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Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain

E-mail: llafuent@math.uc3m.es and cuesta@math.uc3m.es

Received 6 June 2002
Published 8 November 2002
Online at stacks.iop.org/JPhysCM/14/12079

Abstract
We present the extension of Rosenfeld’s fundamental measure theory to lattice
models by constructing a density functional for d-dimensional mixtures of
parallel hard hypercubes on a simple hypercubic lattice. The one-dimensional
case is exactly solvable and two cases must be distinguished: all the species
with the same length parity (additive mixture), and arbitrary length parity
(nonadditive mixture). To the best of our knowledge, this is the first time that the
latter case has been considered. Based on the one-dimensional exact functional
form, we propose the extension to higher dimensions by generalizing the zero-
dimensional cavity method to lattice models. This assures the functional will
have correct dimensional crossovers to any lower dimension, including the
exact zero-dimensional limit. Some applications of the functional to particular
systems are also shown.

1. Introduction

The spirit that has traditionally guided the construction of approximate density functionals has
been to collect as much information as possible about the fluid and cook up a functional out of
it under reasonable simple assumptions. This is the idea behind widely used approximations
such as the weighted density or the effective liquid approximations, which produce a functional
from the Helmholtz free energy and direct correlation function of the fluid (see Evans (1992) for
a review), or even more recent approaches (Zhou 2001a, 2001b) which in addition incorporate
the pair correlation function. As an alternative to this there stands Rosenfeld’s fundamental
measure (FM) theory, whose aim is to construct the density functional upon geometrical
grounds, and to obtain as output all the ingredients that classical approaches need as input. Since
Rosenfeld’s pioneering work for hard spheres (Rosenfeld 1989), later extended approximately
to nonspherical objects (Rosenfeld 1994), this theory has developed far from its roots, giving
rise to functionals for hard spheres that reproduce extraordinarily well the structure of the crystal
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phase (Tarazona 2000), functionals for the fluid mixture of parallel hard cubes (Cuesta and
Martı́nez-Ratón 1997a, 1997b) which have been applied to study entropic demixing (Martı́nez-
Ratón and Cuesta 1998, 1999) and even functionals for soft interactions (Schmidt 1999) as
well as for nonadditive mixtures (Schmidt 2000a, 2000b).

Rosenfeld’s original approach (Rosenfeld 1989), applied to hard spheres, consisted of
three steps:

(i) decomposing the Mayer function into a sum of convolutions of one-particle measures;
(ii) using these measures to define a set of weighted densities and assuming that the density

functional depends on the density profile only through them and
(iii) determining the functional form by resorting to scaled-particle theory.

The functional so obtained had an interesting functional structure and worked well when applied
to problems such as the adsorption profiles at hard walls. However it dramatically failed the test
of freezing because of some built-in singularities, which could be repaired by imposing exact
dimensional reduction of the functional to zero-dimensional cavities, i.e. cavities which do not
hold more than one particle (Rosenfeld et al 1996, 1997). This idea was later exploited by
Tarazona and Rosenfeld (1997) and Tarazona (2000) as a more fundamental idea to construct
a functional free from divergences. The method amounts to extending to higher dimensions
the exact form of the one-dimensional hard-rod functional (Percus 1976) and then adding
the appropriate extra terms (with a form dictated by the original FM functional structure)
so as to cancel whatever exceeds the exact result when the functional is reduced to properly
tailored zero-dimensional cavities. This method avoids the use of scaled-particle theory while
at the same time imposing a first-principles constraint (the zero-dimensional reduction) to the
functional. It is then not surprising that the resulting functional performs much better than the
original one, for instance in describing the crystal phase (Tarazona 2000).

The FM functional for the fluid of parallel hard cubes was first obtained using Rosenfeld’s
original method (Cuesta 1996) supplemented with the exact zero-dimensional reduction
requirement (Cuesta and Martı́nez-Ratón 1997a, 1997b). However, this system seems to be
more suitable for FM theory than the hard-sphere one, for at least two reasons: first, because
the functional turns out to be derivable through an extraordinarily simple recipe, and second,
because, as we shall show for its lattice counterpart, the method of cavities leads precisely to
this functional. Moreover, this remains true not only for the monocomponent system but also
for a mixture, where the FM functional for hard spheres shows its more prominent weaknesses
(Cuesta et al 2002).

In principle nothing precludes us from extending this theory to lattice systems. However,
when one naively tries to do this one immediately runs into difficulties. To illustrate these
let us suppose we want to follow Ronsenfeld’s method. To begin with, there is no equivalent
to scaled-particle theory for lattice fluids (Soto-Campos et al 1999) and it is not clear how
to devise it, so this makes step (iii) of the derivation infeasible, but there is even more: the
decomposition of the Mayer function is ambiguous in the sense that there is no unique way to
define the FMs. Take, for instance, the one-dimensional fluid of hard rods in the continuum.
The Fourier transform of its Mayer function is

− f̂i j (q) = 2
sin(ai + a j)q

q
= 2 cos ai q

sin a j q

q
+ 2 cos a j q

sin ai q

q
,

where the indices i, j are introduced to distinguish particles and 2ai is the rod length of particle
i . As is clear from this expression, the decomposition suggests itself. For the lattice counterpart
of this model we have, however,

− f̂i j (q) = sin(ai + a j − 1
2 )q

sin(q/2)
;
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without being too imaginative, there are several ways of decomposing f̂i j(q), all equally
plausible:

− f̂i j (q) = sin(ai − 1
2 )q

sin(q/2)
cos a j q +

sin a j q

sin(q/2)
cos

(
ai − 1

2

)
q = sin(ai − 1

2 )q

sin(q/2)
cos a j q

+
sin(a j − 1

2 )q

sin(q/2)
cos ai q + cos ai q cos a j q + sin ai q sin a j q

= sin(ai − 1
4 )q

sin(q/2)
cos

(
a j − 1

4

)
q +

sin(a j − 1
4 )q

sin(q/2)
cos

(
ai − 1

4

)
q,

and many other possibilities. In contrast to the continuum case, this gives no clue as to how to
define the weighted densities.

An alternative to this approach is to use the method of cavities, but there is also a problem
here. The exact one-dimensional functional (Robledo 1980, Robledo and Varea 1981, Buschle
et al 2000a) is very different in its structure from the continuum one, so there is no equivalent
to defining convolutions of delta-shells with appropriate kernels (we shall see later that this
has no counterpart in a lattice system). So here again we do not have a guide to follow.

The method we have employed to achieve the extension and to provide the correct way
to define what could be referred to as lattice FM theory (LFMT), rests on two pillars: first, an
appropriate analysis of the extension to mixtures of the exact one-dimensional functional of
hard rods (which, to our knowledge, we present for the first time in this article), and second,
a similarity, in the case of cubic lattices, to the fluid of parallel hard cubes. After devising the
correct way to define LFMT we shall show how to make sense of the theory of cavities for
lattice fluids. A further byproduct of this theory is that it would allow for an alternative way to
define a scaled-particle theory for lattice fluids were we able to fill in step (iii) of Rosenfeld’s
method in such a way as to obtain the same functional. We are currently working along this
line.

The structure of the article goes as follows. In section 2 we analyse the mixture of hard
rods on a lattice. This means considering two cases: (i) all rod diameters having the same
parity and (ii) some having odd and some even diameter. The former corresponds to an additive
mixture, while the latter is nonadditive. The functional for case (i) is derived first, following
the derivation by Vanderlick et al (1989) for the continuum; this method cannot be applied to
case (ii), which is then obtained through an appropriate mapping to an additive mixture in a
particular external field. The way in which these exact functionals are finally written suggests,
by analogy with the fluid of parallel hard cubes, the extension to higher dimensions (only in
cubic lattices). This is carried out in section 3, where it is also proven that this extension has
a correct dimensional reduction to any lower dimension. It is then shown how to extend the
method of cavities for these lattice models. Finally, in section 4, we present some results from
applying the obtained functional to some particular two- and three-dimensional systems.

2. Hard-rod lattice fluid revisited

The exact density functional for the continuum fluid of hard rods was first obtained by Percus
(1976) and extended to multicomponent mixtures by Vanderlick et al (1989). Robledo
(1980) and Robledo and Varea (1981) derived the exact functional for the lattice fluid of
hard rods by means of potential-distribution theory (Widom 1978), but they focused on
the continuum limit. Buschle et al (2000b) have recently dealt with the general problem
of the derivation of exact density functionals for one-dimensional lattice gases with finite-
range pairwise interaction. They made use of a generalized Markov property satisfied by the
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conditional particle distribution probabilities. In this way, they rederived (Buschle et al 2000a)
the functional for the monocomponent hard-rod lattice fluid.

In this section, we are going to derive the exact density functional of a multicomponent
lattice fluid of hard rods. The starting point will be the adaptation to lattice models of the
derivation by Vanderlick et al (1989) for the continuum.

Let us consider a system of hard rods with different sizes, such that the interaction
between α-type and α′-type rods at positions s and s′ respectively on a one-dimensional lattice
(i.e. s, s′ ∈ Z) is given by

φαα′ (s, s′) =
{

0 if |s − s′| � σαα′ ,

∞ if |s − s′| < σαα′ ,
(2.1)

where σαα′ = 1
2 (σα + σα′), σα ∈ N being the diameter of an α-type rod. Because of the

particle ordering in one-dimensional systems, the pairwise interaction will appear in the grand
canonical partition function � via the modified Boltzmann factor, defined by

eαα′ (s, s′) ≡ e−βφαα′(s,s ′)�(s − s ′) = �(s − s ′ − σαα′ ), (2.2)

where �(s) = 1 if s � 0 and 0 otherwise, and β = 1/kT with T the temperature and k the
Boltzmann constant. Note that this eliminates the combinatorial factor 1/N! of the partition
function. Let us also suppose that every species α is in chemical equilibrium with a particle
reservoir of fixed chemical potential µα and that over an α-type particle at position s ∈ Z is
acting the external potential uα(s). In the same way, the external and chemical potentials will
only appear in � via

wαα′ (s, s′) ≡ eβ[µα−uα(s)]δαα′δss ′ ≡ wα(s)δαα′δss ′, (2.3)

where δαα′ is the Kronecker delta. With the above definitions we can write the grand canonical
partition function as

� = 1 +
∞∑

N=1

Tr

[
wα1(s1)

N−1∏
i=1

eαi αi+1(si , si+1)wαi+1 (si+1)

]
, (2.4)

where Tr ≡ ∑
{(αi ,si )} sums over all indices (α, s) appearing in the expression, αi denotes the

species of the i th particle and si ∈ Z its position. Considering e and w as operators defined
over the (α, s)-space, the term under the sum over N is just Tr{[w(ew)N−1]αα′(s, s′)}; thus we
can perform the sum and rewrite (2.4) as

� = 1 + Tr{[w(I − ew)−1]αα′ (s, s′)}, (2.5)

I denoting the identity operator in the (α, s)-space.
The density profile of species α, ρα(s), can be expressed as the functional derivative

(Hansen and McDonald 1990)

ρα(s) = wα(s)

�

∂�

∂wα(s)
, (2.6)

which in this case, given the discrete nature of s, is a partial derivative. Using (2.5) for �

in (2.6), we can write ρα(s) as

ρα(s) = �−
α (s)wα(s)�+

α(s)

�
, (2.7)

where we have introduced the truncated partition functions defined as

�−
α (s) ≡

∑
(α′,s ′)

(I − ew)−1
αα′ (s, s′), (2.8)

�+
α(s) ≡

∑
(α′,s ′)

(I − we)−1
α′α(s′, s). (2.9)
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From the above definitions and multiplying by (I − ew) to the left of �−
α (s) and by (I − we)

to the right of �+
α(s), it is straightforward to obtain the following recursive relations satisfied

by the truncated partition functions:

�−
α (s) = 1 +

∑
(α′,s ′)

(ew)αα′ (s, s′)�−
α′(s′),

�+
α(s) = 1 +

∑
(α′,s ′)

�+
α′ (s′)(we)α′α(s

′, s).
(2.10)

At this point, our original problem may be posed as to solve (2.7) and (2.10) in such a way
that wα(s) could be expressed as a functional depending only upon the densities ρα(s).

As noted by Vanderlick et al (1989) and Percus (1997), the solvability of (2.7) and (2.10)
depends on the rank of the Boltzmann factor (2.2) regarded as an operator in the (α, s)-space.
For the additive continuum system it can be shown that this is of rank one, and then it is possible
to solve these equations. In contrast, for the lattice system we are dealing with this is not always
true. In this case, due to the discrete nature of the system, we should distinguish between a
mixture of rods all of them with even (odd) diameters (additive mixture) and one of rods some
of which have even diameter and some odd (nonadditive mixture). Indeed, for the former case,
σαα′ is always an integer and, consequently, from (2.1) it follows that the corresponding mixture
is additive. The solution in this case is just a rephrasing of the resolution of (2.7) and (2.10)
reported for the continuum system (we shall sketch it in section 2.1). For the mixed even–odd
case, however, σαα′ may take half-integer values. If σαα′ is a half-integer then |s − s′| � σαα′

in (2.1) is also |s − s ′| � σαα′ + 1/2, so effectively the interaction is nonadditive. In spite of
this, it should be noticed that this nonadditivity is peculiar to the lattice system and disappears
in the continuum limit. For nonadditive mixtures the Boltzmann factor (2.2) is not a rank-one
operator; nevertheless, we shall show (in section 2.2) how to obtain the exact density functional
for that system as a particular case of the additive mixture.

2.1. Additive mixture

Let us consider a mixture of hard rods such that σα = 2aα + ε with aα ∈ N and ε = 0, 1
depending on whether all the rods have even or odd diameters, respectively. In this case, the
Boltzmann factor (2.2) is a rank-one operator. If we define the vectors e+

α(s) ≡ δs,aα
and

e−
α (s) ≡ �(s − aα − ε) and the convolution ∗ as f ∗ g(s) ≡ ∑

r f (s − r)g(r), (2.2) can be
written as

eαα′ (s, s′) = e−
α ∗ e+

α′(s − s′) = e+
α ∗ e−

α′(s − s ′). (2.11)

Inserting (2.11) in (2.10) we obtain

�−
α (s) = 1 +

∑
r

e−
α (s − r)

[ ∑
(α′,s ′)

e+
α′(r − s ′)wα′(s′)�−

α′(s′)
]
,

�+
α(s) = 1 +

∑
r

[ ∑
(α′,s ′)

�+
α′(s′)wα′(s′)e+

α′(s′ − r)

]
e−
α (r − s).

(2.12)

We can now use (2.7) to eliminate wα′(s′) from (2.12); besides, as e−
α (s + aα) = �(s − ε),

hence independent of α, it is handy to define

�±(s) ≡ �±
α (s ∓ aα), (2.13)

ρ±(s) ≡
∑

α

ρα(s ± aα), (2.14)
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which allow us to rewrite equations (2.12) in the more suitable form

�−(s) = 1 + �

s−ε∑
r=−∞

ρ−(r)

�+(r)
,

�+(s) = 1 + �

∞∑
r=s+ε

ρ+(r)

�−(r)
.

(2.15)

From the above expressions it is straightforward to obtain the following system of finite
difference equations:

��−(s) = �
ρ−(s + 1 − ε)

�+(s + 1 − ε)
,

��+(s) = −�
ρ+(s + ε)

�−(s + ε)
,

(2.16)

with boundary conditions

�±(∓∞) = �,

�±(±∞) = 1,
(2.17)

where we have introduced the difference operator�, defined by � f (s) ≡ f (s+1)− f (s). This
system is exactly solvable and is equivalent to the original recursion relations (2.10). In order
to solve (2.16) we have to combine the two equations of the system, taking into account the
discrete Leibnitz rule �( f g)(s) = f (s +1)�g(s)+ g(s)� f (s) = g(s +1)� f (s)+ f (s)�g(s).
This yields

�(�−�+)(s) = �[ρ−(s + 1 − ε) − ρ+(s + ε)], (2.18)

whose solution, taking into account the boundary conditions (2.17), is

�−(s)�+(s) = �

{
1 +

s−1∑
r=−∞

[ρ−(r + 1 − ε) − ρ+(r + ε)]

}
, (2.19)

or, using the definitions (2.14),

�−(s)�+(s) = �

(
1 −

∑
α

s+aα−1+ε∑
r=s−aα +1−ε

ρα(r)

)
. (2.20)

This equation permits us to decouple the system (2.16) and solve it for �±(s). After a little
algebra and index manipulation, the solution has the form

�−(s)

�
= [1 − n(0)(s − ε)]

∞∏
r=s−ε

1 − n(1)(r)

1 − n(0)(r)
,

�+(s) =
∞∏

r=s

1 − n(0)(r)

1 − n(1)(r)
,

(2.21)

where we have introduced the weighted densities, n(k)(s) (k = 0, 1), defined as

n(k)(s) =
∑

α

ω(k)
α ∗ ρα(s), ω(k)

α (s) =
{

1 if −aα − k − ε < s < aα,

0 otherwise.
(2.22)

With (2.21) we have basically solved our problem, since from (2.21) and (2.17) we can
write the grand potential, β
 ≡ − ln �, as

β
 =
∑
s∈Z

ln

(
1 − n(1)(s)

1 − n(0)(s)

)
. (2.23)
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Finally, the free-energy density functional, βF , defined as (Evans 1979)

βF[ρα] = β
[ρα] +
∑

α

∑
s∈Z

ρα(s) ln wα(s), (2.24)

takes, from (2.7), (2.13) and (2.21), the form

βF[ρα] =
∑

α

∑
s∈Z

ρα(s) ln ρα(s) + β
[ρα] −
∑

α

∑
s∈Z

ρα(s)

×
[ s+aα−1∑

r=s−aα−ε

ln(1 − n(1)(r)) −
s+aα−1∑

r=s−aα−ε+1

ln(1 − n(0)(r))

]
. (2.25)

For reasons that will be made clear later, we prefer to write this functional in the equivalent,
but more convenient, form

βF[ρα] = βF id[ρα] +
∑
s∈Z

[�0(n
(1)(s)) − �0(n

(0)(s))], (2.26)

where βF id = ∑
α

∑
s∈Z

ρα(s)[ln ρα(s) − 1] refers to the ideal part of the free energy and
�0(η) ≡ η+(1−η) ln(1−η) is the zero-dimensional excess free energy for a zero-dimensional
cavity with mean occupancy η (Rosenfeld et al 1996).

2.2. Nonadditive mixture

As we have mentioned above, the exact density functional for this special system can be derived
as a particular case of the additive functional (2.26). Let us suppose that we want to study a
system of hard rods whose diameters are σα = 2aα +εα , where aα ∈ N and εα = 0, 1. Because
of the α-dependence in εα , the factorization (2.11) cannot be applied to (2.2). This difficulty
can be overcome if we notice (see figure 1) that this nonadditive mixture can be mapped to
an additive mixture of hard rods whose diameters are σ̃α = 2σα , while their positions are
restricted to lie on the even sites of the lattice (i.e. ρ̃α(s) = 0 if s = 2r + 1 with r ∈ Z; this
amounts to setting an infinite external potential on the odd sites, while keeping it arbitrary
on the even sites). Therefore, the density functional for the nonadditive system will arise by
introducing in (2.26) the density profile

ρ̃α(s) =
∑
r∈Z

ρα(r)δs,2r , (2.27)

where ρα(s) is the density profile corresponding to the original nonadditive system. This yields
for the weighted densities (2.22)

n(k)
0 (s) ≡ ñ(k)(2s) = n(k)

e (s) + n(1)
o (s − 1),

n(k)

1 (s) ≡ ñ(k)(2s + 1) = n(1)
e (s) + n(k)

o (s),
(2.28)

where s ∈ Z, k = 0, 1 and the subindex {e, o} states that the sum over species in the
definition (2.22) is restricted to those with even or odd diameter, respectively. There are thus
four instead of two weighted densities for this special case. An alternative way of expressing
these weighted densities is n(k)

j (s) = ∑
α ω

(k)
j,α∗ρα(s) (k, j = 0, 1), if the following nonadditive

weights are introduced:

ω
(k)
j,α(s) ≡

{
ω( j+k(1− j))

α (s) if σα is even,
ω(1− j+k j)

α (s − 1 + j) if σα is odd.
(2.29)

With these definitions, the excess free-energy density functional for the nonadditive mixture
(the ideal part remains the same) adopts the form

βFex[ρα] =
∑
s∈Z

[�0(n
(1)

1 (s)) + �0(n
(1)

0 (s)) − �0(n
(0)

1 (s)) − �0(n
(0)

0 (s))]. (2.30)
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Figure 1. This figure shows how an additive mixture of hard rods of diameters 2 and 4 can be
made to have the same configurations as a nonadditive mixture of rods with diameters 1 and 2.
The positions of the upper system are restricted to be on the black sites, while the white sites are
forbidden.

As far as we know, functionals (2.26) and (2.30) have never been reported in the literature.
The additive case is just an exercise of rewriting the original derivation by Vanderlick et al
(1989) for the continuum, but this nonadditive case cannot be directly obtained with their
method. Besides, even the functional (2.26) (which for the monocomponent case reduces to
that obtained several times in the literature) has been written in a form that will make of the
obtention of an approximate functional in higher dimensions an easy task.

3. From zero-dimensional cavities to higher dimensions

Cuesta and Martı́nez-Ratón (1997a) proved that the one-dimensional excess free energy
functional in the continuum model can be generated from the zero-dimensional one by just
applying a differential operator with respect to the particle sizes. The form in which the
functionals (2.26) and (2.30) have been written proves that this is also true for the discrete
case, but now, due to the discrete nature of the system, the differential operator becomes a
difference operator. This suggests rewriting (2.26) and (2.30) as

βFex[ρα] =
∑
s∈Z

Dk�0(n
(k)(s)), βFex[ρα] =

∑
s∈Z

Dk

[ ∑
j=0,1

�0(n
(k)
j (s))

]
, (3.1)

respectively. HereDk is the difference operatorDk f (k) ≡ f (1)− f (0). Cuesta and Martı́nez-
Ratón (1997a) also proved that the FM functional for the d-dimensional system of parallel
hard cubes followed the same simple recipe, i.e. it can be generated from the zero-dimensional
functional by successive applications of a differential operator with respect to the particle
size along every coordinate axis. The functional so obtained satisfies the zero-dimensional
reduction requirement. For the equivalent lattice model it seems natural to propose a similar
recipe. Then, taking into account the continuum analogue and (3.1), our proposal for the FM
functional of the d-dimensional discrete parallel hard-cube model is

βFex[ρα] =
∑
s∈Zd

Dk�0(n
(k)(s)) (3.2)

for the additive case, and

βFex[ρα] =
∑
s∈Zd

Dk

[ ∑
j∈{0,1}d

�0(n
(k)
j (s))

]
(3.3)
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for the nonadditive one, where k ≡ (k1, . . . , kd), j ≡ ( j1, . . . , jd) are vector indices,
Dk ≡ ∏d

i=1 Dki is the difference operator and the weighted densities are defined as
n(k)(s) ≡ ∑

α ω(k)
α ∗ ρα(s) with ω(k)

α (s) ≡ ∏d
i=1 ω(ki )

α (si ) for the additive system, and as
n(k)

j (s) ≡ ∑
α ω

(k)
j,α ∗ ρα(s) with ω

(k)
j,α(s) ≡ ∏d

i=1 ω
(ki )
ji ,α

(si ) for the nonadditive one.
Functionals (3.2) and (3.3) are the main results of this work since they constitute, to the

best of our knowledge, the first FM functionals for a lattice model. In this sense, it can be
checked that they depend on the density profile through a set of weighted densities defined from
one-particle measures which are compatible with the decomposition of the Mayer function into
a sum of their convolutions, the virial expansion of the direct correlation function is exact up to
first order in the density and they consistently reduce to any lower dimension down to d = 0.
Also, it must be noticed that their continuum counterpart is recovered in the continuum limit
of vanishing lattice spacing δ → 0 and infinite size σα → ∞ with σαδ = const. (notice that
the additive–nonadditive differentiation becomes immaterial in this limit). Points (i) and (ii)
are easy to check, so we shall focus in what follows in the crucial point (iii) and its connection
with an alternative way of obtaining functionals (3.2) and (3.3).

As mentioned in the introduction, there is an alternative method to Rosenfeld’s original
one to construct a FM functional. This method will be referred to as the zero-dimensional
cavity method (Rosenfeld et al 1996, Tarazona and Rosenfeld 1997, Tarazona 2000) because
it is based on the exact dimensional reduction of the functional to d = 0. Pursuing the same
idea but having in mind the form of functionals (2.26) and (2.30), we have devised a similar
method suitable for lattice models. The method amounts to (i) directly extending the exact
zero-dimensional functional to higher dimensions (note here a difference from the continuum
case (Tarazona and Rosenfeld 1997),where it is the one-dimensional functional that is extended
to higher dimensions) and then (ii) adding the appropriate extra terms (in the way suggested
by (2.26) and (2.30)) in order for the functional to recover the exact form when applied to
zero-dimensional cavities.

To illustrate this procedure we must first recall that we are dealing with a mixture,
sometimes nonadditive, and, in contrast to the monocomponent case, it is not very clear what a
zero-dimensional cavity means for a mixture. Let us therefore start by defining what we shall
understand by this. In the monocomponent case, a zero-dimensional cavity is simply a set of
connected points in the d-dimensional lattice such that if a particle (its centre of mass) is placed
at one of them no other particle can be placed at any other point of this set. For one-dimensional
hard rods of length 2a, the largest zero-dimensional cavity (‘maximal’ cavity) is the interval
[−a + 1, a], whereas for hard rods of length 2a + 1 it is [−a + 1, a + 1]. In d dimensions the
maximal cavity is the set [−a + 1, a]d or [−a + 1, a + 1]d , depending on the length parity.

For a mixture, a zero-dimensional cavity can be defined as a collection of sets, one
for each species, such that if a particle of any species occupies one of the points of its
corresponding set, no other particle of the same or different species can be placed at any
point of its corresponding set (figure 2 will help to clarify this concept). In d = 1 and in
the additive case, this means the collection of sets {[−aα + 1, aα]}α, if 2aα is the rod length
of species α (figure 2(a)), or {[−aα + 1, aα + 1]}α, if this rod length is 2aα + 1 (figure 2(b));
in the nonadditive case, however, indexing by α the species of even length and by α′ those
of odd length, there are two maximal cavities: {[−aα + 1, aα], [−aα′, aα′]}α,α′ (figure 2(c))
and {[−aα + 1, aα], [−aα′ + 1, aα′ + 1]}α,α′ (figure 2(d)). In d dimensions the cavities for the
additive case generalize as in the monocomponent case, while in the nonadditive case there
will appear 2d different cavities, depending on which of the two choices above we select for
each dimension. Because of this proliferation of maximal cavities in the nonadditive case, it
is convenient to discuss the two types of mixture separately.
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Figure 2. Maximal cavities for binary mixtures in d = 1. Large particles can be placed at any
point, black or white, but small ones can only be placed at black sites. The figure shows the additive
even (a) and odd (b) cases, as well as the two equivalent cavities for one nonadditive case (c) and (d).

3.1. Additive mixture

For density profiles constrained to be zero outside the points of a maximal zero-dimensional
cavity it is easy to check (by applying the definition) that the weighted densities (2.22) satisfy
the relationships

n(1)(s) = n(0)(s + 1) (s < 0),

n(1)(s) = n(0)(s) (s > 0).
(3.4)

These are the keystone of the method. As explained, the method starts off from the
straightforward extension of the zero-dimensional excess functional to d = 1, �

(1d)

0 . As
n(1)(0) = η, the occupancy probability of the cavity,

�
(1d)
0 [ρ] =

∑
s∈Z

�0(n
(1)(s)). (3.5)

Now we apply this functional to a zero-dimensional cavity and, by means of (3.4), rewrite it
as

�
(1d)
0 [ρ] = �0(n

(1)(0)) +
∑
s<0

�0(n
(0)(s + 1)) +

∑
s>0

�0(n
(0)(s))

= �0(n
(1)(0)) +

∑
s∈Z

�0(n
(0)(s)). (3.6)

However, �0(n(1)(0)) on the rhs of (3.6) is the exact zero-dimensional excess free energy for
the cavity, so the method dictates that in order to obtain the excess functional for the one-
dimensional system we must subtract from the form we started with all the spurious terms.
This leads to

βFex[ρ] =
∑
s∈Z

�0(n
(1)(s)) −

∑
s∈Z

�0(n
(0)(s)), (3.7)

which coincides with (2.26).
Let us now illustrate how the method works for higher dimensions as well. For the sake

of simplicity we shall restrict ourselves to d = 2. The corresponding relationships between
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Figure 3. (a) Diagrammatic representation of the weights corresponding to a binary mixture of rods
of lengths σ1 = 3 and σ2 = 2. Circles window points whose density contribute to the weighted
density: empty circles for the large rods and shaded circles for the small rods. (b), (c) Result of
convoluting the weights with the density profiles of zero-dimensional maximal cavities.

the weighted densities of density profiles vanishing outside a zero-dimensional cavity are

n(k,1)(s1, s2) = n(k,0)(s1, s2 + 1) (s2 < 0),

n(k,1)(s1, s2) = n(k,0)(s1, s2) (s2 > 0),
(3.8)

with k = 0, 1, and similar ones if the coordinate axes are interchanged. Using the same
notation as for the one-dimensional case and repeating the steps in (3.6) for s2 we obtain

�
(2d)

0 [ρ] =
∑
s∈Z2

�0(n
(1,1)(s)) =

∑
s1∈Z

�0(n
(1,1)(s1, 0)) +

∑
s∈Z2

�0(n
(1,0)(s)). (3.9)

Repeating the trick with
∑

s∈Z2 �0(n(0,1)(s)) we obtain

0 =
∑
s∈Z2

�0(n
(0,1)(s)) −

∑
s1∈Z

�0(n
(0,1)(s1, 0)) −

∑
s∈Z2

�0(n
(0,0)(s)). (3.10)

Adding (3.10) to (3.9) and noticing that∑
s1∈Z

�0(n
(1,1)(s1, 0)) −

∑
s1∈Z

�0(n
(0,1)(s1, 0)) = �0(n

(1,1)(0)) (3.11)

yields

�
(2d)
0 [ρ] = �0(n

(1,1)(0)) +
∑
s∈Z2

[�0(n
(1,0)(s)) + �0(n

(0,1)(s)) − �0(n
(0,0)(s))]. (3.12)

Again, �0(n(1,1)(0)) is the exact zero-dimensional excess functional, therefore

βFex[ρ] =
∑
s∈Z2

[�0(n
(1,1)(s)) − �0(n

(1,0)(s)) − �0(n
(0,1)(s)) + �0(n

(0,0)(s))], (3.13)

which coincides with (3.2) for d = 2. This provides the rationale for (3.2) for arbitrary
dimension, and proves in passing that functional (3.2) has a consistent dimensional reduction
to any lower dimension.

3.2. Nonadditive mixture

In the additive case it is always the weighted density n(1)(0) that gives the occupancy probability,
η, of the (unique) maximal zero-dimensional cavity, so extending the zero-dimensional excess
functional is straightforward as equation (3.5) shows. In the nonadditive case, however, this
is not as simple. Due to the degeneracy of maximal cavities, which weighted density yields
the occupancy probability depends on which cavity we choose. Before proceeding with the
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construction of the functional we therefore need a unique expression in terms of the one-
dimensional weighted densities that provides the excess free energy of any maximal cavity.
One such expression is

�
(0d)
0 [ρ] = �0(n

(1)
1 (0)) + �0(n

(1)
0 (0)) − �0(n

(0)
1 (0)). (3.14)

In order to make it easy to understand why this is so and the discussions to come, we have
introduced a diagrammatic notation for a particular case in figure 3. We shall consider a binary
mixture of rods of lengthsσ1 = 3 and σ2 = 2, which is prototypical of this case. For this mixture
we represent the weights as a chain of empty and shaded circles (see figure 3(a)). The effect of
convoluting a weight with a density profile is to select the density at those sites overlapped by
the empty circles for the large rods and by the shaded circles for the small rods, and add them
up. The result of this operation is the corresponding weighted density. The application of these
weights to each maximal cavity is depicted in figures 3(b) and (c), respectively. Figure 3(b)
illustrates that n(1)

0 (0) = η and n(1)

1 (0) = n(0)

1 (0), so (3.14) reduces to �0(η), as expected. On
the other hand, figure 3(c) illustrates that n(1)

1 (0) = η and n(1)
0 (0) = n(0)

1 (0), so again (3.14)
reduces to �0(η).

We can now carry on with the method as in the additive case and propose

�
(1d)

0 [ρ] =
∑
s∈Z

[�0(n
(1)

1 (s)) + �0(n
(1)

0 (s)) − �0(n
(0)

1 (s))]. (3.15)

Whichever the maximal cavity we choose, from definitions (2.28) and the
relationships (3.4) the following analogous relationships between the nonadditive weighted
densities hold:

n(1)

0 (s) = n(0)

1 (s), n(1)

1 (s) = n(0)

0 (s + 1) (s < 0),

n(1)
0 (s) = n(0)

0 (s), n(1)
1 (s) = n(0)

1 (s) (s > 0).
(3.16)

Proceeding as we did for the additive case, we use the above relationships to rewrite (3.15) as

�
(1d)

0 [ρ] = �
(0d)

0 [ρ] +
∑
s<0

�0(n
(0)

0 (s + 1)) +
∑
s>0

�0(n
(0)

0 (s)) = �
(0d)

0 [ρ] +
∑
s∈Z

�0(n
(0)

0 (s)),

(3.17)

where we have made use of (3.14), which gives the zero-dimensional excess functional; so the
method gives

βFex[ρα] =
∑
s∈Z

[�0(n
(1)

1 (s)) + �0(n
(1)

0 (s)) − �0(n
(0)

1 (s)) − �0(n
(0)

0 (s))], (3.18)

which coincides with (2.30).
In order to extend the cavity method to dimensions higher than one, we have to generalize

expression (3.14). Due to the cubic symmetry of our system this can be done just by applying
the same rule on each coordinate axis. For the sake of simplicity, we can define the operator T j

k

as T j
k f (k, j) ≡ f (1, 1) + f (1, 0) − f (0, 1) and its d-dimensional version as T j

k ≡ ∏d
i=1 T

ji
ki

.
Then the natural generalization of (3.14) is simply

�
(0d)

0 [ρ] = T j
k �0(n

(k)

j (0)), (3.19)

and the extension of the zero-dimensional excess functional to d dimensions

�
(d)
0 [ρ] =

∑
s∈Zd

T j
k �0(n

(k)
j (s)). (3.20)

Again, as a representative of a higher dimension, we shall apply the cavity method for d = 2.
In figure 4 is shown the diagrammatic representation of the weights for a binary mixture of
squares of edge lengths σ1 = 3 and σ2 = 2, as well as all maximal cavities for this system.
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Figure 4. (a) Diagrammatic representation of the weights corresponding to a binary mixture of
squares of edge lengths σ1 = 3 and σ2 = 2 (see caption of figure 3(a) to understand the circle
notation). (b) Maximal cavities for this system. Note that the result of convoluting the weights
in (a) with the density profiles of (b), n(k)

j (0), is obtained by superposing the lower leftmost shadow
circle of the weight with the lower leftmost black point of the cavity.

Expression (3.19) for d = 2 accounts for all cavities in figure 4(b). For example, if we
take the cavity at the top the application of the weights in figure 4(a) gives n(1,1)

0,0 (0) = η,

n(1,1)

1,1 (0) = n(0,0)

1,1 (0), n(1,1)

1,0 (0) = n(0,1)

1,0 (0), n(1,1)

0,1 (0) = n(1,0)

0,1 (0) and n(1,0)

1,1 (0) = n(0,1)

1,1 (0),
so (3.19) reduces to �0(η). By symmetry the same happens for any of the cavities.

Proceeding with the method, from (3.20) we shall start with

�
(2d)

0 [ρ] =
∑
s∈Z2

[�0(n
(1,1)

1,1 (s)) + �0(n
(1,1)

1,0 (s)) − �0(n
(1,0)

1,1 (s)) + �0(n
(1,1)

0,1 (s)) + �0(n
(1,1)

0,0 (s))

− �0(n
(1,0)

0,1 (s)) − �0(n
(0,1)

1,1 (s)) − �0(n
(0,1)

1,0 (s)) + �0(n
(0,0)

1,1 (s))]. (3.21)

Now, the relationships (3.16) become

n(k,1)

j,0 (s1, s2) = n(k,0)

j,1 (s1, s2), n(k,1)

j,1 (s1, s2) = n(k,0)

j,0 (s1, s2 + 1) (s2 < 0),

n(k,1)

j,0 (s1, s2) = n(k,0)

j,0 (s1, s2), n(k,1)

j,1 (s1, s2) = n(k,0)

j,1 (s1, s2) (s2 > 0),
(3.22)

and those obtained by interchanging the coordinate axes. As before, by making use of these
relationships in (3.21) we obtain

�
(2d)

0 [ρ] =
∑
s1∈Z

T j
k �0(n

(k)
j (s1, 0)) +

∑
s∈Z2

[�0(n
(1,0)

1,0 (s)) + �0(n
(1,0)

0,0 (s)) − �0(n
(0,0)

1,0 (s))],

(3.23)

where it must be noticed that the second term in the rhs of (3.23) is just
∑

s∈Z2 T j
k �0(n

(k,0)

j,0 (s)).
By the same argument, we have

0 =
∑
s∈Z2

T j
k �0(n

(0,k)

0, j (s)) −
∑
s1∈Z

T j
k �0(n

(0,k)

0, j (s1, 0)) −
∑
s∈Z

�0(n
(0,0)

0,0 (s)). (3.24)
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Adding (3.24) to (3.23) and noticing that because of the zero-dimensional reduction of the
one-dimensional case proved above∑

s1∈Z

[T j
k �0(n

(k)
j (s1, 0)) − T j

k �0(n
(0,k)

0, j (s1, 0))] = �
(0d)

0 [ρ], (3.25)

we obtain

�
(2d)
0 [ρ] = �

(0d)
0 [ρ] +

∑
s∈Z2

[�0(n
(1,0)
1,0 (s)) + �0(n

(1,0)
0,0 (s))]

+
∑
s∈Z2

[�0(n
(0,1)

0,1 (s)) + �0(n
(0,1)

0,0 (s))]

−
∑
s∈Z2

[�0(n
(0,0)

1,0 (s)) + �0(n
(0,0)

0,1 (s)) + �0(n
(0,0)

0,0 (s))]. (3.26)

Thus, the cavity method produces

βFex[ρ] = �
(2d)

0 [ρ] −
∑
s∈Z2

[�0(n
(1,0)

1,0 (s)) + �0(n
(1,0)

0,0 (s))]

−
∑
s∈Z2

[�0(n
(0,1)

0,1 (s)) + �0(n
(0,1)

0,0 (s))]

+
∑
s∈Z2

[�0(n
(0,0)

1,0 (s)) + �0(n
(0,0)

0,1 (s)) + �0(n
(0,0)

0,0 (s))], (3.27)

which is (3.3) for d = 2.
The extension of this argument to arbitrary dimension proves that (3.3) is the functional

produced by the cavity method. In addition, its consistent dimensional reduction to any lower
dimension is also proved.

4. Some applications

In order to show the applicability of the theory exposed in the previous sections, we present
the results obtained for some particular two- and three-dimensional systems.

4.1. Hard-square-lattice gas

The hard-square-lattice gas is just the lattice gas with first- and second-nearest-neighbour
exclusion in the simple square lattice. This system has been widely studied (Bellemans
and Nigam 1967, Ree and Chesnut 1967, Nisbet and Farquhar 1974, Slotte 1983, Baram
1983, Baram and Luban 1987) but no definitive conclusion has been reached about its phase
behaviour. The results reported cover the whole spectrum, depending on which theory has been
used to study it. Some authors have claimed it to have a second-order transition (Bellemans and
Nigam 1967, Slotte 1983), others a weaker (third-order) transition (Bellemans and Nigam 1967,
Ree and Chesnut 1967, Baram 1983, Baram and Luban 1987) and others even no transition
at all (Bellemans and Nigam 1967, Nisbet and Farquhar 1974, Slotte 1983). Nowadays, the
only thing that seems clear is the structure of the ordered phase: periodic along one coordinate
axis while uniform along the other (i.e. columnar). However, no simulations have ever been
performed in order to clarify the disputed order of the transition.

The result of FM theory is shown in figure 5. The system is found to have a second-order
transition from a fluid phase to a columnar phase. The value of the packing fraction at the
transition is ηc = 3 −√

5 = 0.764 and the chemical potential at this point (βµ)c = 2.41. This
result is compatible with that obtained by Bellemans and Nigam (1967) using the method of
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Figure 5. Equation of state (reduced pressure, β P , versus packing fraction, η) from FM theory
(solid curve) and from the method of Rushbrooke and Scoins (dashed curve).

Rushbrooke and Scoins (1955). They also found a second-order transition, but at ηc = 0.807
and (βµ)c = 2.85. The equation of state they obtained with this method is compared with the
FM result in figure 5. There is good agreement between the two theories; only in the critical
region do the two curves deviate from each other.

It is worth mentioning that within the FM approximation this system is analytically
solvable. Omitting the calculations and denoting L(x) ≡ x ln x , we have obtained for the
Helmholtz free-energy density of the fluid branch

β�(η) = L(η/4) + L(1 − η/4) − 2L(1 − η/2) + L(1 − η), (4.1)

and for the columnar branch

β�(η) = 1
2 [L(η1/2) + L(1 − η1/2) + L(η/2 − η1/2) + L(1 − η/2 + η1/2)

− 2L(1 − η/2) − L(1 − η + η1) + 2L(1 − η)], (4.2)

where the occupancy probability of a sublattice is given by

η1(η) = η

2
+

√
η3 − 8η2 + 16η − 8

4η
. (4.3)

Clearly more work, either by means of simulations or by other methods, is needed in
order to resolve the nature of the transition. This notwithstanding, we do not expect good
agreement except at low or high pressures; critical points are difficult (sometimes impossible)
to capture, even approximately, with mean-field-like theories such as this one. Nevertheless,
we believe the FM approach to be valuable in the sense that it is possible to obtain an analytic
approximation, the result obtained is compatible with one previously reported using a different
theory and it correctly predicts the structure of the ordered phase.

4.2. Monocomponent and bicomponent hard-cube-lattice gas

We have also applied the theory to three-dimensional systems. In this section we present
the results obtained for the monocomponent systems of parallel hard cubes of edge lengths
σ = 2 and 6, as well as for their binary mixture. These being three-dimensional systems,
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Figure 6. Equation of state obtained from FM theory for the monocomponent hard-cube-lattice
gas with edge lengths σ = 2 (a) and σ = 6 (b). Phases are labelled F (fluid), Smα (smectic) and
Cα (columnar), where α = 2, 6, 7 represents the ordering period. The inset in (a) shows a very
narrow first-order Sm2–C2 transition.

there are three ordered phases that compete in the phase diagrams: smectic (one-dimensional
order), columnar (two-dimensional order) and solid (three-dimensional order). The period of
the ordering is determined from the wavevector at which the first divergence of the structure
factor occurs. In the first case this is π , hence the period is two. As this is also the period of
the closest-packed phase it is the only one that is found in stable phases. In the second case
the wavevector is 2π/7, implying a period of seven; however, in this case the closest-packed
phase has period six, so both period-six and period-seven phases must be considered. The
same holds for the binary mixture.

The results for the monocomponent systems are shown in figures 6(a) (σ = 2) and 6(b)
(σ = 6). The first system undergoes, at ηc = 0.568, a second-order transition from a fluid
phase (F) to a period-two smectic one (Sm2). At a higher value of the packing fraction the
system is found to have a very narrow first-order phase transition, where the smectic phase
at ηSm = 0.673 coexists with a period-two columnar phase (C2) at ηC = 0.677 (see the
inset in figure 6(a)). For the σ = 6 system we find a more complex scenario with several
ordered phases, due to the proximity of their free energies. There are six ordered phases in
competition: smectic, columnar and solid with periods both six and seven. Only three of them,
the two columnar and the period-seven solid, are stable in some region. The other three are just
metastable. Again, the columnar phase is the most stable at high density (notice the difference
of the high-density ordered phase of these lattice systems with respect to that of the continuum
model (Groh and Mulder 2001)). Upon increasing density, the sequence of transitions is as
follows: first, a second-order one at ηc = 0.402 from a fluid phase (F) to a period-seven solid
phase (S7); then a first-order transition in which the S7 solid coexists, at ηS7 = 0.617, with
a period-seven columnar phase (C7), at ηC7 = 0.631; finally, another first-order transition
with the C7 columnar at ηC7 = 0.656 coexisting with a period-six columnar phase (C6) at
ηC6 = 0.827. This latter phase extends up to the closest packing.

The competition of different ordered phases in the latter system is remarkable, but it
produces a real mess when the two kinds of cube are mixed. The phase diagram for this
binary mixture (pressure versus composition) is shown in figure 7. All possible phases are
present there. A few particularly complex regions are shown in more detail. Remarkable
features of this phase diagram are the very wide F–C6 phase separation dominating the lower
part of the diagram, and the extraordinarily narrow S6–C6 coexistence, extremely close to the
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Figure 7. Phase diagram (reduced pressure, β P , versus composition, x) of the lattice binary
mixture of hard cubes (size ratio 6:2). Composition is defined by x = ηL/η, where η = ηL + ηS is
the total packing fraction of the large (L) and small (S) cubes. Phases are labelled as in figure 6.
The dotted curve corresponds to the spinodal of the uniform fluid. For 0.81 � x it marks a stable
continuous F–S7 phase transition.

monocomponent fluid of large cubes. The latter tells us about the proximity of the free energy
of the solid phase to that of the columnar in this monocomponent system (a small amount
of ‘impurities’ breaks the translational symmetry along the columns of the columnar phase,
transforming it into a solid). The former has a very important consequence concerning the
demixing scenario for this system.

This binary mixture has been reported, from simulations (Dijkstra and Frenkel 1994), to
demix into two fluid phases. As a matter of fact, this is, as far as we know, the only existing
evidence of an entropy-driven fluid–fluid demixing in an additive binary mixture. In all other
systems of the same kind, e.g. hard spheres (Dijkstra et al 1999) or parallel hard cubes in
the continuum (Martı́nez-Ratón and Cuesta 1998, 1999), fluid–fluid demixing is preempted
by freezing of (at least) the largest component. Our results contradict this simulations and fit
in what seems to be the standard scenario of demixing for additive binary mixtures, namely
fluid-ordered phase demixing (the fact that the ordered phase is a columnar is just a peculiarity
of the model). A more detailed analysis of this result can be found in Lafuente and Cuesta
(2002).

5. Conclusions

In this article we have proposed a formulation of FM theory for lattice models. As mentioned
in the introduction, it is not possible just to carry on with Rosenfeld’s original formulation but
in discrete space. This is so because of the lack of a scaled-particle theory for lattice models.
In fact, FM theory in the continuum can be regarded as a generalization of scaled-particle
theory to inhomogeneous phases. For this reason, we believe that the knowledge of a LFMT
could guide the derivation of a lattice scaled-particle theory. We are currently working in this
direction.
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In the recent reformulations of FM theory the scaled-particle equation of state is no longer
an input but an output of the theory. Two fundamental ideas appear as the keystone of these
formulations: the exact density functional must have a consistent dimensional reduction to any
lower dimension and the exact zero-dimensional limit is necessary for the correct description of
the freezing transition. The latter turns out to be a very stringent constraint for the functional and
seems to contain most of the information needed for the construction of a higher-dimensional
functional. In this context, the zero-dimensional cavity method appears as a scheme for the
construction of FM functionals. The LFMT we have proposed is the generalization of this
method suggested by the exact form of the functional of the one-dimensional mixture of hard
rods on a lattice. Although this system has been previously studied in the literature, the
originality of our derivation is that this is the first time that the distinction between additive
and nonadditive mixtures have been noticed and resolved and the exact functional is written
in a form in which the zero-dimensional functional arises naturally. The cavity method can
be extended to other particle shapes and other lattice structures. This will be the content of a
future work.

We have applied the functional to two-and three-dimensional models and found very
reasonable results. In two dimensions these are comparable to those previously obtained by
other means, and in three dimensions they agree with previous simulation data, in the case
of the mixture (Lafuente and Cuesta 2002), although with an utterly different interpretation,
which has yet to be confirmed. One remarkable feature of all three-dimensional models is
the very rich and complex phase diagrams they possess (specially the mixture), a complexity
which the present theory has nevertheless allowed us to tackle without problems.
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