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Understanding the emergence of cooperation is a central issue in evolutionary game theory. The
hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game
in which cooperative agents generate a common good at their own expenses, while defectors
“free-ride” this good. Eventually this causes the exhaustion of the good, a situation which is bad for
everybody. Previous results have shown that introducing reputation, allowing for volunteer participa-
tion, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here
we present a model which shows how the introduction of rare, malicious agents - that we term jokers -
performing just destructive actions on the other agents induce bursts of cooperation. The appearance of
jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators
outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of

destructive agents acting indiscriminately promotes cooperation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent Hollywood movie The Dark Knight (2008) the
comic character known as the Joker jeopardizes a whole society
spreading chaos and destruction with no aim of benefit at it. The
situation is so critical that even the mob is willing to cooperate
with honest people to stop this nonsensical catastrophe. This
fiction provides a visual metaphor of how an event like this can
force exploiters of society to collaborate temporarily to fight the
common enemy. Society is an emergent structure resulting from
the cooperation among its members, and exploiters need society to
survive, even if they do not contribute to it. Thus they are specially
sensitive to the destruction of society precisely because, being
selfish agents, society is their only source of survival. The appear-
ance of the Joker provides a strong incentive for cooperation.

Beside situations like the one depicted by the Joker metaphor,
the importance of the inclusion of malicious agents on the game is
also illustrated in other scenarios. Here are a few examples.
Temporary coalitions of rival parties are constantly formed
whenever a common enemy arises, only to restore their old
rivalry once this enemy has been wiped out. During the Second
World War U.S.A. and U.S.S.R. were allied in fighting Hitler, but
they got engaged in the Cold War for decades after the danger of
Nazism had been ruled out. It is also well known that strong
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affective links between humans are created when they face a
common difficult situation. Biology is another source of potential
examples. For instance, it has been shown that the perception of
an increase in the risk of predation can induce cooperative
behavior in some bird species (Krams et al., 2010). Indeed, prey
species frequently form groups to increase the survival rate
against predator attacks (Hamilton, 1971; Krebs and Davies,
1993). In some cases, this has been proven to happen even in
the absence of kinship among its members, as in the collective
defense of spiny lobsters (Lavalli and Herrnkind, 2009).

The existence of these temporary coalitions for defense against
a common danger in rational and irrational agents alike calls for
an evolutionary explanation. In this article we propose a stylized
evolutionary game (Hofbauer and Sigmund, 1998) aimed at
studying theoretically this enhancement of cooperation driven
by the emergence of purely destructive agents. The game does not
try to model any specific situation, but it proposes an abstract
setting in which the role of the indiscriminate destructive action
of these agents in enhancing cooperation is made clear. Our
model is a modification of the standard Public Goods (PG) game
(Groves and Ledyard, 1977), the n-players version of Prisoner’s
Dilemma and a paradigm of the risk of exploitation faced by
cooperative behavior (Hardin, 1968). It has been shown that
several mechanisms involving reputation (Milinski et al., 2005),
allowing for volunteer participation (Hauert et al., 2002a, 2002b),
punishing defectors (Fehr and Gachter, 1999, 2000), rewarding
cooperators (Sigmund et al., 2001) or structuring agents (Szabd
and Hauert, 2002; Wakano et al., 2009; Hauert et al., 2008), can
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enhance cooperation. Here, we present a different mechanism for
the enhancement of cooperation based on the existence of evil
agents. The game involves n players who belong to one out of
three different types: cooperators, who contribute to the public
good at a cost for themselves; defectors, who free-ride the public
good at no expense; and jokers, who do not participate in the
public good - hence obtain no benefit whatsoever - and only
inflict damage to the public good. Groups are formed randomly,
and each player’s strategy is established before the group is
selected. Hence, players have no memory. Remarkably, the
appearance of jokers promotes a rock-paper-scissors dynamics,
where jokers outbeat defectors and cooperators outperform
jokers, which are subsequently invaded by defectors. In contrast
to previous models (Hauert et al., 2002a,b), the cycles induced by
jokers are limit cycles, i.e., attractors of the dynamics, and exist in
the presence of mutations; these properties make them robust
evolutionary outcomes. Therefore, paradoxically, the existence of
destructive agents acting indiscriminately promotes cooperation.

The paper is organized as follows. Section 2 exposes the model
and shows the existence of cycles. Section 3 analyzes the
dynamics for infinite populations, and Section 4 compares the
joker model with other RPS dynamics.

2. A Public Good game with jokers: existence of limit cycles

The PG game works as usual: every cooperator yields a benefit
b=rc (r > 1) to be shared by cooperators and defectors alike, at a
cost ¢ for herself (this cost can be set to c=1 without loss of
generality: all other payoffs are given in units of c), and defectors
produce no benefit at all but get their share of the public good. As
for the new agents (jokers), every joker inflicts a damage —d <0
to be shared equally by all non-jokers and gets no benefit. In a
given game O<m<n denotes the number of cooperators,
0 <j<n the number of jokers, and n—m—j >0 the number of
defectors; S=n—j expresses the number of non-jokers. In this
group, the payoff of a defector will be ITp(m,j) = (rm—dj)/S, and
that of a cooperator I1c = IIp—1. Then, in each group, defectors
will always do better than cooperators. Jokers’ payoff is always 0.

A usual requirement of PG games is that r <n. Without this
requirement the solution in which all n players are defectors is no
longer a Nash equilibrium—hence the dilemma goes away. As
shown later, the evolutionary dynamics for infinite populations
yields the same constraint, i.e., if r <n the dynamics asymptoti-
cally approaches the tragedy of the commons. However, this is no
longer true for finite populations, where the upper bound of r for
which the tragedy of the commons takes place grows as M, the
population size, decreases. In this case the tragedy of the com-
mons arises whenever r < rpax = n(M—1)/(M—n) (see Appendix A;
notice in passing that for a population of M=n individuals, the
evolutionary dynamics yields a tragedy of the commons for every
r>1).

An invasion analysis provides the clue as to why a rock-paper-
scissors (RPS) cycle is to be expected when jokers intervene in the
game. We shall assume that we have a population of M players of
the same type and will consider putative mutations of one
individual to any of the other two types. The mutation will thrive
if the average payoff of the mutant after many interactions
overcomes the average payoff of a non-mutant player. The result
of this analysis (see Appendix A) is summarized in Fig. 1, which
represents the three different patterns of invasion that can be
observed within the region of interest 1 <1 < rmax, d > 0:

I. Rock-paper-scissors cycle: It arises whenever r>1+(n—1)d.
This condition expresses the fact that a single cooperator gets
a positive payoff in spite of the damage inflicted by n—1
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Fig. 1. Dynamics of invasions in a Public Goods game with jokers. The axes
represent the gain factor r of the Public Goods game (i.e., the payoff each
cooperator yields to the public good) and the “damage” d > 0 that every joker
inflicts on the public good. The tragedy of the commons occurs for 1<r<
'max = n(M—1)/(M—n) (see text), which includes the dilemmatic region 1<r<n
characteristic of PG games. Different colors are assigned to different invasion
patterns: Light blue corresponds to a region where ] invades both C and D (III);
light green corresponds to a region where neither C nor J invades each other (there
is bistability on the J-C line) but D invades C and is in turn invaded by ], so again
everything ends up in ] (II); finally, light yellow corresponds to a region where D
invades C, ] invades D, but C invades ] back, thus generating a rock-paper-scissors
cycle (I). The latter behavior is the essence of the Joker effect. The equations of the
straight lines separating the three regions are (from top to bottom) r=1+(n—1)d
and r=1+d/(M—1). Notice that this scheme is valid for arbitrary n > 1. Also, for
fixed r, all three regions are crossed upon varying d, whereas vice versa is only true
provided d <d; = M/(M—n). The Joker effect does not occur if d >d;. For large
populations, M> 1, the region for the rock-paper-scissors cycle simplifies to
n>r>1+(n-1)d and d < 1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

jokers and, therefore, being a cooperator pays (jokers get no
payoff whatsoever).

II. Joker-cooperator bistability: 1If 1+d/(M—1)<r<1+(n—-1)d
neither jokers nor cooperators can invade each other. None-
theless defectors always invade cooperators, and jokers
always invade defectors, so eventually only jokers survive,
either because they are initially a majority or indirectly
through the emergence of defectors.

Il Joker invasion: If r <1+4d/(M—1) jokers will invade any homo-
geneous population, so a homogeneous population of jokers is
the only stable solution. Notice that this region disappears for
large populations (M —oo) because r > 1.

The RPS cycle C—D—]— C occurring in region I is the essence of
the Joker effect.

3. Infinite populations

We can gain further insight into this effect by studying a
replicator-mutator dynamics (Maynard Smith, 1982). We assume
a very large population in which the three types are present at
time t in fractions x (cooperators), y (defectors), and z=1-x—y
(jokers). Agents interact with the whole population by engaging
in the above described game within groups of n randomly chosen
individuals (Hauert et al., 2006). Average payoffs of a cooperator,
a defector, and a joker are denoted Pc(x,z), Pp(x,z), and Pj(x,z),
respectively. Assuming individuals of a given type mutate to any
other type at a rate u <1, the replicator-mutator equations for
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this system will be
X =X(Pc—P)+ u(1-3x),
¥ =Y(Po—P)+u(1-3y),

z =2z(Pj—P)+ 1(1-32), (1

where P = xPc +yPp +2P; is the mean payoff of the population at a
given time. Explicit expressions for Pc, Pp, and P; can be obtained

C

D

Fig. 2. The Joker effect in public goods games for large, well-mixed populations.
The simplex describes the replicator-mutator dynamics, Eq. (1), for a population of
cooperators, defectors and jokers with parameter values satisfying n>r>
1+(n—1)d, for which a rock-paper-scissor dynamics is expected (yellow region
in Fig. 1). When mutation rates are small, the only equilibrium is a repeller (white
dot), and trajectories end up in a stable limit cycle (black line). Thus the presence
of jokers induces periodically a burst of cooperators. Cooperators abound during
short time spans, as shown by the small fraction of cooperators in the equilibrium
point. Parameters: n=5, r=3, d=0.4 and u=0.005. (Images generated using a
modified version of the Dynamo Package (Sandholm and Dokumaci, 2007)).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

a

by averaging over all samples of groups of n players extracted
from a population containing Mx cooperators, My defectors, and
Mz jokers, in the limit of very large populations (M—oo); the
derivation can be found in Appendix B. Let us recall that the
parameters of the game in the infinite population limit satisfy
1 <r<n and d > 0; the first condition enforces the public goods
dilemma, and the second one implies that jokers beat defectors in
the absence of cooperators, because defectors receive the damage
inflicted by jokers thus obtaining a negative payoff.

The stability analysis of the dynamical system (1) recovers the
picture displayed in Fig. 1 (taking M —oco). When r <1+(n-1)d
the system is in region II. The only stable equilibrium is a
population of only jokers and any trajectory of (1) is asymptoti-
cally attracted to it. Thus, in this region the destructive power of
jokers is high enough to wipe out the populations of both
cooperators and defectors. But the most interesting situation
takes place when

r>1+(mn-1), 2)

i.e., in region L. In the absence of mutations the dynamical system
(1) has three saddle points at the corners of the simplex as well as
an unstable mixed equilibrium (see Appendix C). As a conse-
quence, the attractor of the system is the heteroclinic orbit
C—D—]—C. The period is infinite because the system delays
more and more around the saddle points. When mutations occur
the corners of the simplex are no longer equilibria, and one is left
with the interior fixed point, which for small mutations is a
repeller (see Appendix C). Since trajectories are confined within
the closed region of the simplex, they are attracted to a stable
limit cycle for any r>1 (a direct consequence of the Poincaré-
Bendixon theorem, Simmons and Krantz, 2006), as shown in
Fig. 2.

The size of the cycle depends on the parameter values. It grows
as d increases - i.e., when jokers play a more important role
(Fig. 3) - and as the mutation rate decreases (Fig. 4). For both,
large values of d (compatible with condition (2)) and very small
mutations, the cycle closely follows the boundaries of the simplex
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Fig. 3. Replicator-mutator dynamics as a function of the damage d inflicted by jokers. For a fixed mutation rate, the size of the cycles increases as the damage increases.

Parameters: n=5, r=3 and u=0.001.
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Fig. 4. Replicator-mutator dynamics as a function of the mutation rate . (a) For very small mutation rates cycles approach the boundary of the simplex. (b) As u increases,
the cycle amplitude decreases and, above a critical value (typically, p. ~0.01), cycles disappear in a Hopf bifurcation yielding a stable mixed equilibrium (c) Parameters:

n=5,r=3 and d=04.
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(see Fig. 4a). By increasing the mutation rate (typically over 0.01),
cycles disappear in a Hopf bifurcation yielding a stable mixed
equilibrium (Figs. 4b-c).

4. Discussion and conclusions

This evolution has some resemblances with the effect of
volunteering in a PG game (Hauert et al., 2002a,b), but the two
games are fundamentally different. This can be told from the
dynamic behavior of the system. In both cases, the existence of a
third agent which does not participate in the game is the ultimate
reason why cooperators periodically thrive through a rock-paper-
scissor dynamics. However, while the loners game leads to
neutrally stable cycles around a center, trajectories in the Joker
model are attracted by the heteroclinic cycle C-D-]J-C. The
difference is even more striking if mutations are included. Muta-
tions replace the cycles in the loner model by a stable mixed
equilibrium. In contrast, in the Joker model mutations substitute
the heteroclinic orbit by a stable limit cycle, which undergoes a
transition (Hopf bifurcation) to a stable mixed equilibrium above
a threshold mutation rate.

These two scenarios can be understood from the analysis of
general RPS games (Hofbauer and Sigmund, 1998). There are
three situations: (a) orbits are attracted towards an asymptoti-
cally stable mixed equilibrium (the case of the loners game with
mutations), (b) orbits cycle around a neutrally stable mixed
equilibrium (the case of the loners game without mutations),
and (c) orbits go away from an unstable mixed equilibrium and
approach the heteroclinic orbit defined by the border of the
simplex (the case of the Joker game without mutations). If
mutations are added to the latter type of RPS games, limit cycles
and a Hopf bifurcation upon increasing the mutation rate are also
found (Mobilia, 2010). Limit cycles are robust to perturbations
and have a well-defined amplitude irrespective of the initial
fractions of players (as long as it is not at the border of the
simplex). Therefore, they are true attractors of the dynamics, and
can thus be regarded as a robust evolutionary outcome, in
contrast to neutrally stable cycles.

In contrast to loners, which do not participate in the game but
receive a benefit outside of it, jokers do not receive any benefit at
all and cause damage to players. Both loner and joker models
coincide - in the absence of mutations - when the damage
inflicted by jokers and the benefit obtained by loners are both
zero. In this case both become simply non-participants in the
game, and the only effect they produce is a reduction in the
effective number of players in the game, which is not enough to
induce an oscillatory dynamics (see Fig. 5). In other words, the
appearance of the RPS cycle which periodically increases the
population of cooperators in the presence of jokers can only

a

D

Fig. 5. Replicator-mutator dynamics for d=0. If jokers are just passive agents
cooperators go extinct. (a) = 0. The system ends up in a point of the line D] with
a majority of defectors. (b) 1 =0.001. Mutation generates one single stable state
made up mostly by defectors. Parameters: n=5, r=3 and d=0.

happen, remarkably, provided d=>0, i.e., if jokers are truly
destructive agents.

In this letter we have shed light on a still unexplored aspect of
evolutionary game theory (the presence of a destructive strategy)
in the prototypical PG game. We have shown, both theoretically
and by numerical simulations, that the addition of purely
destructive agents (jokers) to a standard PG game has, paradoxi-
cally, a positive effect on cooperation. Bursts of cooperators are
induced through the appearance of a RPS cycle in which jokers
beat defectors, who beat cooperators, who beat jokers in succes-
sion. The evolutionary dynamics provoked by the Joker, with
periods of cooperation, defection and destruction of the PG, may
help understand the appearance of cognitive abilities that allow
individuals to foresee the destructive periods, promoting in
advance the necessary cooperation to avoid them.

We have proven this “Joker effect” to occur both in finite and
infinite populations, discarding the possibility of its being an
artificial size-depending phenomenon. Further research is
required to ascertain the scope of the constructive role of
destruction in general settings. This provides a new framework
for the evolution of cooperation that may find important implica-
tions in social, biological, economical, and even philosophical
contexts, and that is worth exploring either with different
variants of this game or with new, more specific games account-
ing for indiscriminate destruction.

Acknowledgements

Financial support from Ministerio de Ciencia y Tecnologia
(Spain) under projects FIS2009-13730-C02-02 (A.A.), FIS2009-
13370-C02-01 (J.C. and RJ.R.) and MOSAICO (J.A.C.); from the
Director, Office of Science, Computational and Technology
Research, U.S. Department of Energy under Contract no. DE-
AC02-05CH11231 (A.A.); from the Barcelona Graduate School of
Economics and of the Government of Catalonia (A.A.); from the
Generalitat de Catalunya under project 2009SGR0838 (A.A.)
2009SGR0O164 (J.C. and RJ.R.) and from Comunidad de Madrid
under project MODELICO-CM (J.A.C.). RJ.R. acknowledges the
financial support of the Universitat Autobnoma de Barcelona (PIF
Grant) and the Spanish government (FPU Grant).

Appendix A. Finite populations: invasion analysis

We shall consider the situation in which in a homogeneous
population of M individuals with the same strategy Y, one of them
mutates (changes) to a different type X. The new individual will
invade provided its average payoff after many interactions, Py, is
larger than the average payoff of a Y individual, i.e., Px > Py.
Average payoffs can be evaluated as follows. The population is
made of one X player and M—1 Y players. Thus, when playing the
game, the X player will always interact with n—1 Y players.
Therefore

Px = IIx(1X,(n—1)Y). (A1)

On the other hand, the n—1 opponents of a Y player can be of just
two types: either all n—1 are Y players, or n—2 are Y players and
one is the single X player. The latter situation occurs with
probability (n—1)/(M—1). Therefore, the average payoff of a Y
player will be
M-n n-1

Py = Hy(nY)m +Hy(1X,(n—l)Y)m. (A2)
Next we derive the invasion conditions for homogeneous popula-
tions of three types of players. In this new scenario we must
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consider the six different situations arising form the pair interac-
tions that can be formed:

(A) 1D+(M—1)C.

rn—1 r
PCZT'flfﬁm, Pp =T7E.
The tragedy of the commons occurs when defectors overcome
cooperators, i.e., Pp > Pc. This happens iff

M-1

M-n’
We will henceforth assume (A.4) to hold. This condition
contains the dilemmatic region 1 <r <n of PG games. In the
limit M — oo, the inequality (A.4) reduces to r <n and both,
the conditions for the dilemma and the tragedy of the
commons coincide.

(B) 1C+(M-1)D.

(A3)

r<n

(A4)

r rn-1
Pc= 5_1, PD:ﬁiM—l' (A.5)
Because of (A.4) Pp > Pc, so C never invades D.
(C) 1J+M-1C.
d
Pczr—l—m, PJ:O (AG)
Since P > Pc iff
r<l1l+ _d_ (A7)
M-1’ ’
then J invades C iff (A.7) holds.
(D) 1C+M-1)].
Pc=r—(n-1)d—1, P;=0. (A.8)
Since P¢ > Py iff
r>1+(n-1)d, (A.9)
then C invades ] iff (A.9) holds.
(E) 1ID+M-1)].
Pp=—(n-1)d, P;=0. (A10)

As long as d > 0 we will have P; > Pp, then D never invades J.

(F) 1J+(M-1)D.
__d
M-1’
As long as d > 0 we will have Py > Pp, then J always invades D.

P = ) (A11)

Fig. 1 illustrates the different regions of interest in this game.
The most interesting one is that in which there is a rock-paper-
scissor rotation between C, D, and ], which corresponds to

M-1 r—1
1<r<nM—, O<d< P

—-n n—

(A12)

Appendix B. Infinite populations: average payoffs

We evaluate here the average payoffs Py obtained by each
strategy (i=C, D, ]) in this game when the population is very large.
These functions will determine the dynamics of the population
through the replicator equation. As before, sample groups of n
individuals playing the game are randomly formed, and it is
assumed that each player is sampled a large number of times
before payoffs are compared in order to update strategies. The
payoff for a given strategy is, therefore, proportional to the
average payoff that a player using this strategy obtains playing
against the whole population. This average payoff will depend

only on the player’s strategy and the composition of the popula-
tion, described by a fraction x of cooperators, z of jokers and
y=1-x—z of defectors. Notice that P;=0 for any composition of
the population, so only cooperators’ and defectors’ payoffs need to
be calculated.

B.1. Defectors

The average payoff of a defector is

Py = <rm—dj>, (B])

S

where the symbol ¢ ---)> denotes an average over samples of
n—1 opponents randomly selected from the population. The
average (m/S> can be obtained as in Hauert et al. (2002b),
yielding

m X 1-z"
<§> 1z (1_ n(1 —z))'
Since j=n-S, the second term in Eq. (B.1) can be written as
n<1/S»—-1, where

1 " /n-1 1as1
(5)= 2 (5 Jao 2,

S=1

the factor in front of 1/S in the summation being the probability of
having S—1 non-jokers in a group of n—1 randomly chosen
players. By using the identity a(-})=b(9), the latter expression
becomes

1\ _ 17
S/ n(1-z)°
Joining the two averages one gets the average payoff of a defector,
X 1-2" 1-z"
Po=r (1_711(172))_01(7172 _1>, (B2)
the first term arising from the exploitation of cooperators and the
second one being the damage inflicted by jokers.

B.2. Cooperators

The difference Pp—Pc can be written as
r
Pp—Pc = <1_§>, (B3)

because in a group of S—1 opponents switching from cooperation
to defection yields a payoff increment of 1—r/S: the defector’s
payoff gets reduced by r/S because there is one cooperator less in
the group, but adds 1 to her payoff because she does not pay the
cost of cooperating (Hauert et al., 2002b). The average in the r.h.s.
of Eq. (B.3) just contains {1/S), thus yielding

r1-z"
Po—Pe=1-—-—. (B:4)
Finally, from Eqgs. (16) and (18) one gets
X 1-z" r1-z"
Pe=ri=; <1fn(1—z)) a1z
1-z"
—d (W_l) (B.5)

Appendix C. Infinite populations: proof of existence of limit
cycles

To complete the proof that the system ends up in a limit cycle
it remains to show that the interior equilibrium of Eq. (1) is a
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repeller, i.e., its two eigenvalues have positive real parts. The
interior equilibrium and its stability can be evaluated in the limit
of small mutation rates, the one we are interested in. In this case,
one can neglect the dependence of u in the position of the fixed
point. We are thus faced with the solution of the dynamical
system (1) without the mutation term. The calculation becomes
simple for n=2, and tractable for n > 3. The proofs are treated
separately in the next subsections.

C.1. Interior fixed point for n=2

The interior fixed point (x¢,y0,20) satisfies Pc=Pp=0. According
to Eq. (B.4), the first equality requires (1+2zo)r=2, yielding
2—r

Zp=——.
0 r

Since n=2>r>1, one has 0<zy <1, as it should. The second
equality, Pp=0, produces

2—r
Xo = 2d TT

Condition r > 1+d from expression (2) guarantees that 0 <xg <1
and 0 <yg=1-xp—29 < 1. In order to analyze the stability of this
equilibrium, we consider frequencies x and z as the independent
variables of the two-dimensional system. To prove that the
equilibrium is a repeller it suffices to show that the trace and
determinant of the Jacobian matrix at the fixed point are both
positive. For n=2, Eq. (1) become

X= —%x(zdzz—rz+2—r—2x+rx), (C.1
z=2z[(1-r)x+dz(1-2)]. (C2)
The Jacobian matrix in the interior equilibrium is
d@-ry  dQ2-r)?+4dr-8d)
r r C3
2-r(@r-1) d2—-n((3r—4) ’ €3
r r2
whose trace, T, and determinant, D, are
T= 2‘1(2_7?(1’_1) >0, (C.4)
r
—2V2(r2 —1)—
p_ =2 +rd-1)-2d) ©5)

3
T is positive because n=2 >r > 1. To prove that the determinant
is positive, we should realize that the second bracket in its
expression can be written as r(r—1)—d(2—r), which is larger than
2(r—1)? > 0 because r > 1+d.

C.2. Interior fixed point for n >3

We use the same procedure as in the previous case. The fraction
of jokers zg of the interior equilibrium arises from Pc=Pp, namely
Eq. (B.4). Once it is found, xo follows from Pp=0, c.f. Eq. (B.2).

C2.1. Calculation of zg
Zo is obtained as the solution to
ri-z"

“n1z =% o

which is equivalent to

n-1
> Z=n/r.
izo

The latter equation has exactly one solution, namely the crossing of
the polynomial in the Lh.s of Eq. (C.7) with the constant n/r > 1.

€7

Since r > 1, this occurs at 0 < zy < 1, consistent with the meaning of
Zo. There is no analytical solution to Eq. (C.6) for arbitrary n. There
exists, however, a simple analytical solution in the limit of large n,
which is indeed an excellent approximation for all n > 3. It can be

obtained neglecting z" as compared to 1 in (C.6), which leads to
r

Zo~1——.

" (C.8)

Since r<n, one has, of course, 0<zy<1. For consistence,
28 =(1—(r/n))" ~e~" < 1, which holds, say, for r > 3. Notice that if
r < n the equilibrium approaches all ], so that cycles get very close to
this state in this limit.

C2.2. Calculation of xo
Let us impose Pp=0. Introducing (C.6) into (B.2) one finds
d /m
X0~ = (7-1)a-20).
Conditionsd>0,n>r>1,and r > 1+(n—1)d yield 0 <x¢ <1 and
0<Xxg+2zg<1, so that the three fractions are smaller than 1.
Substituting zo from expression (C.8) into (C.9) one finally obtains

d
%0~ 1 (1-7):

(C.9)

(C.10)

C.2.3. Stability of the interior equilibrium

We need to determine the Jacobian matrix for the equilibrium
(x0.20) given by (C.9) and (C.8). The dynamical system (1) can be
written as

, X
X=—— " (-T+ n—rmxz—dnz"* '+ 2nxz
n(1-z)
—nxz2—2nz+rx—rxz" +dnz* —nx+rz"
+nZ% +12—12" 1 rxz? +dnZ" T2 —dnz’) (€11)
Z = —(—dz+rx+dZ"—x)z. (C12)

The first equation is very cumbersome. Fortunately, as already
explained, in the limit of large n and if r > 3 one can neglect terms
of order z" and above. Using expressions (C.8) and (C.10), the
Jacobian matrix J can be written as J=Yd(n—r)/n, where

n—r nrr—1)+dr—n)r’—r+n)
T r2(r—1)?

r—1
e 2

Y = (C.13)

(Notice that the factor d(n—r)/n > 0.) As the diagonal elements of
this matrix are positive, the trace is positive. Also Y,x <0 and, as
we show next, Yy, > 0, therefore, the determinant turns out to be
positive, and the interior equilibrium is a repeller. To see that
Yy, > 0 we must show that the numerator is positive. This can be
shown by writing it as

(n—r?+nr

T > 0.

nr(r—1)+dr—n)r?—r+n) > (r—1)*

The first inequality follows from condition r—1 > (n—1)d.
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