for kg, a
value obtained through a least-squares fit of equation (23) to the MC data in the bulk.
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Figure 2. Continued.

has been given 10° MC steps (N MC trials plus an attempt of changing the box
length) for equilibration, before actually computing averages along 0-5—4 x 108
steps, the lowest (highest) number corresponding to the highest (lowest) pressure.

5. Results

The model can be tested against the simulation results at three levels: the equa-
tion of state, the radial density profiles, and the angular distributions.
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The equation of state can be obtained from equation (17) by averaging over the
angle . This yields [13]
1 1
_= — + g s 25
=55+ (25)

p being the average density. A few values of the packing fraction (n = op) are listed
in table 1 for different values of x and 3P, together with the results obtained from
the simulations. The agreement is good in all cases, in spite of the simplicity of the
model. This result is not very surprising since the equation of state does not depend
strongly on the details of the interaction (note that values corresponding to different
x are nevertheless very similar).

A far more crucial test is provided by comparing the radial density profiles
(obtained by averaging pp(y, @) over @), because the structure near the wall is a
direct consequence of the shape of the interaction. This comparison is made in
figure 1. At first sight, the main conclusion that can be drawn from the pictures is
that the larger the pressure, the better the model reproduces the profile. The reason
for this is simple if one accepts that the model is more accurate when the angular
mobility of the particles is small, which is precisely what happens for large pressure.
On the other hand, for a given pressure the model becomes exact in the hard disk
limit (x = 1), but agreement with the simulations should also improve for kK — oo,
because again the angular oscillations of highly elongated particles are strongly
restricted. It is therefore expected that disagreement should be greatest at an inter-
mediate value of . In view of the figures, such a value lies above x =6 for
BPo = 0-5, around k =4 for §Po =1, and below x = 2 for 8Po =2 and 4 (note
that in all these cases the maximum disagreement seems to be reached for vy ~ 1). On
the whole, the model can be considered to provide a reasonably good description of
the hard ellipse system in a segment for pressures above 3Pc = 1, a regime that,
according to table 1, corresponds to packing fractions higher than 0-4.

The last comparison we have performed concerns the angular distribution. An
important difference between the model and the simulated system arises: while
op(y, @) factorizes the radial and angular variables in the theoretical model, thus
yielding the same angular distribution all along the segment, in the real hard ellipse
system such a factorization does not take place, and so the angular distribution
depends on the distance from the wall. In figure 2 the comparison is made, for
different values of x and GPo, between the angular distribution (23) and that of
the hard ellipse system taken at two important locations: in the bulk and at the
contact with the wall. In all cases, we can see that the agreement is reasonably good
for the distribution at the wall whereas it is always poor for the distribution in the
bulk. The reason for this lies again in the smaller angular mobility of the particles
near the wall. So far as the distribution in the bulk is concerned, we have checked the
shape of the curves by fitting function (23) to the simulation data, leaving « as a
least-squares determined parameter. In this way, we obtain a curve that approaches
the simulation results with a similar accuracy as the original one does with the
distribution at the wall (see figure 2). The effective values of x (ky) so obtained
show some interesting features: first of all, they are always smaller than the corre-
sponding values of &, thus accounting for the larger angular mobility of the particles
in the bulk; second, k. manifests a very weak dependence on the pressure; and,
finally, the values obtained for .y follow the power law extremely well

Reff ~ "64/5, (26)
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Figure 3. Effective aspect ratios s obtained by a least-squares fit of equation (23) to the
MC data for the angular distribution function in the bulk. The dashed line is a plot of
the power law Ky = %>, The different values for the same correspond to different
pressures, and the bars give the dispersion of such values.

as shown in figure 3. On the other hand, we have plotted the radial profiles
obtained with these effective eccentricities in figure 1. It can be seen that the
displacement in « affects the previous results only slightly. The largest deviations
appear at the lowest pressure, where the agreement is poor anyway. Nevertheless,
we can see that for SPo =1 the trend seems to be to reproduce the structure
more accurately.

6. Conclusion

The test of the separable model we have worked out has shown that, in spite of its
simplicity, such a model gives an overall good description of a typical 1D hard body
system (in our case a hard ellipse). The model satisfies exactly the sum rule for the
radial density profile near a hard wall, and yields particularly good results for the
bulk or, equivalently, for the equation of state. The latter is not surprising since, as
we have seen, the equation of state shows only weak dependence on the eccentricity
of the molecules.

Comparison of the radial density profiles near a hard wall reveals that the model
fails to describe correctly the structure at low pressures, but that the accuracy
improves dramatically as the pressure increases. About the angular distributions,
the model predicts the same function all along the segment-—as it factorizes the
radial and angular parts of the one-body distribution function—and this function
reproduces rather well the profiles obtained by simulation at contact with the wall.
The angular distribution of the hard ellipse system has, however, a dependence on
the distance, and it broadens as it approaches the bulk. The explanation of these
trends lies on the fact that the model is more realistic when the fluctuations of the
particle orientations are small (something that certainly happens for high pressures
and close to a hard wall).

Although the angular distribution of the model is a poor description of that of
the hard ellipse system in the bulk, we have proved that the same functional shape
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can be fitted well to the MC data. In this way, we obtain an effective aspect ratio
(Kefr), lower than the actual one (x), for which the model describes accurately the
angular distribution in the bulk. Two remarkable things about this k. are its near
independence of pressure, and the empirical power law that relates it with &
(equation (26)). Accordingly, we can also conjecture that, at a given distance y, there
will be an effective aspect ratio related to « as kqy(y) = 0, where a(0) = 1 and
a(oo) = 4/5.
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